pDRIVE MX eco Operating Instructions

Operating instructions Modbus
>pDRIVE< ecoMX 4V
>pDRIVE< proMX 4V
>pDRIVE< proMX 6V
>pDRIVE< multi-ecoMX
>pDRIVE<
>pDRIVE< multi-proMX
Modbus
General remarks
Advice, tip !
General information, note exactly !
The requirements for successful commissioning are correct selection of the device, proper planning and installation. If you have any further questions, please contact the supplier of the device.
Capacitor discharge !
Before performing any work on or in the device, disconnect it from the mains and wait at least 15 minutes until the capacitors have been fully discharged to ensure that there is no voltage on the device.
Automatic restart !
With certain parameter settings it may happen that the frequency inverter restarts automatically when the mains supply returns after a power failure. Make sure that in this case neither persons nor equipment is in danger.
Commissioning and service !
Work on or in the device must be done only by duly qualified staff and in full compliance with the appropriate instructions and pertinent regulations. In case of a fault contacts which are normally potential-free and/or PCBs may carry dangerous voltages. To avoid any risk to humans, obey the regulations concerning "Work on Live Equipment" explicitly.
Terms of delivery
The latest edition "General Terms of Delivery of the Austrian Electrical and Electronics Industry Association" form the basis of our deliveries and services.
Specifications in this instructions
We are always anxious to improve our products and adapt them to the latest state of the art. Therefore, we reserve the right to modify the specifications given in this instructions at any time, particular those referring to measures and dimensions. All planning recommendations and connection examples are non-binding suggestions for which we cannot assume liability, particularly because the regulations to be complied depend on the type and place of installation and on the use of the devices.
Regulations
The user is responsible to ensure that the device and its components are used in compliance with the applicable regulations. It is not permitted to use these devices in residential environments without special measures to suppress radio frequency interferences.
Trademark rights
Please note that we do not guarantee that the connections, devices and processes described herein are free from patent or trademark rights of third parties.
8 P01 034.00/00 HALS
Option Modbus for the frequency inverters
>pDRIVE< MX eco
This instructions describe the functions software version APSeco_A04_16 and higher
Theme Page
Modbus...................................................................... 3
Function Modbus.................................................................4
Hardware ...................................................................9
Process data area.................................................... 15
Process data area..............................................................16
Control word......................................................................18
Main reference value (Auxiliary reference values) .............25
Status word .......................................................................26
Main actual value (Auxiliary actual values) ........................29
Parameterization...................................................... 31
General ..............................................................................32
Inverter settings .......................................................39
Bus - Diagnostics..................................................... 51
Diagnostics of the control / status word ...........................52
Diagnostics of the "Bus raw data" ....................................53
Application examples ..............................................55
General ..............................................................................56
Appendix.................................................................. 59
Parameter list of the >pDRIVE< MX eco........................60
Inverter messages .............................................................81
The instructions in hand cover the topics operation, parameterization and diagnostics of the >pDRIVE< MX eco Modbus interface. Moreover, the principles of the Modbus architecture and their main components are explained in detail.
Use this instructions additionally to the device documentation "Description of functions" and "Mounting instructions".
In order to address an inverter via fieldbus also during mains cut-off (line contactor control, disconnecting switch, ...) the >pDRIVE< MX eco has to be supplied with an external 24 V buffer voltage.
When using the Modbus interface only connect pins 4, 5 and 8 in order to avoid malfunction or damage of the >pDRIVE< MX eco !
1
8 P01 034.00/00 HALS
2

Modbus

8 P01 034.00/00 HALS
3

Function Modbus

All frequency inverters of the >pDRIVE< MX eco range support the fieldbus system Modbus as standard. It is coupled at the RJ45 socket next to the terminals (see chapter "Modbus connection", page 10).
In the Modbus network the frequency inverter is operated as slave. The used profile is designed on the basis of the Profidrive profile VDI/VDE 3689.
Principle function
The data transfer in a Modbus network takes place via the serial device interface (RS485 2-wire) with a master/slave method.
Only the Modbus master can send commands (request) to the other bus subscribers. Depending on the command, the reaction (response) of the individual slave devices is either to send the desired data or to confirm the execution of the desired operation function. During transfer of the data, request and response constantly alternate.
The master sends commands to the slave device. This slave sends data only when prompted to do so by the master device. The data exchange thus follows a fixed scheme. The sequence is always seen from the viewpoint of the Modbus master.
The commands are embedded in the transferred data frame in the form of function codes. The request of the master contains a function code that represents a command to be executed for the slave device. In the process, the transferred data bytes contain all information required for the execution of the command. The error check bytes enable the slave unit to check the integrity of the data received. The response of the slave device contains the function code of the request as an "echo."
The data bytes of the response (slave to master) depend on the function code used and are provided by the slave device. The error check bytes enable the master to check the validity of the received data.
The structure of the sent data is defined in various Modbus protocols. In addition to the Modbus RTU (master/slave communication in binary code) there are also the formats
Modbus-ASCII and Modbus-PLUS. The >pDRIVE< MX eco devices support the Modbus RTU protocol.
Structure of the telegram
The telegram structure of a Modbus frame always consists of the address of the slave being addressed, the desired request code, a data field of variable length and a 16-bit CRC to guarantee data consistency.
The end of the telegram is recognized by a pause ≥ 3.5 bytes. The structure of a byte can be set using parameter D6.12 "Modbus format".
The transfer of the telegrams takes place according to the master/slave system through the entry of the desired slave address in confirmed form. If a value of zero is used as the slave address, the telegram applies for all slaves (broadcast service).
The permissible address range of the individual slaves is 1...247. There may not be two or more devices with the same address at the bus.
To set up a single-point connection (network consists of only one master and one slave), the master can use the address 248. When using this address, the slave which is set by D6.10.
responds independent of its address
8 P01 034.00/00 HALS
4
Slave
Request code Data CRC 16
address
1 byte 1 byte 1...126 byte 2 byte
Creating CRC 16
CRC 16 is calculated according to the following method for checking the data security:
Initialize CRC (16-bit register) to hex FFFF
Execution from the first to the last byte of the message:
CRC XOR <byte> CRC Execute (8 times) Move CRC by 1 bit to the right If output bit = 1, execute CRC XOR A001 hex CRC. End of execution End of execution
The CRC value which is calculated that way is initially transferred with the low-order byte and then with the high-order byte.
Modbus functions / request code
Request code
8 P01 034.00/00 HALS
hex
03 hex Read Holding Registers No
06 hex Write Single Register Yes
08 hex Diagnostics No
17 hex Read/write multiple reg. No
Modbus function Broadcast Description Use
Reading of a single parameter (16 bit) or a maximum of 63 parameters with consecutive logical address
Writing of a single parameter (16 bit)
Service for fieldbus diagnostics (requests with subcodes)
Request for writing and reading several words with consecutive logical addresses
Parameterization, Process data ZTW + IW
Parameterization
Diagnostics
Process data STW+SW, ZTW + IW
Structure of the Modbus user data
The available request codes of the Modbus provide services for various tasks.
Diagnostic functions (request code hex 08)
Using the request code 08 hex and its subcodes, bus-specific information can be read in order to evaluate the quality of transmission statistically.
5
Request telegram Master >pDRIVE< MX eco
Slave
address
Request Subcode Request data CRC 16
08 hex Hi Lo Hi Lo Lo Hi
1 byte 1 byte 2 bytes 2 bytes 2 bytes
Response telegram >pDRIVE< MX eco Master
Slave
address
Response Subcode Response data CRC 16
08 hex Hi Lo Hi Lo Lo Hi
1 byte 1 byte 2 bytes 2 bytes 2 bytes
Subcode Request data Response data Description
00 XX YY XX YY The request causes an echo at the respective slave.
The response telegram of the slave is a copy of the
request telegram.
0A 00 00 00 00 Reset counter
0C 00 00 = actual value of the
counter
0E 00 00 = actual value of the
counter
Reading out the CRC Error Message counter
(number of the faulty received telegrams)
Reading out the telegram counter
(number of the telegrams received from the slave,
independent of the type of telegram)
Parameterization of the >pDRIVE< MX eco (request code hex 03, 06)
By means of the services Read (03 hex) and Write (06 hex) of parameters all inverter-internal parameters can be accessed via their logical address.
For details, see chapter "Parameterization", page 31.
Monitoring and control of the >pDRIVE< MX eco (request codes hex 03, 17)
By means of the services Read (03 hex) and Write/Read (17 hex) of multiple registers access to device-internal addresses of the control word and status word as well as to the available reference values and actual values is possible.
Therewith pure monitoring as well as complete control of the >pDRIVE< MX eco is possible. The device­internal drive profile is designed on the basis of the Profidrive profile (VDI/VDE 3689).
Unlike the telegram structure predefined by the Profidrive profile (PPO types 1...5), the lengths of the telegrams can be freely defined for both directions (master slave / slave master) in Modbus. As a result the telegram length can be optimized according to the existing requirements of the process.
Example of a Modbus user data telegram
8 P01 034.00/00 HALS
6
Master >pDRIVE< MX eco
For control of the >pDRIVE< MX eco the addresses 51D...526 hex are used. The number of the inverter-internal and actually used reference values can be preset by means of parameter D6.100 "No. of Bus-ref. values". The reference values are configured by means of parameters D6.101...D6.133.
Word PZD1 PZD2 PZD3 PZD4 PZD5 PZD6 PZD7 PZD8 PZD9 PZD10
User data STW SW 1 SW 2 SW 3 SW 4 SW 5 SW 6 SW 7 SW 8 SW 9 Log. address (hex) 51D 51E 51F 520 521 522 523 524 525 526 Configuration --- D6.101 D6.105 D6.109 D6.113 D6.117 D6.121 D6.125 D6.129 D6.133
PZD … Process data word STW … Control word, 16 bit chain of commands. (11 bits corresponding to Profidrive profile, 5 bits freely
usable)
-14
SW … Reference value, 16 bit display, -200...+200 %, resolution 2
>pDRIVE< MX eco Master
The addresses FA...103 hex are used to read out information provided by the >pDRIVE< MX eco like status word and actual values. The number of the inverter-internal and actually handled actual values can be preset by means of parameter D6.137 "Number actual values". The actual values are configured by means of parameters D6.138...D6.170.
Word PZD1 PZD2 PZD3 PZD4 PZD5 PZD6 PZD7 PZD8 PZD9 PZD10
User data ZTW IW 1 IW 2 IW 3 IW 4 IW 5 IW 6 IW 7 IW 8 IW 9
Log. address (hex) FA FB FC FD FE FF 100 101 102 103
Configuration D6.138 D6.142 D6.146 D6.150 D6.154 D6.158 D6.162 D6.166 D6.170
PZD … Process data word ZTW … Status word, 16 bit chain of commands. (11 bits corresponding to Profidrive profile, 5 bits freely
usable)
8 P01 034.00/00 HALS
IW … Actual value, 16 bit display, -200...+200 %, resolution 2-14
A detailed description of the control word and status word can be found in chapter "Process data area", page 16.
7
Structure of the network
The typical Modbus topology corresponds to an RS485 2-wire serial bus network with drop lines. The individual subscribers are connected using a 2-wire, screened twisted cable (typ. Cat 5), whereby only the signals D1, D2 and Common are connected.
According to the Modbus recommendations, both bus lines are to be connected with one 650 Ω resistor against 5 V and ground when installing the master. At both ends of the bus segment, the bus cable is to be terminated with a 120 Ω resistor and a serially connected 1 nF capacitor.
At every bus segment, a maximum of 32 subscribers (including repeater) can be operated. The maximum line extension amounts to 1000 m at 19.2 kBaud. Principally, the drop lines must be kept as short as possible (max.. 20 m for a single line, 40 m in total in case of centralized distribution).
Technical key data of a Modbus network
Maximum number of subscribers: 247 in all segments Maximum number of subscribers per segment: 32 including the repeater Bus cable: Screened, 2 x twisted, two-wire line
Characteristic impedance: Distributed capacitance: Loop resistance: Wire cross-section:
100...120 Ω < 60 nF/km < 160 Ω/km > 0.22 mm
2
Bus connection: RJ45 - screened, pin assignment 4, 5, 8 Bus termination: Every bus segment has to be terminated using a serial
connection of R = 120 Ω and C = 1 nF.
Galvanic isolation: No
Detailed information regarding the Modbus specification can also be found under www.modbus.org (Modbus_over_serial_line_V1.pdf Edition 2002).
8 P01 034.00/00 HALS
8

Hardware

8 P01 034.00/00 HALS
9
Modbus connection
Plug assignment
Pin assignment of the RJ45 device interface
Pin Signal
Socket
*) CANopen signals **) Supply voltage for the Matrix 3 interface converter RS232/485 (8 P01 124)
The RJ45 socket (in the duct next to the control terminals) can be used as serial interface for the fieldbus systems Modbus and CANopen as well as to couple the PC software Matrix 3. When building up a Modbus network, only the signals of pins 4, 5 and 8 may be used.
1 CAN_H *) 2 CAN_L *) 3 CAN_GND *) 4 D1 5 D0 6 Not used 7 VP **) 8 Common *)
8 P01 034.00/00 HALS
10
Consequently, connection is possible in two different ways:
1. Using the optional Modbus T-adapter
The Modbus T-adapter provides two RJ45 sockets for further bus wiring. On both sockets, which are connected in parallel, only pins 4, 5 and 8 are connected so that also pre-assembled cables (1:1 connection) can be used.
The Modbus T-adapter is available in two different lengths. 8 P01 300 Modbus T-adapter with 0.3 m connecting cable
8 P01 301 Modbus T-adapter with 1 m connecting cable
Example of a bus structure with T-adapter:
2. Using the optional Modbus splitter or an external junction box
When no Modbus T-adapter is used, please ensure that only the three pins 4, 5 and 8 at the RJ45 connector of the bus connection are connected. Using the PHOENIX CONTACT VARIOSUB RJ45 QUICKON connector is a
8 P01 034.00/00 HALS
simple and capable solution to establish a connection between the bus subscriber and the Modbus splitter.
8 P01 303 Passive Modbus splitter 8 P01 306 RJ45 Connector VARIOSUB RJ45 QUICKON
11
Example of a bus structure with Modbus splitter:
>pDRIVE< MX Modbus options
Option >pDRIVE< MODBUS T-ADAP 03 8 P01 300 Option >pDRIVE< MODBUS T-ADAP 10 8 P01 301 Option >pDRIVE< MODBUS R+C 8 P01 302 Option >pDRIVE< MODBUS SPLITTER 8 P01 303 Option >pDRIVE< RS232/485 8 P01 304 Option >pDRIVE< MODBUS PLUG 8 P01 305 Option >pDRIVE< CABLE 3-BE 8 P01 122 Option >pDRIVE< CABLE 10-BE 8 P01 123
Further recommended Modbus components
Cable LAPPKABEL, UNITRONIC® BUS FD P LD, 2x2 x0.22
When using the Modbus interface only connect pins 4, 5 and 8 in order to avoid malfunction or damage of the >pDRIVE< MX eco !
8 P01 034.00/00 HALS
12
LED - Indicator lamps
Typically the diagnostics of the Modbus connection is executed by means of the matrix operating panel BE11. If no operating panel is available, the actual bus state can be read out also using the built-in LED keypad.
LED Modbus state Bus state
dark
flashing
8 P01 034.00/00 HALS
LED
Local Bus
Active control source
(matrix field E4)
0 0 Terminal operation 1 0 Panel mode 0 1 Fieldbus
Modbus is not connected or inactive
LED flashes proportional to the number of the incoming and outgoing telegrams
13
8 P01 034.00/00 HALS
14

Process data area

8 P01 034.00/00 HALS
15

Process data area

The exchange of process data takes place using the Modbus request telegram code 17 hex. Therefor the status word with 1...9 actual values is sent as a response telegram to the master when the inverter receives a data telegram (consisting of the control word and 1...9 reference values). Typically, these telegrams are sent by the master cyclically to the individual slaves. The achievable cycle time depends on the bus structure, the number of bus subscribers and the transmission rate. Inside the inverter, the data are processed in a background task (typically 10...50 ms).
Example of a process data telegram to the slave with address 10
Read process data: Status word + 6 actual values, log. address of ZTW 250 dec = 00FA hex Write process data: Control word + 1 reference value, log. address of STW 1309 dec = 051D hex STW= 047F, SW=4000 hex (100 %)
Request telegram Master >pDRIVE< MX eco
Slave
address
Request Start address
"read"
(ZTW)
Number of
words to be read
(ZTW +IW)
Start address
"write"
(STW)
Number of words to
be written
(STW + SW)
- - -
17 hex Hi Lo Hi Lo Hi Lo Hi Lo - - -
1 byte 1 byte 2 bytes 2 bytes 2 bytes 2 bytes
- - - Number of
Word 1 - - - Word X CRC 16
"write"
bytes
- - - Hi Lo - - - Hi Lo Lo Hi
1 byte 2 bytes 2 bytes 2 bytes
Summary of the request telegram
Slave Code ZTW
address
0A 17 00 FA 00 07 05 1D 00 02 04 04 7F 40 00 39 A3
Number of
parameters
STW address Number of
parameters
Number
of
bytes
Word 1 Word 2 CRC *)
*) Calculation of the CRC algorithm, see chapter "Structure of the telegram", page 4.
8 P01 034.00/00 HALS
16
Response telegram >pDRIVE< MX eco Master
Slave address
Respon
se
Number of read bytes
Word 1 - - - Word X CRC 16
17 hex Hi Lo - - - Hi Lo Lo Hi
1 byte 1 byte 1 byte 2 bytes 2 bytes 2 bytes
Summary of the response telegram
Slave Code Number of
bytes
0A 17 0E 01 B7 40 00 20 00 20 00 20 00 - - -
- - - Word 6 Word 7 CRC
- - - 00 00 00 00 Lo Hi
Word 1 Word 2 Word 3 Word 4 Word 5 - - -
ZTW = 01B7 ITW 1 = 4000hex (f act 100%) ITW 2 = 4000hex (P act 50%) ITW 3 = 4000hex (T act 50%) ITW 4 = 4000hex (I act 50%) ITW 5 = 0000hex (no alarm) ITW 6 = 0000hex (no fault)
If the Modbus should be used only for monitoring purposes, the "Read Holding Registers" (Multiple Read) code 03 hex telegram should be used.
8 P01 034.00/00 HALS
In special cases, the individual access to the respective elements of the commands 03 hex, 06 hex, and 10 hex.
process data is possible using
The design of the device-internal drive profile is based on the Profidrive profile (VDI/VDE 3689). The standardized information of the control and status word (bits 0...10) require no further inverter-internal settings. The reference use, the assignment of actual values and the use of the free bits (11...15) must be adjusted accordingly in matrix field "D6 Fieldbus".
Also see chapter "Structure of the Modbus user data", page 5.
17

Control word

Assignment
Bit 15 Bit 14 5 freely configurable Bit 13 control bits for internal or external Bit 12 frequency inverter commands Bit 11 Bit 10 Control O.K. No control Bit 9 – Bit 8 – Bit 7 Reset Bit 6 Release reference value Lock reference value Bit 5 Release ramp integrator Lock ramp integrator Bit 4 Release ramp output Lock ramp output Bit 3 Release operation Lock operation Bit 2 Operating condition OFF 3 (Fast stop) Bit 1 Operating condition OFF 2 (Impulse inhibit) Bit 0 On OFF 1 High = 1 Low = 0
8 P01 034.00/00 HALS
18
Description of control word bits
Bit Value Meaning Note
0 1 ON
0 OFF 1
1 1 Operating condition 0 OFF 2
(Impulse inhibit)
2 1 Operating condition 0 OFF 3
8 P01 034.00/00 HALS
Is accepted when the drive state is "1 .. Ready to switch on" and changes to drive state "3 Ready to run" if the DC link is charged.
At active line contactor control: Change to drive state "2 .. Charge DC link", after successful charging the drive state changes to "3 .. Ready to run".
When the command has been accepted, the drive state changes to "13 .. OFF 1 active" and thus the drive is shut down along the deceleration ramp.
When the output frequency reaches zero Hz: the drive state changes from "0 .. Not ready to switch on" to "1 .. Ready to switch on" if the basic state (bit 1 = 0, bit 2 = 1, bit 3 = 1 and bit 10 = 1) is present.
If a renewed OFF 1 (On) command occurs during deceleration, the inverter tries to reach the given reference value along the acceleration ramp. Thereby the drive state changes to "7 .. Run".
At active line contactor control, the line contactor is switched off if the drive state changes to "1 .. Ready to switch on".
"OFF 2" command canceled
When the command has been accepted, the inverter will be locked and the drive state changes to "19 .. Lock switching-on".
At active line contactor control the main contactor is switched off.
If the basic state (bit 1 = 0, bit 2 = 1, bit 3 = 1 and bit 10 = 1) is given, the drive state changes to "1 .. Ready to switch on".
The OFF 2 command can also be triggered by means of the terminal function Impulse enable !
"OFF 3" command canceled
When the command has been accepted, the drive state changes to "14 .. OFF 3 active" and the drive is shut down as quickly as possible with maximum current and maximum DC link voltage.
When the output frequency reaches zero Hz, the drive state changes to "19 .. Lock switching-on".
Thereby, at active line contactor control the main contactor is switched off. If the OFF 3 command (bit 2 = 1) is canceled during deceleration, fast stop is executed all the same.
19
Bit Value Meaning Note 3 1 Operation released When the command has been accepted, the inverter is released (Impulse
enable) in drive state "3 .. Ready to run" and afterwards the drive state changes to "4 .. Operation released".
0 Lock operation
When the command has been accepted, the inverter will be locked and the drive state changes to "3 .. Ready to run".
If the drive state is "13 .. OFF 1 active", the inverter will be locked and the drive state changes to "0 .. Not ready to switch on".
Thereby, at active line contactor control the main contactor is switched off.
If the basic state (bit 1 = 0, bit 2 = 1, bit 3 = 1 and bit 10 = 1) is given, the drive state changes to "1 .. Ready to switch on".
If the drive state is "14 .. OFF 3 active", the procedure is executed all the same !
4 1 Release ramp output
Drive state "5 .. Ramp output released"
0 Lock ramp output When the command has been accepted, the output of the ramp function
generator is set to zero. The drive stops with maximum current and maximum DC link voltage.
The drive state changes to "4 .. Operation released".
5 1 Release ramp
Drive state "6 .. Ramp output released"
integrator
0 Stop ramp integrator When the command has been accepted, the output of the ramp function
generator is set to zero. The drive stops with maximum current and maximum DC link voltage.
The drive state changes to "4 .. Operation released".
6 1 Release reference
value
When the command has been accepted, the given reference value at the input of the ramp function generator is released. The drive state changes to "7 .. Run".
0 Lock reference value When the command has been accepted, the input of the ramp function
generator is set to zero. As a result the drive decelerates along the set ramp.
The drive state changes to "6 .. Ramp released".
7 1 Reset
The reset command is accepted at the positive edge when the drive state is "20 .. Fault".
If there is no fault anymore, the drive state changes to "19 .. Lock switching-on".
If a fault is still remaining the drive state is furthermore "20 .. Fault".
The reset command can also be triggered by means of the terminal function "Ext. reset" as well as by means of the Stop/Reset key on the keypad.
0 no meaning
8 P01 034.00/00 HALS
20
Bit Value Meaning Note
8 1 Jog 1 start Command not provided 0 Jog 1 off Command not provided 9 1 Jog 2 start Command not provided 0 Jog 2 off Command not provided 10 1 Control O.K. When the command has been accepted, the DP slave is controlled
via the bus interface. The process data become valid. This bit must be set in order to accept control commands and/or
the free bits as well as analog signals !
0 No control
When the command has been accepted, all data are processed
depending in status bit 9 "Control requested". Control requested == 1 Behaviour according to bus fault
If the DP slave requests control furthermore, the frequency
inverter switches over to fault state with the fault message BUS_COMM2 (depending on the setting of parameter D6.03 "Bus error behaviour"). In this case an alarm message is always set ! Control requested == 0 Data to 0 ! only I/O or panel operation
8 P01 034.00/00 HALS
21
Summary of the most important control commands
Function
ON
Start with controlled acceleration
OFF 1
Stop according to the set deceleration ramp
OFF 2
Impulse inhibit (free-wheeling)
OFF 3
Emergency stop (deceleration at current or DC link voltage limit)
Binary Hexadecimal
0000010001111111
Control word
47F
0000010001111110
corresponds with the
"basic state"
47E
0000010001111101
results in drive state Lock switching-on !
47D
0000010001111011
results in drive state Lock switching-on !
47B
Reset
Use of a free bit (e.g. 13) during operation
Canceling "Lock switching-on"
Basic state
start command
xxxxx1xx1xxxxxxx
0000010001111111
+0010000000000000
0010010001111111
"15 Lock switching-on"
0000010001111110 0000010001111111
e.g. 480
47F
+2000
247F
8 P01 034.00/00 HALS
e.g.:
47E 47F
22
Simplified state machine
For standard control with the commands:
Start / Stop along the inverter-internal acceleration / deceleration ramps
Impulse inhibit
Emergency stop
Reset of a fault
8 P01 034.00/00 HALS
The commands Impulse inhibit (OFF 2), Fast stop (OFF 3) as well as a fault which has been reset always result in drive state "Lock switching-on" !
In order to reach drive state "Run" it is necessary to send the basic state (bit 0 = 0, bit 1, 2 = 1) before transmitting the start command (bit 0 = 1).
After connecting the mains (bootup of the drive) the basic state (bit 0 = 0, bit 1, 2 =1) must be provided in order to reach drive state "Ready to switch on".
23
State machine Profidrive
Bootup
Not ready to switch on
0
Control OK +
OFF1 + basic state
Ready to switch on
1
ON
Charge DC link
2
Hardware Ready
Ready to run
3
Hardware
Not Ready
Lock operation
OFF 1
ON after OFF1
19
13
On +
released
Lock switching-on
Lock
operation
fis0
OFF 1 active
OFF 1
fis0
OFF 3 active
14
OFF 3
OFF 2
No
fault
20
Fault
Fault
All states
also OFF 3!
Release operation
4
Operation released
Release ramp output
5
Ramp output released
Release ramp
6
Ramp released
Release SW Lock SW
Run
7
Ramp hold
Lock operation
Lock
ramp output
8 P01 034.00/00 HALS
Top priorityLowest priority
24

Main reference value (Auxiliary reference values)

Depending on the setting of parameter D6.100 "No. of Bus-ref. values", 1...9 reference values are available in the Modbus user data protocol. The meaning of the individual reference value words (16 bits each) is defined by parameterization of the >pDRIVE< MX eco using the Matrix surface.
The reference values can be divided into two groups:
inverter-internal reference values like e.g. f-reference, PID actual/reference value and suchlike (according to the reference use)
forwarding to the analog outputs for external use, without influencing the inverter control (bit 10 STW must be 1 !).
The reference values are linear scaled values with 16 bit display. That is: 0 % = 0 (0 hex), 100 % = 214 (4000 hex)
-14
Therefrom a presentable data range of -200...+200 % with a resolution of 2
% Binary Hexadecimal Decimal
199.9939 01111111 11111111 7FFF 32767
100.0000 01000000 00000000 4000 16384
0.0061 00000000 00000001 0001 1
0.0000 00000000 00000000 0000 0
-0.0061 11111111 11111111 FFFF -1
-100.0000 11000000 00000000 C000 -16384
-200.0000 10000000 00000000 8000 -32768
The reference values are scaled by means of parameterization in matrix field D6. All reference values are scaled in Hz or %.
(0.0061 %) results.
Using bits 11...15 of the control word
8 P01 034.00/00 HALS
According to the Profibus profile bits 11...15 are not defined and therefore they can be freely used by the user.
When the frequency inverter is parameterized appropriate, this digital information can be used
for inverter-internal control signals (corresponding to the use of the digital inputs) or
totally separated from the inverter functions in order to transmit information using the digital outputs of
the frequency inverter (bit 10 STW must be 1 !).
This additional information (bit 11...15) are added to the control word in the corresponding numerical format.
Use Free control bits Possible reference values
Inverter – "internal" f-reference 2
2nd ramp External fault PID active Mains ON(OFF)
f-reference 1 f-reference 2 f-correction PID ref. value
PID actual value ... (for the complete list see matrix filed D6)
Inverter – "external" Relay and digital outputs of the basic card
or the option card IO11 or IO12
Analog output of the basic card or
the option card >pDRIVE< IO12
25

Status word

Assignment
Bit 15 Bit 14 5 freely configurable Bit 13 status bits for internal or external Bit 12 frequency inverter messages Bit 11 Bit 10 Bit 9 Control requested No control rights requested Bit 8 f (n) = f (n) ref Bit 7 Alarm No alarm Bit 6 Lock switching-on No Lock switching-on Bit 5 No OFF 3 OFF 3 (Emergency stop) Bit 4 No OFF 2 OFF 2 (Impulse inhibit) Bit 3 Fault No fault Bit 2 Operation released Operation locked Bit 1 Ready to run Not ready to run Bit 0 Ready to switch on Not ready to switch on High = 1 Low = 0
Listing of the most important drive states
f (n) f level f (n) f level
Status word bits
10 9 8 7 6 5 4 3 2 1 0
f (n) f (n) ref
0 .. Not ready to switch on x 1 x x 0 x x 0 0 0 0 1 .. Ready to switch on x 1 x x 0 x x 0 0 0 1 3 .. Ready to run x 1 x x 0 x x 0 0 1 1 7 .. Run x 1 x x 0 1 1 0 1 1 1 19 .. Lock switching on x 1 x x 1 x x 0 0 0 0 20 .. Fault x 1 x x 0 x x 1 0 0 0
0 .. Bit state zero 1 .. Bit state one x .. Bit state is undefined
8 P01 034.00/00 HALS
26
Description of status word bits
Bit Value
0 1 Ready to switch on
Meaning Note
The drive state is "1 .. Ready to switch on". The inverter is locked.
At active line contactor control the main contactor is switched off.
0 Not ready to switch on
The drive state is "0 .. Not ready to switch on" or "19 .. Lock switching-on".
1 1 Ready to run
The drive state is "3 .. Ready to run". That means that there is voltage on the power part and there are no faults. But the inverter is still locked.
At active line contactor control the Run message already occurs during charging drive state "2 .. Charge DC link"
0 Not ready to run
2 1 Operation released
The drive state is "4 .. Operation released", "5 .. Ramp output released", "6 .. Ramp released", "7 .. Run", "13 .. OFF 1 active" or "14 .. OFF 3 active".
The inverter is operating with impulse enable and there is voltage on the output terminals.
0 Operation locked
3 1 Fault The drive is not in operation due to a fault. The drive state is
"20 .. Fault". After successful trouble shooting and reset of the fault the drive
state changes to "19 .. Lock switching-on".
0 Failure-free
4 1 no OFF 2
0 OFF 2 (Impulse inhibit) An OFF 2 (impulse inhibit) command is given.
5 1 no OFF 3
0 OFF 3 (emergency
An OFF 3 (emergency stop) command is given.
stop)
8 P01 034.00/00 HALS
6 1 Lock switching-on
The inverter has drive state "19 .. Lock switching-on". This state occurs in consequence of the commands OFF 2, OFF 3
and "Lock operation" as well as after successful resetting of a fault. This drive state is canceled by means of bit 0 STW = 0.
The drive state "Lock switching-on" is canceled by means of bit 1 of the control word (OFF1/ON).
0 No lock switching-on
7 1 Alarm There is an alarm message, resetting is not required.
0 No alarm
8 1 f, (n) = f, (n) ref Comparison of reference and actual value for frequency or speed.
A tolerance of 0.5 Hz is accepted.
0
f, (n) f, (n) ref
27
Bit Value
Meaning Note
9 1 Control requested If the frequency inverter is parameterized for bus operation by
means of parameter D6.01 (control via bus), the inverter asks the DP master for assumption of control after mains connection or connecting an external 24 V buffer voltage.
As long as the master does not assume control, an alarm message (ZTW bit 7) is given.
0 No bus operation If the inverter is disconnected from the bus communication
because of switching to panel mode (key on the keypad), bit 9 is reset to zero.
If the master does not send "Control OK" (STW bit10 = 0), an alarm message is set.
If the drive is switched to remote mode = bus operation again, the automation system has to answer with "Control OK" within 2 seconds. Otherwise the drive is switched back to panel mode automatically.
10 1
0
f f level f f level
Function not provided Function not provided
8 P01 034.00/00 HALS
28

Main actual value (Auxiliary actual values)

Depending on the setting of parameter D6.137 "Number actual values", 1...9 actual values are available in the Modbus user data protocol. The meaning of the individual actual values is defined by parameterization of the >pDRIVE< MX eco using the Matrix surface.
The actual values can be divided into two groups:
inverter-internal actual values like e.g. actual value of speed, torque a.s.o. (according to the analog outputs of the frequency inverter)
assumption of the analog inputs for external use by means of the DP master (without influencing the inverter control). Bit 10 STW must be 1 !
The actual values are linear scaled values with 16 bit display. That is 0 % = 0 (0 hex), 100 % = 214 (4000 hex)
-14
Therefrom a presentable data range of -200...+200 % with a resolution of 2
% Binary Hexadecimal Decimal
199.9939 01111111 11111111 7FFF 32767
100.0000 01000000 00000000 4000 16384
0.0061 00000000 00000001 0001 1
0.0000 00000000 00000000 0000 0
-0.0061 11111111 11111111 FFFF -1
-100.0000 11000000 00000000 C000 -16384
-200.0000 10000000 00000000 8000 -32768
The actual values are scaled by means of parameterization in matrix field D6. The scaling of the individual actual values is fixed for each output value. See matrix field D6.
(0.0061 %) results.
Using bits 11...15
8 P01 034.00/00 HALS
According to the Profibus profile bits 11...15 of the status word are not defined and therefore they can be freely used by the user. When the frequency inverter is parameterized appropriate, this digital information can be derived from inverter-internal operating states (corresponding to the digital outputs) as well as totally separated from the inverter functions by means of the digital inputs of the frequency inverter.
This additional information (bit 11...15) are added to the status word automatically.
Use Free status word bits Actual values
Inverter – "internal" Ready
Run Ready / run Fault ... (for the complete list see matrix filed D6)
Inverter – "external" DI1...DI6
DI7...DI10 or DI11...DI14
Output frequency |Output frequency| Output current Torque ... (for the complete list see matrix filed D6) Analog inputs of the basic card or the
option card >pDRIVE< IO12
29
8 P01 034.00/00 HALS
30

Parameterization

8 P01 034.00/00 HALS
31

General

Using the 03hex Read Holding Register and 06 Write Single Register Modbus services, each parameter in the inverter can be read or written via the bus.
The request initiated by the master (read / write) is transferred to the inverter via the Modbus. The inverter processes the request and sends a corresponding response.
Inside the inverter, the parameterization is processed as a background task. There, the parameter requests are processed in a time-optimized manner, i.e. a request is accepted and, at the same time, a response is provided for retrieval (typ. 10...50 ms).
Request and response telegram are of following data type:
Read parameter value
Request telegram Master >pDRIVE< MX eco
Slave
address
Request Parameter address
3 hex Hi Lo Hi Lo Lo Hi
1 byte 1 byte 2 bytes 2 bytes 2 bytes
Response telegram >pDRIVE< MX eco Master
Slave
address
Response
Number of read bytes
Parameter value 1 - - - Parameter value X CRC 16
03 hex Hi Lo - - - Hi Lo Lo Hi
1 byte 1 byte 1 byte 2 bytes 2 bytes 2 bytes
Write parameter value
Request telegram Master >pDRIVE< MX eco
Slave address
Request Parameter address Parameter value CRC 16
06 hex
Hi Lo Hi Lo Lo Hi
1 byte 1 byte 2 bytes 2 bytes 2 bytes
Response telegram >pDRIVE< MX eco Master
Slave address
Response Parameter address Parameter value CRC 16
06 hex Hi Lo Hi Lo Hi Lo
1 byte 1 byte 2 bytes 2 bytes 2 bytes
The individual parameters are accessed via their internal logical addresses. Addresses are valid in the range of
0...2047 (11 bits) and they are mentioned in the parameter list which is provided in the appendix. The address is used in the request telegram as well as in the response telegram.
If a write request could be performed successfully, the transferred parameter value and the original request code appear in the response telegram as an echo.
Number of parameters
to be read
CRC 16
8 P01 034.00/00 HALS
32
In case of requests that can not be executed, an error telegram is sent to the master. It contains the original request code, but bit 7 is set to "high" as an error flag (request + 80 hex). In the "error code" byte, details regarding the existing fault can be found.
Structure of the error telegram
Response code Error code CRC 16 Slave
Address
80 + request code Lo Hi
1 byte 1 byte 1 byte 2 bytes
Error code Description
00 No error 01 Unknown request code 02 Inadmissible logical or physical address 03 Faulty data size (byte, word) or faulty number of data
Request cannot be executed due to:
Parameter is of type "actual value"
04
Parameter cannot be changed during operation
Parameter cannot be changed due to double assignment
The parameterizing station (F6.03) is not set to "Modbus"
05 Request length faulty 06 Access not permitted
Rules for processing of requests / responses
The master makes a request and has to wait for the response telegram of the respective slave before it can formulate a new request.
The master has to check the response to a request made dependent on the response code.
In case of a positive response code (request = response)
Evaluation of the parameter number
8 P01 034.00/00 HALS
Evaluation of the parameter value
In case of a negative response code (request +80hex)
Evaluation of the error code
Requests or responses must be completely transferred in one telegram. Combined requests are not possible.
In case of responses which include actual values, the inverter always replies the actual value when repeating the response telegrams.
For write requests, the value which is transmitted in the response must be evaluated (the request is canceled if the value remains the same or if a fault occurs).
After changing a parameter a storage command must be sent in order to protect the data against voltage loss. The storage command takes place when writing value 1 to the logical address 0028 hex / 40 dec.
33
Examples
Reading of the shaft power (parameter A2.07, address 006B hex / 107 dec)
Request telegram Master >pDRIVE< MX eco
Slave Code Parameter
address
Number of
parameters
CRC
0A 03 00 6B 00 01 Lo Hi
Response telegram >pDRIVE< MX eco Master
Slave Code Number of
bytes
Parameter
value
CRC
0A 03 02 00 7B Lo Hi
Parameter value 007B hex = 123 dec Scaling: Real value = transferred value / factor
(for factor, see chapter "Parameter list of the >pDRIVE< MX eco", from page 60) P = 123 / 10 = 12.3 kW
Programming of the parameterizing station on Modbus (F6.03 = setting 2, address 047A hex, 1146 dec)
Request telegram Master >pDRIVE< MX eco
Slave Code Parameter
address
Parameter
value
CRC
0A 06 04 7A 00 02 Lo Hi
Response telegram >pDRIVE< MX eco Master
Slave Code Parameter
address
Parameter
value
CRC
0A 06 04 7A 00 02 Lo Hi
8 P01 034.00/00 HALS
34
It is necessary to set parameter F6.03 "Parametrising station" to setting "2 .. Modbus" in order to be qualified for adjusting other parameters via Modbus.
Programming of the digital input DI1 on Motorpot + (D2.01 = setting 14, address 02FF hex, 767 dec)
Request telegram Master >pDRIVE< MX eco
Slave Code Parameter
address
Parameter
value
CRC
0A 06 02 FF 00 0E Lo Hi
Response telegram >pDRIVE< MX eco Master (in case of accepted request)
Slave Code Parameter
address
Parameter
value
CRC
0A 06 02 FF 00 0E Lo Hi
Response telegram >pDRIVE< MX eco → Master (in case of non-executable request)
Slave Response
Error code CRC 16
code
0A 86 04 Lo Hi
Response code 86 = parameterizing error (request 06+80 = 86) Error code = 04 parameter value cannot be written (Adjusting parameters is only permitted during impulse
inhibit. You try to assign the digital function "Motorpot +" twice or the parameterization station is not set to "Modbus".)
Adjustment of an analog value (D3.04 "AO1 max. value" = 150 %, address 0311 hex, 785 dec)
8 P01 034.00/00 HALS
Request telegram Master >pDRIVE< MX eco
Slave Code Parameter
address
Parameter
value
CRC
0A 06 03 11 3A 98 Lo Hi
Parameter value: for transferred value = real value * factor (for factor, see chapter "Parameter list of the >pDRIVE< MX eco", from page 60)
150.00% * 100 =15000 (15000 dec / 3A98 hex)
Response telegram >pDRIVE< MX eco Master
Slave Code Parameter
address
Parameter
value
CRC
0A 06 03 11 3A 98 Lo Hi
35
Reading of drive reference F1.01, address 000B hex, 11 dec
The drive reference is a parameter of type text. It is to be read in ASCII-coded form. Corresponding to the expected length of text the start address and a certain number of ensuing parameters
has to be read. See the parameter list in the appendix.
Request telegram Master >pDRIVE< MX eco
Slave Code Parameter
address
Number of
parameters
CRC
0A 03 00 0B 00 08 Lo Hi
Response telegram >pDRIVE< MX eco Master
Slave Code Number of
bytes
Parameter
value 1
Parameter
value 2
Parameter
value 3
Parameter
value 4
- - -
0A 03 10 4D 58 65 63 6F 34 56 31 - - -
- - - Parameter value 5
Parameter
value 6
Parameter
value 7
Parameter
value 8
CRC - - -
- - - 2E 35 20 00 00 00 00 00 Lo Hi - - -
Evaluation of the parameter values: If you string the characters decoded with ASCII together, you get the drive reference. MX eco4V1.5_ (in the case of this type, only ten characters are used)
8 P01 034.00/00 HALS
36
ASCII code table
ISO / IEC 10 367 Basic G0 Set Latin Alphabet No. 1 supplementary set
hex Char hex Char hex Char hex Char hex Char hex Char
20 Space 40 @ 60 ` A1 ¡ C1 Á E1 á 21 ! 41 A 61 a A2 ¢ C2 Â E2 â 22 " 42 B 62 b A3 £ C3 Ã E3 ã 23 § 43 C 63 c A4 ¤ C4 Ä E4 ä 24 $ 44 D 64 d A5 ¥ C5 Å E5 å 25 % 45 E 65 e A6 ¦ C6 Æ E6 æ 26 & 46 F 66 f A7 § C7 Ç E7 ç 27 ´ 47 G 67 g A8 ¨ C8 È E8 è 28 ( 48 H 68 h A9 © C9 É E9 é
29 ) 49 I 69 i AA ª CA Ê EA ê 2A * 4A J 6A j AB « CB Ë EB ë 2B + 4B K 6B k AC ¬ CC Ì EC ì
2C , 4C L 6C l AD CD Í ED í 2D - 4D M 6D m AE ® CE Î EE î
2E . 4E N 6E n AF ¯ CF Ï EF ï 2F / 4F O 6F o B0 ° D0 Ð F0 ð
30 0 50 P 70 p B1 ± D1 Ñ F1 ñ
31 1 51 Q 71 q B2 ² D2 Ò F2 ò
32 2 52 R 72 r B3 ³ D3 Ó F3 ó
33 3 53 S 73 s B4 ´ D4 Ô F4 ô
34 4 54 T 74 t B5 μ D5 Õ F5 õ
8 P01 034.00/00 HALS
35 5 55 U 75 u B6 ¶ D6 Ö F6 ö
36 6 56 V 76 v B7 · D7 × F7 ÷
37 7 57 W 77 w B8 ¸ D8 Ø F8 ø
38 8 58 X 78 x B9 ¹ D9 Ù F9 ù
39 9 59 Y 79 y BA º DA Ú FA ú 3A : 5A Z 7A z BB » DB Û FB û 3B ; 5B [ 7B { BC ¼ DC Ü FC ü
3C < 5C \ 7C | BD ½ DD Ý FD ý 3D = 5D ] 7D } BE ¾ DE Þ FE þ
3E > 5E ^ 7E ~ BF ¿ DF ß FF ÿ 3F ? 5F _ 7F DEL C0 À E0 à 0 \n
37
8 P01 034.00/00 HALS
38
8 P01 034.00/00 HALS

Inverter settings

39
D6
Fieldbus
Settings of the serial communication properties
General fieldbus settings
Parameter group D6 Fieldbus is used for configuration of all fieldbus connections which are possible with the >pDRIVE< MX eco. The two fieldbus connections CANopen and Modus are available as standard. Further fieldbuses like e.g. Profibus DP can be realized by means of optional PCBs which can be built-in.
According to the used bus which is selected with parameter D6.01 only parameters for this bus are displayed in matrix field D6.
0 .. No bus
D6.01 Bus selection
0 ...No bus 1 ...Modbus 2 ...CanOpen 3 ...Profibus
The desired fieldbus system is activated by means of parameter D6.01 "Bus selection". The activation influences the principle data exchange between the bus subscribers in respect of the transmitted process data (reference / actual values) and the parameterization service.
In order to use the bus control word of the respective bus profile for the control of the >pDRIVE< MX eco, Control source 1 or 2 (E4.01, E4.02) must be set to "Bus".
See also parameter group E4 of the >pDRIVE< MX eco Description of functions.
D6.02 Control requested
0 ...Not active 1 ...Active
In order to recognize a communication problem at the serial fieldbus interface, two different monitoring routines are available.
Watch dog timing The watch dog timing checks the fieldbus interface for a cyclical signal of the active bus master or
scanner and therefrom it is a check of the bus hardware (cable break, malfunction of the master component, ...). The monitoring time depends on the existing network configuration like the number of subscribers, set baud rate a.s.o.. It is automatically transmitted from the master to the slave by means of the parameterization telegram or it has to be set at the inverter.
Loss of control In contrast to the watch dog timing the control monitoring checks the data content of the serial data
traffic. If a malfunction occurs at the fieldbus master or its respective PLC, all outgoing data are set to zero (Fail Save Mode). Therefore, the slave receives a telegram (with data content zero) periodically whereby the triggering of the watch dog timing is prevented.
In order to recognize this state and to take suitable measures, a monitoring of control can be activated with parameter D6.02 (typical for Profibus DP).
If parameter D6.02 Control requested is set to "1 .. Active" the inverter monitors bit 10 of the control word. If this bit equals state "Low", loss of control is detected.
1 .. Active
8 P01 034.00/00 HALS
40
1 .. Trip
D6.03 Bus error behaviour
1 ...Trip
2...Last ref. val & alarm
3...Emerg. ref.val. & alarm
D6.04 Bus error delay time
0...3200 s
0.5 s
Parameter D6.03 defines the behaviour of the inverter if a bus error occurs. Depending on the process demands one of the following reactions can be selected:
Setting Behaviour in case of a bus fault 1 .. Trip Fault shut-down with the message "Bus fault".
The alarm message "Bus fault" is set. The drive still remains in operation and uses the last valid reference value of this source
2 .. Last ref. val & alarm
instead of the missing bus reference value. If the bus connection is available again, the bus reference value is used and the alarm message is reset.
The alarm message "Bus fault" is set. The drive still remains in operation and uses the value according setting SW1-9 emergency
3 .. Emerg. ref.val. & alarm
value (see matrix field D6) instead of the missing bus reference value. If the bus connection is available again, the bus reference value is used and the alarm message is reset.
Modbus settings
0
D6.10 Modbus address
0...247
Address of the Modbus subscriber. When the address is set to 0, the Modbus server is deactivated internally. The address 0 is used by the Modbus master for broadcast telegrams.
8 P01 034.00/00 HALS
D6.11 Modbus baud rate
24...4800 baud
28...9600 baud
32...19200 baud
36...38400 baud
D6.12 Modbus format
2 ...8O1 3 ...8E1 4 ...8N1 5 ...8N2
Setting Data bits Parity bit Stop bit Bit / byte
8O1 8 Odd 1 10
8E1 8 Even 1 10 8N1 8 No 1 9 8N2 8 No 2 10
32 .. 19200 baud
3 .. 8E1
41
5 s
D6.15 Modbus time-out
0...300 s
The watchdog for the Modbus connection is set depending on the existing network configuration, such as the number of subscribers, the selected baud rate, and so on. If the time between two telegrams from the master exceeds the set value, there is a communication problem with the master.
The behaviour of the >pDRIVE< MX eco in case of a timeout can be set by means of parameter D6.03 "Bus error behaviour".
If 0.0 seconds are set, the watchdog function is inactive.
Configuration of the fieldbus reference values
Corresponding to the configured telegram length one to nine reference values are available in addition to the digital control word.
5 .. 1 STW + 5 SW
D6.100 No. of Bus-ref. values
1...1 STW + 1 SW
2...1 STW + 2 SW
3...1 STW + 3 SW
4...1 STW + 4 SW
5...1 STW + 5 SW
6...1 STW + 6 SW
7...1 STW + 7 SW
8...1 STW + 8 SW
9...1 STW + 9 SW
According to the set number of reference values D6.100 only relevant parameters are displayed in matrix field D6 in order to guarantee clear parameterization.
The references for the different functions of the >pDRIVE< MX eco can be provided in different ways (see chapters reference sources /reference value distributor in the Description of functions).
One way is the usage of fieldbus reference values. Thereby, the reference values are provided by means of automation devices (PLC) which transmit the required reference values serial to the activated fieldbus interface.
D6.101 Ref. value1 selection
0 ...Not used 1 ...f-reference 1 [Hz] 2 ...f-reference 2 [Hz] 3 ...f-correction [Hz]
6... PID-reference val. [%]
7... PID-actual value [%] 15 ..Request [%]
The output of the reference source Bus SW1 can be set as source for different uses according to the reference value distributor. Parameter D6.101 "Ref. value1 selection" assigns the reference value to the desired use (see also chapter reference sources, reference value distributor in the Description of functions).
D6.102 Ref. value1 min. value
-300...300 % or Hz
D6.103 Ref. value1 max. value
-300...300 % or Hz
The two parameters D6.102 "Ref. value1 min. value" and D6.103 "Ref. value1 max. value" are used for linear scaling of the transmitted reference value. D6.102 assigns an output value to the reference point at 0 % (0 dec = 0000 hex), D6.103 assigns it to the reference point at 100 % (16384 dec = 4000 hex).
0 .. Not used
0 % or Hz
50 % or Hz
8 P01 034.00/00 HALS
42
The unit of the reference value is scaled according to the reference use "D6.101 "Ref. value1 selection" for all frequency values in Hz, while the remaining signals are scaled in %.
Bus SW-1 scaling
0 hex
D6.104 Ref. value1 emergency
0...65535 hex
In case of setting D6.03 Bus error behaviour to "3 .. Emerg. ref.val. & alarm" the set emergency reference value is used during a bus fault. The unit of the emergency reference value corresponds to that of the min/max scaling.
It is not possible to assign reference paths twice. If you try to assign a second reference source to a use which is already allocated in the reference value distributor, the parameterization will prevent this and a corresponding alarm message will be shown in the display.
8 P01 034.00/00 HALS
D6.105 Ref. value2 selection D6.106 Ref. value2 min. value D6.107 Ref. value2 max. value D6.108 Ref. value2 emergency
D6.109 Ref. value3 selection D6.110 Ref. value3 min. value D6.111 Ref. value3 max. value D6.112 Ref. value3 emergency
D6.113 Ref. value4 selection D6.114 Ref. value4 min. value D6.115 Ref. value4 max. value D6.116 Ref. value4 emergency
0 .. Not used
0
50
0 hex
0 .. Not used
0
50
0 hex
0 .. Not used
0
50
0 hex
43
0 .. Not used
D6.117 Ref. value5 selection D6.118 Ref. value5 min. value D6.119 Ref. value5 max. value D6.120 Ref. value5 emergency
D6.121 Ref. value6 selection D6.122 Ref. value6 min. value D6.123 Ref. value6 max. value D6.124 Ref. value6 emergency
D6.125 Ref. value7 selection D6.126 Ref. value7 min. value D6.127 Ref. value7 max. value D6.128 Ref. value7 emergency
D6.129 Ref. value8 selection D6.130 Ref. value8 min. value D6.131 Ref. value8 max. value D6.132 Ref. value8 emergency
D6.133 Ref. value9 selection D6.134 Ref. value9 min. value D6.135 Ref. value9 max. value D6.136 Ref. value9 emergency
0
50
0 hex
0 .. Not used
0
50
0 hex
0 .. Not used
0
50
0 hex
0 .. Not used
0
50
0 hex
0 .. Not used
0
50
0 hex
The settings of the bus reference values 2...9 are logical identical with those of bus reference value 1 (see parameters D6.101...D6.104).
Configuration of the fieldbus actual values
Corresponding to the configured telegram length one to nine actual values are available in addition to the digital status word.
5 .. 1 ZTW + 5 IW
D6.137 Number actual values
1...1 ZTW + 1 IW
2...1 ZTW + 2 IW
3...1 ZTW + 3 IW
4...1 ZTW + 4 IW
5...1 ZTW + 5 IW
According to the set number of actual values D6.137 only relevant parameters are displayed in matrix field D6 in order to guarantee clear parameterization.
The >pDRIVE< MX eco provides analog outputs and serial fieldbus actual values to forward analog information of the actual values. The size to be issued as well as their scaling can be freely configured.
6...1 ZTW + 6 IW
7...1 ZTW + 7 IW
8...1 ZTW + 8 IW
9...1 ZTW + 9 IW
8 P01 034.00/00 HALS
44
8 P01 034.00/00 HALS
Following process sizes can be transmitted as actual values:
Process size Value Unit Scaling
1 .. Output frequency 2 .. |Output frequency| 3 .. Motor current 4 .. Torque 5 .. |Torque| 6 .. Process torque 7 .. |Facility torque| 8 .. Power 9 .. |Power| 10 .. Motor voltage 11 .. Speed 12 .. |Speed| 15 .. int. f-ref. before ramp 16 .. int. f-ref. after ramp 17 .. PID-reference val. [%] 18 .. PID-actual value [%] 19 .. PID-deviation [%] 20 .. PID-output 23 .. int. ref. switch-over 24 .. Calculator 25 .. Curve generator 26 .. Counter (average) 27 .. Total counter 28 .. Speed machine 33 .. --­36 .. Thermal load BR 37 .. Thermal load VSD 39 .. Reserve 41 .. Position value HIGH 42 .. Reserve 43 .. Reserve 44 .. Bus SW 1 45 .. Bus SW 2 47 .. Bus SW 4 48 .. Bus SW 5 49 .. Bus SW 6 50 .. Bus SW 7 51 .. Bus SW 8 52 .. Bus SW 9 55 .. AI 1 56 .. AI 2 57 .. AI 3 58 .. AI 4
100.0 Hz 100.0
100.0 Hz 100.0
100.0 %
Nominal current >pDRIVE< MX eco
100.0 % Nominal motor torque
100.0 % Nominal motor torque
100.0 % Reference to parameter A2.19
100.0 % Reference to parameter A2.19
100.0 % Nominal inverter power
100.0 % Nominal inverter power
100.0 % Nominal voltage motor
100.0 % Nominal speed at f
100.0 % Nominal speed at f
(C2.02)
MAX
(C2.02)
MAX
100.0 Hz 100.0
100.0 Hz 100.0
100.0 % 100.0
100.0 % 100.0
100.0 % 100.0
100.0 % 100.0
100.0 Hz 100.0
100.0 % 100.0
100.0 % 100.0
100.0 % 100.0
100.0 % 100.0
100.0 % 100.0
100.0 % 1000 V DC
100.0 % 100.0
100.0 % 100.0
100.0 % 100.0
100.0 % 10 V = 4000 hex
100.0 % 10 V or 20 mA = 4000 hex
100.0 % 20 mA = 4000 hex
100.0 % 10V or 20 mA = 4000 hex
100.0 % D1.33 = 4000 hex
100.0 % 100.0
100.0 % 100.0
100.0 % 100.0
100.0 % 100.0
100.0 % 100.0
100.0 % 100.0
100.0 % 100.0
100.0 % 100.0
100.0 % 100.0
100.0 Integer See table alarm index given in the appendix
59 .. Frequency input 100.0 Integer See table alarm index given in the appendix
45
1 .. Output frequency
D6.138 Act. value1 selection
0 ...Not used 1 ...Output frequency 2 ...|Output frequency| 3 ...Motor current 4 ...Torque 5 ...|Torque| 6 ...Process torque 7 ...|Facility torque| 8 ...Power 9 ...|Power|
10...Motor voltage
11...Speed
12...|Speed|
15...int. f-ref. before ramp
16...int. f-ref. after ramp
17...PID-reference val. [%]
18 ..PID-actual value [%] 19 ..PID-deviation [%] 20 ..PID-output 23 ..int. ref. switch-over 24 ..Calculator 25 ..Curve generator 26 ..Counter (average) 27 ..Total counter 28 ..Speed machine 33 ..--­36 ..Thermal load BR 37 ..Thermal load VSD 39 ..Reserve 41 ..Position value HIGH 42 ..Reserve 43 ..Reserve
44...Bus SW 1
45...Bus SW 2
47...Bus SW 4
48...Bus SW 5
49...Bus SW 6
50...Bus SW 7
51...Bus SW 8
52...Bus SW 9
53...Reserve
54...Reserve
55...AI 1
58...AI 4
59...Frequency input
Selection of the size which should be transmitted at bus actual value 1.
0 % or Hz
D6.139 Act. value1 min. value
-300...300 % or Hz
D6.140 Act. value1 max. value
-300...300 % or Hz
50 % or Hz
The two parameters D6.139 "Act. value1 min. value" and D6.140 "Act. value1 max. value" are used for linear scaling of the transmitted bus actual value. D6.139 assigns the minimum value to the actual value point 0 % (0 dec = 0000 hex), D6.140 assigns the maximum value of a process size to the actual value point 100 % (16384 dec = 4000 hex).
The scaling of the process size and their unit can be seen from the table above.
Settings example for bus actual value 1
Process size Scaling
D6.139 "Act. value1 min. value"
D6.140 "Act. value1 max. value"
Scaling of the output signal
8 P01 034.00/00 HALS
8 .. Power 100 % = Nom.
motor power (e.g. 90 kW)
46
0 % 100 % 4000 hex (16384 dec) at
100 % P
N Motor
(max. presentable range = 200 %)
0.1 s
D6.141 Act. value1 filter-time
0...30 s
During the measurement of dynamically changing values, such as current or torque, it may be a good idea to filter the actual value which should be transmitted already in the inverter. The measurement value can be stabilized before transmission by setting an appropriate filter time at the output filter.
At setting 0.0 seconds the filter is deactivated.
3 .. Motor current
D6.142 Act. value2 selection D6.143 Act. value2 min. value D6.144 Act. value2 max. value D6.145 Act. value2 filter-time
D6.146 Act. value3 selection D6.147 Act. value3 min. value D6.148 Act. value3 max. value D6.149 Act. value3 filter-time
D6.150 Act. value4 selection D6.151 Act. value4 min. value D6.152 Act. value4 max. value D6.153 Act. value4 filter-time
D6.154 Act. value5 selection D6.155 Act. value5 min. value D6.156 Act. value5 max. value D6.157 Act. value5 filter-time
8 P01 034.00/00 HALS
D6.158 Act. value6 selection D6.159 Act. value6 min. value D6.160 Act. value6 max. value D6.161 Act. value6 filter-time
D6.162 Act. value7 selection D6.163 Act. value7 min. value D6.164 Act. value7 max. value D6.165 Act. value7 filter-time
D6.166 Act. value8 selection D6.167 Act. value8 min. value D6.168 Act. value8 max. value D6.169 Act. value8 filter-time
0
100
0.1 s
4 .. Torque
0
100
0.1 s
8 .. Power
0
100
0.1 s
0 .. Not used
0
100
0.0 s
0 .. Not used
0
100
0.1 s
0 .. Not used
0
100
0.1 s
0 .. Not used
0
100
0.1 s
47
0 .. Not used
D6.170 Act. value9 selection D6.171 Act. value9 min. value D6.172 Act. value9 max. value D6.173 Act. value9 filter-time
0
100
0.1 s
The settings of the bus reference values 2...9 are logical identical with those of bus reference value 1 (see parameters D6.138...D6.141).
Configuration of control word bits 11...15
0 .. Not used
D6.174 Bit 11 STW1 selection
0 ...Not used
11...f-ref reverse
14...Motor pot. +
15...Motor pot. -
16...Pre-set A
17...Pre-set B
18...Pre-set C
19...Pre-set D
22...f-reference 2 [Hz]
23...Control source 2
24...2nd ramp
25...Reference value B
26...Panel operation
Parameter D6.174 assigns a digital input function to bit 11 of the control word. A description of this function can be found in the >pDRIVE< MX eco Description of functions (matrix field D2).
D6.175 Bit 12 STW1 selection D6.176 Bit 13 STW1 selection D6.177 Bit 14 STW1 selection D6.178 Bit 15 STW1 selection
Setting possibilities see D6.174.
D6.179 Bit at term.-mode act.
0..STW1 Bit 11
1..STW1 Bit 12
2..STW1 Bit 13
3..STW1 Bit 14
4..STW1 Bit 15
When the control source selection (see Matrix field E4) is used to switch between terminal and fieldbus operation it might be necessary to have individual bits (11...15) of the bus control word active despite the fact that the control source has been switched to the terminals.
This exception from switch-over can be configured by the appropriate selection with parameter D6.179 "Bit at term.-mode act.".
Example: External fault
In case of a process fault the inverter is shut-down systematically using bit 11 of the control word. This behaviour should be also guaranteed in case of controlling the drive via local operation (by means of terminal commands). Digital input DI4 can be used to switch between terminal strip operation and bus operation.
29 ..Ext. fault 1 30 ..Ext. fault 2 32 ..Emergency oper. 35 ..PID-active 36 ..PID-lock 37 ..PID-wind up 40 ..Feed in pressure OK 41 ..Level OK 42 ..Level < 50 ..C. motor 1 ready 51 ..C. motor 2 ready 52 ..C. motor 3 ready 53 ..C. motor 4 ready
 /   /   /   /   / 
56.. Mains cut-out
57.. ON-lock
58.. Locking
59.. Feedb. motor contactor
60.. Motor heating
61.. Operation with IR
64.. Pulse counter input
65.. Pulse counter reset
66.. n-monitoring
67.. Parameter locked
0 .. Not used
0 .. Not used
0 .. Not used
0 .. Not used
8 P01 034.00/00 HALS
48
D6.174 "Bit 11 STW1 selection" = "29 .. Ext. fault 1" If a switch-over from bus operation to terminal strip operation takes place, the commands of the
control word become ineffective ! The parameterized function "Ext. fault 1" is not effective any longer.
For this reason, for control word bits that shall be effective both in the bus operation as well as the terminal operation bit 11 must be marked in parameter D6.179 "Bit at term.-mode act.".
Adjust parameter D2.15 "DI at bus mode active" on the other hand, if a digital input should be effective in terminal operation as well as in bus operation,
If a control signal is configured both on a free bit at the bus as well as on the terminals which are active during bus operation, the bus command will be preferred.
Configuration of status word bits 11...15
D6.197 Bit 11 ZTW1 selection
0 ...Not used 1 ...Ready 2 ...Operation
3...Ready / run 4 ...Trip 5 ...Sum alarm 6 ...Motor turns
7...f = f ref 8 ...Generator operation
11...Shut down
12...Panel mode active
13...Motor 1 active
14...Motor 2 active
15...Param.-set 1 active
16...Param.-set 2 active
19...Safe standstill active
8 P01 034.00/00 HALS
Parameter D6.197 assigns the respective digital state information to bit 11 of the status word. A description of the individual digital output functions can be found in the >pDRIVE< MX eco Description of functions (matrix field D4).
D6.198 Bit 12 ZTW1 selection D6.199 Bit 13 ZTW1 selection D6.200 Bit 14 ZTW1 selection D6.201 Bit 15 ZTW1 selection
Setting possibilities see D6.179.
20 ..Limitation active 24 ..Motor heating active 25 ..Motorfluxing active 27 ..DC link charged 28 ..Line Contactor ON 29 ..Motor contactor ON 30 ..C. motor 1 ON 31 ..C. motor 2 ON 32 ..C. motor 3 ON 33 ..C. motor 4 ON 36 ..Alarm cat. 1 37 ..Alarm cat. 2 38 ..Alarm cat. 3 41 ..Output T1 42 ..Output T2 43 ..Output T3
44...Output T4
45...Output T5
46...Output T6
54...Bus STW bit 11
55...Bus STW bit 12
56...Bus STW bit 13
57...Bus STW bit 14
58...Bus STW bit 15
61...Digital input DI1
62...Digital input DI2
63...Digital input DI3
64...Digital input DI4
65...Digital input DI5
66...Digital input DI6
0 .. Not used
0 .. Not used
0 .. Not used
0 .. Not used
0 .. Not used
49
8 P01 034.00/00 HALS
50

Bus - Diagnostics

8 P01 034.00/00 HALS
51

Diagnostics of the control / status word

Diagnostics STW (Bus → Inverter)
D6.218 Bus STW hex
D6.219 Bus STW bin
0 .. STW1 Bit 0 1 .. STW1 Bit 1 2 .. STW1 Bit 2 3 .. STW1 Bit 3 4 .. STW1 Bit 4 5 .. STW1 Bit 5 6 .. STW1 Bit 6 7 .. STW1 Bit 7
 /   /   /   /   /   /   /   / 
8 .. STW1 Bit 8 9 .. STW1 Bit 9
10.. STW1 Bit 10
11.. STW1 Bit 11
12.. STW1 Bit 12
13.. STW1 Bit 13
14.. STW1 Bit 14
15.. STW1 Bit 15
Presentation of the control word received at the bus.
Diagnostics ZTW (Inverter Bus)
D6.222 Bus ZTW hex
D6.223 Bus ZTW bin
0.. ZTW1 Bit 0
1.. ZTW1 Bit 1
2.. ZTW1 Bit 2
3.. ZTW1 Bit 3
4.. ZTW1 Bit 4
5.. ZTW1 Bit 5
6.. ZTW1 Bit 6
7.. ZTW1 Bit 7
 /   /   /   /   /   /   /   / 
Presentation of the status word sent at the bus.
8 .. ZTW1 Bit 8 9 .. ZTW1 Bit 9
10.. ZTW1 Bit 10
11.. ZTW1 Bit 11
12.. ZTW1 Bit 12
13.. ZTW1 Bit 13
14.. ZTW1 Bit 14
15.. ZTW1 Bit 15
 /   /   /   /   /   /   /   / 
 /   /   /   /   /   /   /   / 
hex
hex
8 P01 034.00/00 HALS
Diagnostics of the operating state
D6.226 Internal control word
D6.227 Internal condition
0.. Ready to switch on 1 .. Ready to run 2 .. Operation released
3..Fault
4..No Off 2
5..No Off 3
 /   /   /   /   /   / 
6 .. Lock switching on
7..Alarm
8..f = f ref.
9..Control 10 .. f > level
 /   /   /   /   / 
Presentation of the internal affecting drive state.
52
hex

Diagnostics of the "Bus raw data"

D6.228 PRx 01 D6.229 PRx 02 D6.230 PRx 03 D6.231 PRx 04 D6.232 PRx 05 D6.233 PRx 06 D6.234 PRx 07 D6.235 PRx 08 D6.236 PRx 09 D6.237 PRx 10
Presentation of the incoming data words 1...10 at the bus.
D6.242 PTx 01 D6.243 PTx 02 D6.244 PTx 03 D6.245 PTx 04 D6.246 PTx 05 D6.247 PTx 06 D6.248 PTx 07 D6.249 PTx 08 D6.250 PTx 09 D6.251 PTx 10
8 P01 034.00/00 HALS
Presentation of the outgoing data words 1...10 at the bus.
hex hex hex hex hex hex hex hex hex hex
hex hex hex hex hex hex hex hex hex hex
53
8 P01 034.00/00 HALS
54

Application examples

8 P01 034.00/00 HALS
55

General

In addition to the typical "Bus operation" (all inverters are controlled via fieldbus) also a "Mixed operation" (i.e. simultaneous use of bus control and conventional control via terminals) is available due to the simple configuration of the reference and actual values and the free areas of the control and status word.
Following all three basic control types are described in form of block diagrams. A mixed operation of these variants is certainly possible.
Controlling the MX by means of the fieldbus interface "Pure bus operation"
The whole control and diagnostics of the inverter is carried out by means of the bus coupling. The possibility to implement conventional control elements is not used.
In order to address an inverter via fieldbus also during mains cut-off (line contactor control, disconnecting switch, ...) the >pDRIVE< MX eco has to be supplied with an external 24 V buffer voltage.
8 P01 034.00/00 HALS
56
V
Controlling the MX alternatively by means of the fieldbus interface or the terminals → "Control source switch-over"
The inverter is controlled depending on a digital signal (at the terminals or the bus) via the bus control word or digital commands at the inverter terminals. Further information about the selection of the control source are given in matrix field E4 and the presetting of macro 4 in matrix field B2.
8 P01 034.00/00 HALS
In order to address an inverter via fieldbus also during mains cut-off (line contactor control, disconnecting switch, ...) the >pDRIVE< MX eco has to be supplied with an external 24 voltage.
buffer
57
f
Controlling the MX by means of the fieldbus interface and the terminals of the device "Mixed operation"
The whole control and diagnostics of the inverter is carried out by means of the bus coupling. However, also additionally external information for inverter operation (additional reference values, control signals) or system information which do not directly affect the drive are implemented in the automation concept using the standard terminals or the terminal extension IO11 or IO12.
An external supply of the inverter electronics with 24 V buffer voltage is necessary if the system information have to be exchanged furthermore via the DP master even if the inverter is cut from the mains.
Example 1:
Use of the MX internal PID process controller
Reference value: provided serial from the fieldbus
Actual value:
A sensor provides a 0...10 V analog signal directly for the control terminals o the inverter.
Example 2:
A screw conveyor is connected and disconnected by means of a filling level indicator.
The filling level indicator provides two floating-ground signals which can be directly integrated in the telegram to the DP master by means of the digital inputs DI1 and DI2 of the inverter and thus they are available for the control program of the system.
8 P01 034.00/00 HALS
58

Appendix

8 P01 034.00/00 HALS
59

Parameter list of the >pDRIVE< MX eco

Parameter name
Log. address Setting range
dec hex
Type
Adjust­ability
Factor
min max
Unit
A2 Motor values
Motor values
A2.01 Speed 101 65 A2.02 Direction of rotation 102 66 A2.03 Torque 103 67 A2.04 Operating quadrant 104 68 A2.05 Motor current in A 105 69 A2.06 Motor current in % 106 6A A2.07 Shaft power in kW 107 6B A2.08 Shaft power in HP 108 6C A2.09 Apparent power 109 6D A2.10 Motor voltage 110 6E A2.11 Thermal load M1 111 6F A2.12 Thermal load M2 112 70 A2.13 Process speed 113 71 A2.14 Multiplier - n 451 1C3 A2.15 Divisor - n 452 1C4 A2.16 Offset - n 453 1C5 A2.17 Symbol for A2.13 454 1C6
Ensuing parameter 458 1CA A2.18 Unit for A2.13 456 1C8 Ensuing parameter 457 1C9 A2.19 Process torque 459 1CB A2.20 Multiplier - T 460 1CC A2.21 Divisor - T 461 1CD A2.22 Offset - T 462 1CE A2.23 Symbol for A2.19 463 1CF Ensuing parameter 464 1D0 A2.24 Unit for A2.19 465 1D1 Ensuing parameter 466 1D2 A2.25 Active motor 114 72
A3 Inverter values
Inverter values
A3.01 Output frequency 117 75 A3.02 Inverter load 118 76 A3.03 Mains voltage 119 77 A3.04 DC voltage 120 78 A3.05 Thermal load VSD 121 79 A3.06 Active pulse frequency 122 7A
A4 Reference values
Monitoring of analog inputs
A4.01 AI1 ref. value [%] 125 7D A4.02 AI1 ref. value scaled 126 7E A4.03 AI2 ref. value [%] 127 7F A4.04 AI2 ref. value scaled 128 80 A4.05 AI3 ref. value [%] 129 81 A4.06 AI3 ref. value scaled 130 82 A4.07 AI4 ref. value [%] 131 83 A4.08 AI4 ref. value scaled 132 84
1 rpm
see table Nm
see table A 1 % see table kW see table Hp see table kVA 1 V 1 % 1 % 10 rpm 1 -1000 1000 1 1 1000 100 -100 100
1 % 1 1 10000 1 1 1000 100 -100 100
100 Hz 1 % 1 V 1 V 1 % 10 kHz
10 % 100 Hz / % 10 % 100 Hz / % 10 % 100 Hz / % 10 % 100 Hz / %
8 P01 034.00/00 HALS
60
Parameter name
A4.09 FP ref. value in kHz 133 85 A4.10 FP ref. value scaled 134 86 Monitoring of digital reference sources A4.11 Motor pot. ref. value 135 87 A4.12 MX - wheel ref. value 136 88 A4.13 Pre-set reference 137 89 Monitoring of internal reference sources A4.14 Ref. value switch-over 138 8A A4.15 Calculator 139 8B A4.16 Act. value selection 140 8C A4.17 Curve generator 141 8D Monotor logic input A4.18 DI state basic device 142 8E A4.19 DI state IO11 143 8F A4.20 DI state IO12 144 90 Monitoring of bus reference sources A4.21 Bus reference 1 scaled 145 91 A4.22 Bus reference 2 scaled 146 92 A4.23 Bus reference 3 scaled 147 93 A4.24 Bus reference 4 scaled 148 94 A4.25 Bus reference 5 scaled 149 95 A4.26 Bus reference 6 scaled 150 96 A4.27 Bus reference 7 scaled 151 97 A4.28 Bus reference 8 scaled 152 98 A4.29 Bus reference 9 scaled 153 99
Log. address Setting range
dec hex
Type
A5 Counter
Operating hours
A5.01 Operating hours motor1 154 9A A5.02 Interval motor 1 468 1D4 A5.03 Interval counter M1 155 9B
8 P01 034.00/00 HALS
A5.04 Operating hours motor2 156 9C A5.05 Interval motor 2 469 1D5 A5.06 Interval counter M2 157 9D A5.07 Power on hours 158 9E A5.08 Interval power on 470 1D6 A5.09 Interval count. PowerOn 159 9F A5.10 Operating hours fan 160 A0 A5.11 Interval fan 471 1D7 A5.12 Interval counter fan 161 A1 A5.13 Clear intervall counter 162 A2 Energy meter A5.14 MWh meter mot. 163 A3 A5.15 kWh meter mot. 164 A4 A5.16 MWh meter gen. 165 A5 A5.17 kWh meter gen. 166 A6
A6 Display configuration
Configuration of the display
A6.01 Selection upper field 472 1D8 A6.02 Selection middle field 473 1D9 A6.03 Selection lower field 474 1DA A6.04 View all parameters 475 1DB
Adjust­ability
Factor
100 kHz 100 Hz / %
100 Hz / % 100 Hz 100 Hz / %
100 Hz / % 100 Hz / % 100 Hz / % 100 Hz / %
100 Hz / % 100 Hz / % 100 Hz / % 100 Hz / % 100 Hz / % 100 Hz / % 100 Hz / % 100 Hz / % 100 Hz / %
1 h 1 0 10000 h 1 h 1 h 1 0 10000 h 1 h 1 h 1 0 10000 h 1 h 1 h 1 0 10000 h 1 h
1 MWh 10 kWh 1 MWh 10 kWh
min max
Unit
61
Parameter name
A6.05 Limitations 398 18E
Log. address Setting range
dec hex
Type
B1 Language selection
Language selection
B1.01 Select language 477 1DD
B2 Macro configuration
Parameter management
B2.01 Active parameter set 167 A7 B2.02 Macro selection 478 1DE B2.03 Parameter mode 479 1DF B2.04 Create backup 1801 709 B2.05 Restore backup 1802 70A B2.06 Copy parameter set 1803 70B B2.07 Name parameter set 1 481 1E1
Ensuing parameter 482 1E2 Ensuing parameter 483 1E3 Ensuing parameter 484 1E4 Ensuing parameter 485 1E5 Ensuing parameter 486 1E6 Ensuing parameter 487 1E7 B2.08 Name parameter set 2 488 1E8 Ensuing parameter 489 1E9 Ensuing parameter 490 1EA Ensuing parameter 491 1EB Ensuing parameter 492 1EC Ensuing parameter 493 1ED Ensuing parameter 494 1EE
B3 Inverter data
Line voltage
B3.01 Mains voltage 495 1EF
Motor control
B3.02 Control mode 496 1F0 B3.03 Starting voltage 497 1F1 B3.04 V/f - V1 498 1F2 B3.05 V/f - f1 499 1F3 B3.06 V/f - V2 500 1F4 B3.07 V/f - f2 501 1F5 B3.08 V/f - V3 502 1F6 B3.09 V/f - f3 503 1F7 B3.10 V/f - V4 504 1F8 B3.11 V/f - f4 505 1F9 B3.12 V/f - V5 506 1FA B3.13 V/f - f5 507 1FB B3.17 Starting torque 508 1FC B3.18 Slip compensation 509 1FD B3.19 Vmax field weakening 510 1FE B3.20 Dynamic 1 511 1FF B3.21 Dynamic 2 512 200
General settings
B3.24 Stop mode 513 201 B3.25 decel. persistant freq. 515 203 B3.26 decel. persistant time 516 204 B3.27 Motor fluxing 514 202
Adjust­ability
Factor
1 0 1000 V 1 0 1000 V 10 0 300 Hz 1 0 1000 V 10 0 300 Hz 1 0 1000 V 10 0 300 Hz 1 0 1000 V 10 0 300 Hz 1 0 1000 V 10 0 300 Hz 1 25 200 % 1 0 150 % 1 100 200 % 100 0 25 100 0 10
10 0 50 Hz 1 0 3600 s
min max
Unit
8 P01 034.00/00 HALS
62
Parameter name
B3.30 Skip frequency 517 205 B3.31 Noise reduction 518 206 B3.32 Vmot optimization 519 207 B3.35 Catch on the fly 520 208 B3.36 Allowed catch direction 521 209 B3.37 Sensibility 522 20A B3.40 Output filter 523 20B B3.41 Fan control 524 20C B3.42 Auto tune at power on 525 20D B3.43 Automatic SC test 526 20E B3.44 Operation with IR 527 20F
Log. address Setting range
dec hex
Type
B4 Motor data
Motor selection
B4.01 Motor type 528 210 B4.02 Motor selection 529 211 B4.03 Start tuning 1804 70C
Motor data M1
B4.05 Nominal power M1 531 213 B4.06 Nominal current M1 532 214 B4.07 Nominal voltage M1 533 215 B4.08 Nominal frequency M1 534 216 B4.09 Nominal speed M1 535 217 B4.10 Nominal slip M1 168 A8 B4.11 No. of pole pairs M1 169 A9 B4.12 Stator resistor M1 536 218 B4.13 Rotortime constant M1 537 219 B4.14 Fluxing current M1 538 21A B4.15 Stray reactance M1 539 21B B4.16 Data M1 540 21C
Motor data M2
B4.17 Nominal power M2 541 21D
8 P01 034.00/00 HALS
B4.18 Nominal current M2 542 21E B4.19 Nominal voltage M2 543 21F B4.20 Nominal frequency M2 544 220 B4.21 Nominal speed M2 545 221 B4.22 Nominal slip M2 170 AA B4.23 No. of pole pairs M2 171 AB B4.24 Stator resistor M2 546 222 B4.25 Rotortime constant M2 547 223 B4.26 Fluxing current M2 548 224 B4.27 Stray reactance M2 549 225 B4.28 Data M2 550 226
Motor data default macro M0
B4.29 Nominal power M0 172 AC B4.30 Nominal current M0 173 AD B4.31 Nominal voltage M0 174 AE B4.32 Nominal frequency M0 175 AF B4.33 Nominal speed M0 176 B0 B4.34 Nominal slip M0 177 B1 B4.35 No. of pole pairs M0 178 B2 B4.36 Stator resistor M0 179 B3 B4.37 Rotortime constant M0 180 B4 B4.38 Fluxing current M0 181 B5
Adjust­ability
Factor
10 2 16 kHz
10 0.4 12
see table 0.2 3500 kW see table 0 4000 A 1 0 1000 V 10 0 300 Hz 1 0 65000 rpm 100 Hz 1 see table 0 65000 mOhm 1 0 10000 ms 10 0 4000 A 100 0 655.35 mH
see table 0.2 3500 kW see table 0 4000 A 1 0 1000 V 10 0 300 Hz 1 0 65000 rpm 100 Hz 1 see table 0 65000 mOhm 1 0 10000 ms 10 0 4000 A 100 0 655.35 mH
see table kW see table A 1 V 10 Hz 1 rpm 100 Hz 1 see table mOhm 1 ms 10 A
min max
Unit
63
Parameter name
B4.39 Stray reactance M0 182 B6 B4.40 Load default motor 397 18D
Log. address Setting range
dec hex
Type
B5 Brake function
Brake mode
B5.01 Braking mode 570 23A
C1 Int. reference
Preset reference values
C1.01 Pre-set ref. selection 588 24C C1.02 Pre-set reference 1 589 24D C1.03 Pre-set reference 2 590 24E C1.04 Pre-set reference 3 591 24F C1.05 Pre-set reference 4 592 250 C1.06 Pre-set reference 5 593 251 C1.07 Pre-set reference 6 594 252 C1.08 Pre-set reference 7 595 253 C1.09 Pre-set reference 8 596 254 C1.10 Pre-set reference 9 597 255 C1.11 Pre-set reference 10 598 256 C1.12 Pre-set reference 11 599 257 C1.13 Pre-set reference 12 600 258 C1.14 Pre-set reference 13 601 259 C1.15 Pre-set reference 14 602 25A C1.16 Pre-set reference 15 603 25B C1.17 Pre-set reference 16 604 25C
Motor potentiometer
C1.18 Motor pot. selection 605 25D C1.19 Motor pot. control 606 25E C1.20 Motor pot. min. value 607 25F C1.21 Motor pot. max. value 608 260 C1.22 Motor pot. accel. time 609 261 C1.23 Motor pot. decel. time 610 262 C1.24 Motor pot. ref. storage 611 263 C1.25 Motor pot. tracking 612 264
Panel reference sources
C1.29 MX-wheel selection 613 265 C1.30 MX-wheel min. value 614 266 C1.31 MX-wheel max. value 615 267 C1.34 MX-wheel single step 618 26A C1.35 Store MX-wheel ref. 619 26B
Calculator
C1.38 Calculator selection 620 26C C1.39 Calculator input A 621 26D C1.40 Calculator input B 622 26E C1.41 Calculator function 623 26F C1.42 Reference value 624 270 C1.43 Multiplier 625 271 C1.44 Divisor 626 272 C1.45 Calculator min. value 627 273 C1.46 Calculator max. value 628 274
Actual value selection
C1.49 Actual value usage 629 275 C1.50 Actual value selection 630 276 C1.51 Actual value filter time 631 277
Adjust­ability
Factor
100 mH
100 -300 300 Hz / % 100 -300 300 Hz / % 100 -300 300 Hz / % 100 -300 300 Hz / % 100 -300 300 Hz / % 100 -300 300 Hz / % 100 -300 300 Hz / % 100 -300 300 Hz / % 100 -300 300 Hz / % 100 -300 300 Hz / % 100 -300 300 Hz / % 100 -300 300 Hz / % 100 -300 300 Hz / % 100 -300 300 Hz / % 100 -300 300 Hz / % 100 -300 300 Hz / %
100 -300 300 Hz / % 100 -300 300 Hz / % 10 0 6500 s 10 0 6500 s
10 0 300 Hz 10 0 300 Hz 100 0 50
-300 300 1 1 30000 1 1 1000 100 -300 300 Hz / % 100 -300 300 Hz / %
100 0 20 s
min max
Unit
8 P01 034.00/00 HALS
64
Parameter name
C1.52 Value at 0Hz [%] 632 278 C1.53 Value at 100Hz [%] 633 279
Reference value switch
C1.54 Ref. val. switch usage 634 27A C1.55 Ref. val. switch selec. 635 27B C1.56 Ref. val. switch input A 636 27C C1.57 Ref. val. switch input B 637 27D
Curve generator
C1.61 Curve generator selec. 639 27F C1.63 Ref. value 0 641 281 C1.64 Time - Δt1 C1.65 Ref. value 1 643 283 C1.66 Time - Δt2 C1.67 Ref. value 2 645 285 C1.68 Time - Δt3 C1.69 Ref. value 3 647 287 C1.70 Time - Δt4 C1.71 Ref. value 4 649 289 C1.72 Time - Δt5 C1.73 Ref. value 5 651 28B C1.74 Time - Δt6 C1.75 Ref. value 6 653 28D C1.76 Time - Δt7
Log. address Setting range
dec hex
642 282
644 284
646 286
648 288
650 28A
652 28C
654 28E
Type
C2 Ramp / frequency
Frequency range
C2.01 Minimum frequency 655 28F C2.02 Maximum frequency 656 290
Direction of rotation
C2.03 Direction enable 657 291 C2.04 Phase rotation 658 292
Acceleration/deceleration ramps
8 P01 034.00/00 HALS
C2.05 Acceleration ramp 1 659 293 C2.06 Deceleration ramp 1 660 294 C2.07 Acceleration ramp 2 661 295 C2.08 Deceleration ramp 2 662 296 C2.09 Switch 1st/2nd accel. 663 297 C2.10 Switch 2nd/1st decel. 664 298 C2.11 Start ramp 665 299 C2.12 S-ramp mode 666 29A C2.13 S-ramp 667 29B
C3 Cascade control
Cascade control - activation
C3.01 Cascade mode 668 29C
Cascade state
C3.02 Cascade state 191 BF C3.03 Oper. hours C.Mot1 192 C0 C3.04 Oper. hours C.Mot2 193 C1 C3.05 Oper. hours C.Mot3 194 C2 C3.06 Oper. hours C.Mot4 195 C3
Basic settings
C3.09 No. of cascade pumps 669 29D C3.10 Manual / auto switch 670 29E
Adjust­ability
Factor
100 -300 300 Hz / % 100 -300 300 Hz / %
100 -300 300 Hz / % 100 0 650 s 100 -300 300 Hz / % 100 0 650 s 100 -300 300 Hz / % 100 0 650 s 100 -300 300 Hz / % 100 0 650 s 100 -300 300 Hz / % 100 0 650 s 100 -300 300 Hz / % 100 0 650 s 100 -300 300 Hz / % 100 0 650 s
10 0 300 Hz 10 10 300 Hz
10 0 6000 s 10 0 6000 s 10 0 6000 s 10 0 6000 s 10 0 300 Hz 10 0 300 Hz 10 0 6000 s
1 1 100 %
1 h 1 h 1 h 1 h
1 1 4
min max
Unit
65
Parameter name
C3.11 Oper. mode C.Mot1 671 29F C3.12 Oper. mode C.Mot2 672 2A0 C3.13 Oper. mode C.Mot3 673 2A1 C3.14 Oper. mode C.Mot4 674 2A2 C3.15 Switching mode 675 2A3
Switching points pressure
C3.18 Max. PID-deviation 676 2A4 C3.19 Overdrive limit 677 2A5
Switching points frequency
C3.22 Frequency C.Mot1 on 678 2A6 C3.23 Frequency C.Mot1 off 679 2A7 C3.24 Frequency C.Mot2 on 680 2A8 C3.25 Frequency C.Mot2 off 681 2A9 C3.26 Frequency C.Mot3 on 682 2AA C3.27 Frequency C.Mot3 off 683 2AB C3.28 Frequency C.Mot4 on 684 2AC C3.29 Frequency C.Mot4 off 685 2AD
Switching dynamic
C3.32 Switch on delay 686 2AE C3.33 Turn-off delay 687 2AF C3.34 Overdrive time 688 2B0 C3.35 Min. switch-over time 689 2B1
Change of motor
C3.38 Motor change 690 2B2 C3.39 Change master drive 691 2B3 C3.40 Time-frame 692 2B4 C3.41 Time master drive 693 2B5
Log. address Setting range
dec hex
Type
C4 PID configuration
Monitoring of PID values
C4.01 PID reference value 196 C4 C4.02 PID actual value 197 C5 C4.03 PID deviation 198 C6 C4.04 PID output 199 C7
Basic setting
C4.07 Control mode 694 2B6 C4.08 Control sense 695 2B7 C4.09 Proportional gain 696 2B8 C4.10 Integration time 697 2B9 C4.11 Derive time 698 2BA C4.12 Max. D-part 699 2BB C4.13 Output level min. 700 2BC C4.14 Output level max. 701 2BD C4.17 Frequency tracking 702 2BE C4.18 Ref. value acceleration 703 2BF C4.19 Ref. value deceleration 704 2C0
Compensation of pressure drop
C4.22 Pressure drop 705 2C1 C4.23 Start compensation 706 2C2 C4.24 Compensation dynamic 707 2C3
Advanced functions
C4.32 PID-lock 711 2C7 C4.33 Wind-up behaviour 712 2C8 C4.34 PID multiplier 713 2C9 C4.35 PID divisor 714 2CA
Adjust­ability
Factor
10 0 100 % 10 0 100 %
10 0 300 Hz 10 0 300 Hz 10 0 300 Hz 10 0 300 Hz 10 0 300 Hz 10 0 300 Hz 10 0 300 Hz 10 0 300 Hz
10 0 500 s 10 0 500 s 10 0 500 s 10 0 500 s
10 0 1000 h 1 0 10000 h
10 % 10 % 1 % 10 Hz / %
1000 0 30 100 0 600 s 100 0 600 s 100 0 300 10 -300 300 10 -300 300
10 0 6000 s 10 0 6000 s
10 0 300 % 10 0 300 Hz 10 0 300 s
1 -1000 1000 1 1 1000
min max
Unit
8 P01 034.00/00 HALS
66
Parameter name
C4.36 PID offset 715 2CB C4.37 Process unit 716 2CC Ensuing parameter 717 2CD
Log. address Setting range
dec hex
Type
C6 Special functions
Economy mode
C6.01 Economy mode 719 2CF C6.02 Max. fluxing reduction 720 2D0 C6.03 V/f level 721 2D1
Motor heating
C6.05 Motor heating 722 2D2 C6.06 Heating current 723 2D3
Line contactor control
C6.07 Contactor control 724 2D4
Motor contactor control
C6.08 Motor contactor control 725 2D5
Standby Mode
C6.11 Standby mode 726 2D6 C6.12 Off delay time 727 2D7 C6.13 On delay time 728 2D8 C6.14 Max. level 729 2D9 C6.15 Min. level 730 2DA
Impulse Counter
C6.18 Pulse counter 731 2DB C6.19 Total counter 200 C8 C6.20 Counter (average) 201 C9 C6.21 Scaling 732 2DC C6.22 Time base pulse counter 733 2DD C6.23 Pulse type 734 2DE C6.24 Symbol pulse counter 735 2DF
Ensuing parameter 736 2E0 C6.25 Pulse counter unit 737 2E1
8 P01 034.00/00 HALS
Ensuing parameter 738 2E2 C6.26 f-correction 740 2E4
D1 Analog inputs
Analog input AI1
D1.01 AI1 selection 741 2E5 D1.02 AI1 level 742 2E6 D1.03 AI1 min. value 743 2E7 D1.04 AI1 max. value 744 2E8 D1.05 AI1 filter-time 745 2E9
Analog input AI2
D1.08 AI2 selection 746 2EA D1.09 AI2 level 747 2EB D1.10 AI2 min. value 748 2EC D1.11 AI2 max. value 749 2ED D1.12 AI2 filter-time 750 2EE
Analog input AI3
D1.15 AI3 selection 751 2EF D1.16 AI3 level 752 2F0 D1.17 AI3 min. value 753 2F1 D1.18 AI3 max. value 754 2F2 D1.19 AI3 filter-time 755 2F3
Analog input AI4
Adjust­ability
Factor
100 -100 100
1 25 100 % 1 0 100 %
1 0 50 %
10 1 3000 s 10 1 100 s 10 0 300 % 10 0 300 %
10 10 1000 0 65 1 0 3600 s
100 -300 300 Hz / % 100 -300 300 Hz / % 100 0 30 s
100 -300 300 Hz / % 100 -300 300 Hz / % 100 0 30 s
100 -300 300 Hz / % 100 -300 300 Hz / % 100 0 30 s
min max
Unit
67
Parameter name
D1.22 AI4 selection 756 2F4 D1.23 AI4 level 757 2F5 D1.24 AI4 min. value 758 2F6 D1.25 AI4 max. value 759 2F7 D1.26 AI4 filter-time 760 2F8
Frequency input
D1.29 FP selection 761 2F9 D1.30 FP min. 762 2FA D1.31 FP max. 763 2FB D1.32 FP min. value 764 2FC D1.33 FP max. value 765 2FD D1.34 FP filter-time 766 2FE
Log. address Setting range
dec hex
Type
D2 Digital inputs
Logic Inputs
D2.01 DI1 selection 767 2FF D2.02 DI2 selection 768 300 D2.03 DI3 selection 769 301 D2.04 DI4 selection 770 302 D2.05 DI5 selection 771 303 D2.06 DI6 selection 772 304 D2.07 DI7 selection 773 305 D2.08 DI8 selection 774 306 D2.09 DI9 selection 775 307 D2.10 DI10 selection 776 308 D2.11 DI11 selection 777 309 D2.12 DI12 selection 778 30A D2.13 DI13 selection 779 30B D2.14 DI14 selection 780 30C D2.15 DI at bus mode active 781 30D
D3 Analog outputs
Analog output AO1
D3.01 AO1 selection 782 30E D3.02 AO1 level 783 30F D3.03 AO1 min. value 784 310 D3.04 AO1 max. value 785 311 D3.05 AO1 filter-time 786 312
Analog output AO2
D3.08 AO2 selection 787 313 D3.09 AO2 level 788 314 D3.10 AO2 min. value 789 315 D3.11 AO2 max. value 790 316 D3.12 AO2 filter-time 791 317
Analog output AO3
D3.15 AO3 selection 792 318 D3.16 AO3 level 793 319 D3.17 AO3 min. value 794 31A D3.18 AO3 max. value 795 31B D3.19 AO3 filter-time 796 31C
D4 Digital outputs
Logic outputs D4.01 R1 selection 797 31D D4.02 R2 selection 798 31E
Adjust­ability
Factor
100 -300 300 Hz / % 100 -300 300 Hz / % 100 0 30 s
100 0 30 kHz 100 0 30 kHz 100 -300 300 Hz / % 100 -300 300 Hz / % 100 0 30 s
100 -300 300 100 -300 300 100 0 30 s
100 -300 300 100 -300 300 100 0 30 s
100 -300 300 100 -300 300 100 0 30 s
min max
Unit
8 P01 034.00/00 HALS
68
Parameter name
D4.03 R3 selection 799 31F D4.04 DO1 selection 800 320 D4.05 DO2 selection 801 321 D4.06 R4 selection 802 322 D4.07 DO3 selection 803 323 D4.08 DO4 selection 804 324 D4.11 DO invertation 805 325
Log. address Setting range
dec hex
Type
D6 Fieldbus
Fieldbus configuration
D6.01 Bus selection 1301 515 D6.02 Control requested 1302 516 D6.03 Bus error behaviour 1303 517 D6.04 Bus error delay time 1304 518 D6.10 Modbus address 1305 519 D6.11 Modbus baud rate 1306 51A D6.12 Modbus format 1307 51B D6.13 Modbus frame count 202 CA D6.14 Modbus CRC errors 203 CB D6.15 Modbus time-out 1308 51C D6.20 CANopen address 1319 527 D6.21 CANopen baud rate 1320 528 D6.30 DP slave address 1321 529 D6.31 DP baud rate 208 D0 D6.32 Slave state 209 D1 D6.33 On after off 1 1322 52A D6.34 Request master 210 D2 D6.35 DP master address 211 D3 D6.36 Config buffer 1 212 D4 D6.37 Config buffer 2 213 D5 D6.38 Config buffer 3 214 D6
8 P01 034.00/00 HALS
D6.39 DP diagnostic buffer 1 215 D7 D6.40 DP diagnostic buffer 2 216 D8 D6.41 Group number 217 D9 D6.42 Global command 218 DA
Fieldbus references
D6.100 No. of Bus-ref. values 1323 52B D6.101 Ref. value1 selection 1324 52C D6.102 Ref. value1 min. value 1325 52D D6.103 Ref. value1 max. value 1326 52E D6.104 Ref. value1 emergency 1327 52F D6.105 Ref. value2 selection 1328 530 D6.106 Ref. value2 min. value 1329 531 D6.107 Ref. value2 max. value 1330 532 D6.108 Ref. value2 emergency 1331 533 D6.109 Ref. value3 selection 1332 534 D6.110 Ref. value3 min. value 1333 535 D6.111 Ref. value3 max. value 1334 536 D6.112 Ref. value3 emergency 1335 537 D6.113 Ref. value4 selection 1336 538 D6.114 Ref. value4 min. value 1337 539 D6.115 Ref. value4 max. value 1338 53A D6.116 Ref. value4 emergency 1339 53B D6.117 Ref. value5 selection 1340 53C D6.118 Ref. value5 min. value 1341 53D
Adjust­ability
Factor
10 0 3200 s 1 0 247
1 1 10 0 300 s 1 0 127
1
1 1 hex 1 hex 1 hex 1 hex 1 hex 1 1
100 -300 300 Hz / % 100 -300 300 Hz / % 1 0 65535 hex
100 -300 300 Hz / % 100 -300 300 Hz / % 1 0 65535 hex
100 -300 300 Hz / % 100 -300 300 Hz / % 1 0 65535 hex
100 -300 300 Hz / % 100 -300 300 Hz / % 1 0 65535 hex
100 -300 300 Hz / %
min max
Unit
69
Parameter name
D6.119 Ref. value5 max. value 1342 53E D6.120 Ref. value5 emergency 1343 53F D6.121 Ref. value6 selection 1344 540 D6.122 Ref. value6 min. value 1345 541 D6.123 Ref. value6 max. value 1346 542 D6.124 Ref. value6 emergency 1347 543 D6.125 Ref. value7 selection 1348 544 D6.126 Ref. value7 min. value 1349 545 D6.127 Ref. value7 max. value 1350 546 D6.128 Ref. value7 emergency 1351 547 D6.129 Ref. value8 selection 1352 548 D6.130 Ref. value8 min. value 1353 549 D6.131 Ref. value8 max. value 1354 54A D6.132 Ref. value8 emergency 1355 54B D6.133 Ref. value9 selection 1356 54C D6.134 Ref. value9 min. value 1357 54D D6.135 Ref. value9 max. value 1358 54E D6.136 Ref. value9 emergency 1359 54F
Fieldbus actual values
D6.137 Number actual values 1360 550 D6.138 Act. value1 selection 1361 551 D6.139 Act. value1 min. value 1362 552 D6.140 Act. value1 max. value 1363 553 D6.141 Act. value1 filter-time 1364 554 D6.142 Act. value2 selection 1365 555 D6.143 Act. value2 min. value 1366 556 D6.144 Act. value2 max. value 1367 557 D6.145 Act. value2 filter-time 1368 558 D6.146 Act. value3 selection 1369 559 D6.147 Act. value3 min. value 1370 55A D6.148 Act. value3 max. value 1371 55B D6.149 Act. value3 filter-time 1372 55C D6.150 Act. value4 selection 1373 55D D6.151 Act. value4 min. value 1374 55E D6.152 Act. value4 max. value 1375 55F D6.153 Act. value4 filter-time 1376 560 D6.154 Act. value5 selection 1377 561 D6.155 Act. value5 min. value 1378 562 D6.156 Act. value5 max. value 1379 563 D6.157 Act. value5 filter-time 1380 564 D6.158 Act. value6 selection 1381 565 D6.159 Act. value6 min. value 1382 566 D6.160 Act. value6 max. value 1383 567 D6.161 Act. value6 filter-time 1384 568 D6.162 Act. value7 selection 1385 569 D6.163 Act. value7 min. value 1386 56A D6.164 Act. value7 max. value 1387 56B D6.165 Act. value7 filter-time 1388 56C D6.166 Act. value8 selection 1389 56D D6.167 Act. value8 min. value 1390 56E D6.168 Act. value8 max. value 1391 56F D6.169 Act. value8 filter-time 1392 570 D6.170 Act. value9 selection 1393 571 D6.171 Act. value9 min. value 1394 572 D6.172 Act. value9 max. value 1395 573 D6.173 Act. value9 filter-time 1396 574
Log. address Setting range
dec hex
Type
Adjust­ability
Factor
100 -300 300 Hz / % 1 0 65535 hex
100 -300 300 Hz / % 100 -300 300 Hz / % 1 0 65535 hex
100 -300 300 Hz / % 100 -300 300 Hz / % 1 0 65535 hex
100 -300 300 Hz / % 100 -300 300 Hz / % 1 0 65535 hex
100 -300 300 Hz / % 100 -300 300 Hz / % 1 0 65535 hex
100 -300 300 100 -300 300 100 0 30 s
100 -300 300 100 -300 300 100 0 30 s
100 -300 300 100 -300 300 100 0 30 s
100 -300 300 100 -300 300 100 0 30 s
100 -300 300 100 -300 300 100 0 30 s
100 -300 300 100 -300 300 100 0 30 s
100 -300 300 100 -300 300 100 0 30 s
100 -300 300 100 -300 300 100 0 30 s
100 -300 300 100 -300 300 100 0 30 s
min max
Unit
8 P01 034.00/00 HALS
70
Parameter name
Assignment free bits STW
D6.174 Bit 11 STW1 selection 1397 575 D6.175 Bit 12 STW1 selection 1398 576 D6.176 Bit 13 STW1 selection 1399 577 D6.177 Bit 14 STW1 selection 1400 578 D6.178 Bit 15 STW1 selection 1401 579 D6.179 Bit at term.-mode act. 1402 57A
Assignment free bits ZTW
D6.197 Bit 11 ZTW1 selection 1420 58C D6.198 Bit 12 ZTW1 selection 1421 58D D6.199 Bit 13 ZTW1 selection 1422 58E D6.200 Bit 14 ZTW1 selection 1423 58F D6.201 Bit 15 ZTW1 selection 1424 590
Diagnosis STW (BUS -> VSD)
D6.218 Bus STW hex 219 DB D6.219 Bus STW bin 220 DC
Diagnosis ZTW (VSD -> BUS)
D6.222 Bus ZTW hex 223 DF D6.223 Bus ZTW bin 224 E0 D6.224 Bus ZTW2 hex 225 E1 D6.225 Bus ZTW2 bin 226 E2
Diagnosis of the operating state
D6.226 Internal control word 227 E3 D6.227 Internal condition 228 E4
Diagnosis BUS -> VSD
D6.228 PRx 01 230 E6 D6.229 PRx 02 231 E7 D6.230 PRx 03 232 E8 D6.231 PRx 04 233 E9 D6.232 PRx 05 234 EA D6.233 PRx 06 235 EB
8 P01 034.00/00 HALS
D6.234 PRx 07 236 EC D6.235 PRx 08 237 ED D6.236 PRx 09 238 EE D6.237 PRx 10 239 EF D6.238 SRx 01 240 F0 D6.239 SRx 02 241 F1 D6.240 SRx 03 242 F2 D6.241 SRx 04 243 F3
Diagnosis VSD -> BUS
D6.242 PTx 01 250 FA D6.243 PTx 02 251 FB D6.244 PTx 03 252 FC D6.245 PTx 04 253 FD D6.246 PTx 05 254 FE D6.247 PTx 06 255 FF D6.248 PTx 07 256 100 D6.249 PTx 08 257 101 D6.250 PTx 09 258 102 D6.251 PTx 10 259 103 D6.252 STx 01 260 104 D6.253 STx 02 261 105 D6.254 STx 03 262 106
Log. address Setting range
dec hex
Type
Adjust­ability
Factor
1 hex
1 hex
1 hex
1 hex
1 hex 1 hex 1 hex 1 hex 1 hex 1 hex 1 hex 1 hex 1 hex 1 hex 1 hex 1 hex 1 hex 1 hex
1 hex 1 hex 1 hex 1 hex 1 hex 1 hex 1 hex 1 hex 1 hex 1 hex 1 hex 1 hex 1 hex
min max
Unit
71
Parameter name
D6.255 STx 04 263 107
Log. address Setting range
dec hex
Type
E1 Process protection
Limitations
E1.01 I max VSD 806 326 E1.05 T max. motor 808 328 E1.07 T lim activation 810 32A E1.13 P max. motor 814 32E Behaviour at limitations E1.17 Reaction at limitation 816 330 E1.18 Time setting 817 331 E1.19 Ref. after acc. extension 818 332 E1.21 Reaction at deceleration 819 333 E1.22 Time setting 820 334 E1.23 Ref. after dec. extension 821 335
Skip frequencies
E1.25 Skip frequency 1 822 336 E1.26 Hysteresis 1 823 337 E1.27 Skip frequency 2 824 338 E1.28 Hysteresis 2 825 339 E1.29 Skip frequency 3 826 33A E1.30 Hysteresis3 827 33B E1.31 Skip frequency 4 828 33C E1.32 Hysteresis 4 829 33D
Speed monitoring
E1.38 n-monitoring 830 33E E1.39 Pulse / rotation 831 33F E1.40 Filter-time 832 340 E1.41 Detected speed 270 10E E1.42 Ratio factor 833 341 E1.43 Calculated slip 271 10F E1.44 Tolerance 834 342 E1.45 n-monitoring response 835 343 E1.46 Time setting 836 344
Feed-in monitoring
E1.49 Feed in monitoring 837 345 E1.50 Feed in mon. reaction 838 346 E1.51 Time setting 839 347
E2 Motor protection
Thermistor control
E2.01 TH1 motor allocation 840 348 E2.02 TH1 activation 841 349 E2.03 TH1 response 842 34A E2.04 TH1 time setting 843 34B E2.05 TH1 verification 844 34C E2.06 TH2 motor allocation 845 34D E2.07 TH2 activation 846 34E E2.08 TH2 response 847 34F E2.09 TH2 time setting 848 350 E2.10 TH2 verification 849 351 E2.11 TH3 motor allocation 850 352 E2.12 TH3 activation 851 353 E2.13 TH3 response 852 354 E2.14 TH3 time setting 853 355
Adjust­ability
Factor
1 hex
1 10 135 % 1 10 300 %
1 10 300 %
100 0 300 s
100 0 300 s
10 -300 300 Hz 100 0 10 Hz 10 -300 300 Hz 100 0 10 Hz 10 -300 300 Hz 100 0 10 Hz 10 -300 300 Hz 100 0 10 Hz
1 0 100 10 0 300 s 10 rpm 100 0 10 10 rpm 10 0 500 rpm
10 0 300 s
10 0 300 s
1 0 300 s
1 0 300 s
1 0 300 s
min max
Unit
8 P01 034.00/00 HALS
72
Parameter name
E2.15 TH3 verification 854 356
Thermal mathematical motor model
E2.18 M1 - overl. monitoring 855 357 E2.19 M1 - response 856 358 E2.20 M1 - Imax at 0Hz 857 359 E2.21 M1 - Imax at f nom. 858 35A E2.22 M1 - therm. f-limitation 859 35B E2.23 M1 - motor-time 860 35C E2.24 M1 - cooling temp. 861 35D E2.25 M1 - alarm level 862 35E E2.26 M1 - trigger level 863 35F E2.27 M1 - thermal load 272 110 E2.30 M2 - overl. monitoring 864 360 E2.31 M2 - response 865 361 E2.32 M2 - Imax at 0Hz 866 362 E2.33 M2 - Imax at f nom. 867 363 E2.34 M2 - therm. f-limitation 868 364 E2.35 M2 - motor-time 869 365 E2.36 M2 - cooling temp. 870 366 E2.37 M2 - alarm level 871 367 E2.38 M2 - trigger level 872 368 E2.39 M2 - thermal load 273 111
Stall protection
E2.42 Stall protection 873 369 E2.43 Stalling time 874 36A E2.44 Stalling frequency 875 36B E2.45 Stalling current 876 36C
Overspeed protection
E2.48 Overspeed monitoring 877 36D E2.49 Overspeed response 878 36E E2.50 Overspeed level 879 36F E2.51 Time setting 880 370
8 P01 034.00/00 HALS
Loss of motor phase
E2.54 Motor phase monitor 881 371
Underload protection
E2.61 Underload monitor 882 372 E2.62 Underload response 883 373 E2.63 Underload level n² 884 374 E2.64 Underload level ½ fn 885 375 E2.65 Underload level fn 886 376 E2.66 Underload start time 887 377 E2.67 Time setting 888 378 E2.68 Filter-time 889 379
Log. address Setting range
dec hex
Type
E3 Fault configuration
Behaviour in case of faults
E3.01 Reaction at a trip 890 37A E3.03 Auto reset 891 37B E3.04 Auto reset selection 892 37C E3.06 Auto reset trials 893 37D E3.07 Period 275 113
Emergency operation
E3.09 Enable emergency op. 894 37E E3.10 Emergency op. active 276 114
Loss of reference value
Adjust­ability
Factor
1 0 300 % 1 0 300 % 10 0 300 Hz 1 0 500 min 1 -10 80 °C 1 0 300 % 1 0 300 % 1 %
1 0 300 % 1 0 300 % 10 0 300 Hz 1 0 500 min 1 -10 80 °C 1 0 300 % 1 0 300 % 1 %
10 0 200 s 10 0 20 Hz 1 0 150 %
1 0 20000 rpm 10 0 300 s
1 0 100 % 1 0 100 % 1 0 100 % 10 0 300 s 10 0 300 s 10 0 300 s
1 1 20 1 60 600 s
min max
Unit
73
Parameter name
E3.13 AI2 - 4mA monitor 895 37F E3.14 AI2 - 4mA response 896 380 E3.15 AI2 - emergency val. 897 381 E3.16 AI3 - 4mA monitor 898 382 E3.17 AI3 - 4mA response 899 383 E3.18 AI3- emergency val. 900 384 E3.19 AI4 - 4mA monitor 901 385 E3.20 AI4 - 4mA response 902 386 E3.21 AI4 - emergency val. 903 387 E3.22 FP - f monitoring 904 388 E3.23 FP - monitoring resp. 905 389 E3.24 FP - emergency val. 906 38A
Loss of line phase
E3.27 Mains phase monitoring 907 38B
Behaviour at undervoltage
E3.29 V< response 908 38C E3.30 Allowed V< time 909 38D E3.31 Max. V< time 910 38E
External fault
E3.34 Ext. fault 1 monitor 911 38F E3.35 Ext. fault 1 response 912 390 E3.36 Start delay time 913 391 E3.37 Time setting 914 392 E3.38 Ext. fault 1 name 915 393 Ensuing parameter 916 394 Ensuing parameter 917 395 Ensuing parameter 918 396 Ensuing parameter 919 397 Ensuing parameter 920 398 Ensuing parameter 921 399 Ensuing parameter 922 39A E3.41 Ext. fault 2 monitor 923 39B E3.42 Ext. fault 2 response 924 39C E3.43 Start delay time 925 39D E3.44 Time setting 926 39E E3.45 Ext. fault 2 name 927 39F Ensuing parameter 928 3A0 Ensuing parameter 929 3A1 Ensuing parameter 930 3A2 Ensuing parameter 931 3A3 Ensuing parameter 932 3A4 Ensuing parameter 933 3A5 Ensuing parameter 934 3A6
ON lock
E3.48 ON lock activation 935 3A7 E3.49 ON lock response 936 3A8 E3.50 Time setting 937 3A9
Alarm categories
E3.51 Alarm category 1 938 3AA E3.54 Alarm category 2 940 3AC E3.57 Alarm category 3 942 3AE
Log. address Setting range
dec hex
Type
E4 Control configuration
Control logic
E4.01 Control source 1 944 3B0 E4.02 Control source 2 945 3B1
Adjust­ability
Factor
10 4 20 mA
100 4 20
100 4 20
100 0 30 kHz
10 0 300 s 10 0 3000 s
10 0 600 s 10 0 300 s
10 0 600 s 10 0 300 s
10 0 300 s
min max
Unit
8 P01 034.00/00 HALS
74
Parameter name
E4.03 3-wire-control 946 3B2
Log. address Setting range
dec hex
Type
E5 Keypad
Panel operation
E5.01 Local mode 947 3B3 E5.02 Local reset 948 3B4 E5.03 Keypad stop button 949 3B5
Parametertransfer with keypad
E5.04 Copy: MX -> Keypad 1805 70D E5.05 Copy: Keypad -> MX 1806 70E
E6 Function blocks
Comparator C1 - C4
E6.01 Comparator C1 950 3B6 E6.02 C1 signal A selection 951 3B7 E6.03 C1 signal A filter-time 952 3B8 E6.04 C1 signal B selection 953 3B9 E6.05 C1 signal B ref. value 954 3BA E6.06 C1 signal B filter-time 955 3BB E6.07 C1 function 956 3BC E6.08 C1 hysteresis/band 957 3BD E6.09 C1 output 277 115 E6.10 Comparator C2 958 3BE E6.11 C2 signal A selection 959 3BF E6.12 C2 signal A filter-time 960 3C0 E6.13 C2 signal B selection 961 3C1 E6.14 C2 signal B ref. value 962 3C2 E6.15 C2 signal B filter-time 963 3C3 E6.16 C2 function 964 3C4 E6.17 C2 hysteresis/band 965 3C5 E6.18 C2 output 278 116 E6.19 Comparator C3 966 3C6
8 P01 034.00/00 HALS
E6.20 C3 signal A selection 967 3C7 E6.21 C3 signal A filter-time 968 3C8 E6.22 C3 signal B selection 969 3C9 E6.23 C3 signal B ref. value 970 3CA E6.24 C3 signal B filter-time 971 3CB E6.25 C3 function 972 3CC E6.26 C3 hysteresis/band 973 3CD E6.27 C3 output 279 117 E6.28 Comparator C4 974 3CE E6.29 C4 signal A selection 975 3CF E6.30 C4 signal A filter-time 976 3D0 E6.31 C4 signal B selection 977 3D1 E6.32 C4 signal B ref. value 978 3D2 E6.33 C4 signal B filter-time 979 3D3 E6.34 C4 function 980 3D4 E6.35 C4 hysteresis/band 981 3D5 E6.36 C4 output 280 118
Logic module L1 - L6
E6.46 Logic 1 982 3D6 E6.47 LM1 signal A selection 983 3D7 E6.48 LM1 signal B selection 984 3D8 E6.49 LM1 signal C selection 985 3D9 E6.50 LM1 function 986 3DA
Adjust­ability
Factor
100 0 300 s
100 -300 300 100 0 300 s
100 0 650
100 0 300 s
100 -300 300 100 0 300 s
100 0 650
100 0 300 s
100 -300 300 100 0 300 s
100 0 650
100 0 300 s
100 -300 300 100 0 300 s
100 0 650
min max
Unit
75
Parameter name
E6.51 LM1 output reverse 987 3DB E6.52 LM1 output 281 119 E6.53 Logic 2 988 3DC E6.54 LM2 signal A selection 989 3DD E6.55 LM2 signal B selection 990 3DE E6.56 LM2 signal C selection 991 3DF E6.57 LM2 function 992 3E0 E6.58 LM2 output reverse 993 3E1 E6.59 LM2 output 282 11A E6.60 Logic 3 994 3E2 E6.61 LM3 signal A selection 995 3E3 E6.62 LM3 signal B selection 996 3E4 E6.63 LM3 signal C selection 997 3E5 E6.64 LM3 function 998 3E6 E6.65 LM3 output reverse 999 3E7 E6.66 LM3 output 283 11B E6.67 Logic 4 1000 3E8 E6.68 LM4 signal A selection 1001 3E9 E6.69 LM4 signal B selection 1002 3EA E6.70 LM4 signal C selection 1003 3EB E6.71 LM4 function 1004 3EC E6.72 LM4 output reverse 1005 3ED E6.73 LM4 output 284 11C E6.74 Logic 5 1006 3EE E6.75 LM5 signal A selection 1007 3EF E6.76 LM5 signal B selection 1008 3F0 E6.77 LM5 signal C selection 1009 3F1 E6.78 LM5 function 1010 3F2 E6.79 LM5 output reverse 1011 3F3 E6.80 LM5 output 285 11D E6.81 Logic 6 1012 3F4 E6.82 LM6 signal A selection 1013 3F5 E6.83 LM6 signal B selection 1014 3F6 E6.84 LM6 signal C selection 1015 3F7 E6.85 LM6 function 1016 3F8 E6.86 LM6 output reverse 1017 3F9 E6.87 LM6 output 286 11E
Flip Flop
E6.94 SR module 1 1018 3FA E6.95 SR1 signal S selection 1019 3FB E6.96 SR1 signal R selection 1020 3FC E6.97 SR1 function 1021 3FD E6.98 SR1 output 287 11F E6.99 SR module 2 1022 3FE E6.100 SR2 signal S selection 1023 3FF E6.101 SR2 signal R selection 1024 400 E6.102 SR2 function 1025 401 E6.103 SR2 output 288 120
Time device
E6.109 Time module 1 1026 402 E6.110 T1 signal A selection 1027 403 E6.111 T1 function 1028 404 E6.112 T1 time setting 1029 405 E6.113 T1 output 289 121 E6.114 T1 selection 1030 406
Log. address Setting range
dec hex
Type
Adjust­ability
Factor
10 0 6500 s
min max
Unit
8 P01 034.00/00 HALS
76
Parameter name
E6.115 Time module 2 1031 407 E6.116 T2 signal A selection 1032 408 E6.117 T2 function 1033 409 E6.118 T2 time setting 1034 40A E6.119 T2 output 290 122 E6.120 T2 selection 1035 40B E6.121 Time module 3 1036 40C E6.122 T3 signal A selection 1037 40D E6.123 T3 function 1038 40E E6.124 T3 time setting 1039 40F E6.125 T3 output 291 123 E6.126 T3 selection 1040 410 E6.127 Time module 4 1041 411 E6.128 T4 signal A selection 1042 412 E6.129 T4 function 1043 413 E6.130 T4 time setting 1044 414 E6.131 T4 output 292 124 E6.132 T4 selection 1045 415 E6.133 Time module 5 1046 416 E6.134 T5 signal A selection 1047 417 E6.135 T5 function 1048 418 E6.136 T5 time setting 1049 419 E6.137 T5 output 293 125 E6.138 T5 selection 1050 41A E6.139 Time module 6 1051 41B E6.140 T6 signal A selection 1052 41C E6.141 T6 function 1053 41D E6.142 T6 time setting 1054 41E E6.143 T6 output 294 126 E6.144 T6 selection 1055 41F
F1 Info
8 P01 034.00/00 HALS
Identification of the device
F1.01 Drive reference 11 B Ensuing parameter 12 C Ensuing parameter 13 D Ensuing parameter 14 E Ensuing parameter 15 F Ensuing parameter 16 10 Ensuing parameter 17 11 Ensuing parameter 18 12 F1.02 Nominal power 295 127
F1.03 Nominal current 296 128 F1.04 Nominal voltage 297 129 F1.05 Drive serial number 19 13 F1.06 Facility description 23 17
Ensuing parameter 24 18 Ensuing parameter 25 19 Ensuing parameter 26 1A Ensuing parameter 27 1B Ensuing parameter 28 1C Ensuing parameter 29 1D Ensuing parameter 30 1E
F1.07 APP software 31 1F Ensuing parameter 32 20 Ensuing parameter 33 21
Log. address Setting range
dec hex
Type
Adjust­ability
Factor
10 0 6500 s
10 0 6500 s
10 0 6500 s
10 0 6500 s
10 0 6500 s
10 A
1
min max
Unit
77
Parameter name
Ensuing parameter 34 22 Ensuing parameter 35 23 Ensuing parameter 36 24 Ensuing parameter 37 25 Ensuing parameter 38 26 F1.08 Service notice 1993 7C9 Ensuing parameter 1994 7CA Ensuing parameter 1995 7CB Ensuing parameter 1996 7CC Ensuing parameter 1997 7CD Ensuing parameter 1998 7CE Ensuing parameter 1999 7CF Ensuing parameter 2000 7D0 Ensuing parameter 2001 7D1 Ensuing parameter 2002 7D2 Ensuing parameter 2003 7D3 Ensuing parameter 2004 7D4
Log. address Setting range
dec hex
Type
F2 Test routines
Force operation
F2.01 Force operation 1807 70F F2.02 Force DI1 1056 420 F2.03 Force DI2 1057 421 F2.04 Force DI3 1058 422 F2.05 Force DI4 1059 423 F2.06 Force DI5 1060 424 F2.07 Force DI6 1061 425 F2.08 Force DI7 1062 426 F2.09 Force DI8 1063 427 F2.10 Force DI9 1064 428 F2.11 Force DI10 1065 429 F2.12 Force DI11 1066 42A F2.13 Force DI12 1067 42B F2.14 Force DI13 1068 42C F2.15 Force DI14 1069 42D F2.16 Force R1 1070 42E F2.17 Force R2 1071 42F F2.18 Force R3 1072 430 F2.19 Force DO1 1073 431 F2.20 Force DO2 1074 432 F2.21 Force R4 1075 433 F2.22 Force DO3 1076 434 F2.23 Force DO4 1077 435 F2.24 Force AI1 1078 436 F2.25 Force value AI1 1079 437 F2.26 Force AI2 1080 438 F2.27 Force value AI2 1081 439 F2.28 Force AI3 1082 43A F2.29 Force value AI3 1083 43B F2.30 Force AI4 1084 43C F2.31 Force value AI4 1085 43D F2.32 Force FP 1086 43E F2.33 Force value FP 1087 43F F2.34 Force AO1 1088 440 F2.35 Force value AO1 1089 441 F2.36 Force AO2 1090 442
Adjust­ability
Factor
100 -10 10
100 0 20
100 0 20
100 0 20
100 0 30 kHz
100 0 20
min max
Unit
8 P01 034.00/00 HALS
78
Parameter name
F2.37 Force value AO2 1091 443 F2.38 Force AO3 1092 444 F2.39 Force value AO3 1093 445
Test routines
F2.40 Start IGBT test 1808 710 F2.41 Test charging circuit 1809 711 F2.45 Simulation mode 1094 446 F2.46 Software reset 1095 447
Log. address Setting range
dec hex
Type
F3 Fault memory
Fault memory
F3.01 Number of faults 298 12A F3.02 Review 1096 448 F3.03 Fault number 299 12B F3.04 Fault cause 300 12C F3.05 Operating hours 301 12D F3.06 Min / sec 302 12E F3.07 Reference value [Hz] 303 12F F3.08 Actual value [Hz] 304 130 F3.09 Output current 305 131 F3.10 DC voltage 306 132 F3.11 Thermal load VSD 307 133 F3.12 Control mode 308 134 F3.13 Operating status 309 135 F3.14 Alarm message 310 136 F3.15 Drive state 312 138 F3.16 Control word bus 311 137 F3.17 Bus statusword 313 139
F4 Diagnosis
Data-Logger
8 P01 034.00/00 HALS
F4.01 Data logger channel 1 1097 449 F4.02 Data logger channel 2 1098 44A F4.03 Data logger channel 3 1099 44B F4.04 Time base 1100 44C F4.05 Rating channel 1 1101 44D F4.06 Rating channel 2 1102 44E F4.07 Rating channel 3 1103 44F
State logic inputs
F4.10 DI state basic device 314 13A F4.11 DI state IO11 315 13B F4.12 DI state IO12 316 13C
state logic outputs
F4.13 DO state basic device 317 13D F4.14 DO state IO11 318 13E F4.15 DO state IO12 319 13F
Analog checkpoints
F4.16 f-reference 1 [Hz] 320 140 F4.17 f-reference 2 [Hz] 321 141 F4.18 f-reference after sel. 322 142 F4.19 f-ref. val. after FW/REV 323 143 F4.20 f-correction 324 144 F4.21 f-ref. val. before ramp 325 145
Adjust­ability
Factor
100 -20 20
100 -20 20
1 h 100 m:s 10 Hz 10 Hz see table A 1 V 1 %
hex
---
1 1 1 1 0 1500 min 1 1 1
1 1 1
1 1 1
10 Hz 10 Hz 10 Hz 10 Hz 10 Hz 10 Hz
min max
Unit
79
Parameter name
F4.22 f-ref. val. after ramp 326 146 F4.23 f-ref. val. after PID act. 327 147 F4.24 f-ref. val. after loc/rem 328 148 F4.25 f-ref. val. after f-corr. 329 149 F4.26 PID reference value 330 14A F4.27 PID actual value 331 14B F4.28 PID deviation 332 14C F4.29 PID output 333 14D F4.38 I limit 342 156
Power part
F4.44 DC voltage 344 158 F4.45 IGBT overload time 123 7B F4.46 Thermal load VSD 345 159 F4.47 Thermal load M1 346 15A F4.48 Thermal load M2 347 15B F4.50 Fan status 349 15D
State option cards
F4.56 Option 1 type 350 15E F4.57 Option 2 type 351 15F F4.60 Status APP 354 162 F4.61 Status MC 355 163 F4.62 Status LCD-keypad 356 164
Log. address Setting range
dec hex
Type
F6 Code
Security settings
F6.01 Code 1144 478 F6.02 Code value 1145 479 F6.03 Parametrising station 1146 47A F6.04 Impulse inhibit 1147 47B F6.05 Service code 1148 47C
Adjust­ability
Factor
10 Hz 10 Hz 10 Hz 10 Hz 10 % 10 % 1 % 10 10 A
1 V 1 65535 s 1 % 1 % 1 % 1
1 1 1 1 1
1 0 9999 1 0 9999
1 0 59999
min max
Unit
System parameters
Store parameter values 40 28
Factors depending on the device
>pDRIVE< devices
Unit
A kW kVA Hp Nm
mΩ
MX eco 4V0,75...4V7,5 100 100 100 100 100 1 MX eco 4V11...4V75 10 10 10 10 10 1 MX eco 4V90...4V630 1 1 1 1 1 1000
8 P01 034.00/00 HALS
80

Inverter messages

Alarm/Info messages
Matrix operating panel Alarm index (dec.) Description
Force active 01 The force mode is active (see F2.01 Force operation).
Emergency op. active
Ext. fault 1 (or free editable text
E3.38)
Ext. fault 2 (or free editable text
E3.45)
Undervoltage
Reference fault AI2
Reference fault AI3
Reference fault AI4
Bus fault
Reference fault FP 11
8 P01 034.00/00 HALS
Feed in <
ON-lock from DI
Speed check fault
ϧ M1 >
ϧ M2 >
Overspeed
02
03
04
05
06
07
08
10
12
13
14
15
16
17
The inverter is switched over to the status "Emergency operation" via a digital input command. See parameter E3.10.
An external fault is signalized via a digital input function (see E3.34 to E3.38).
It is processed as an alarm message corresponding to the setting of E3.35 Ext. fault 1 response.
An external fault is signalized via a digital input function (see E3.41 to E3.45).
It is processed as an alarm message corresponding to the setting of E3.42 Ext. fault 2 response.
There is an undervoltage situation. This leads to an alarm message corresponding to the setting of E3.29 V< response.
At the analog input AI2 the reference value fell below 3 mA. This leads to an alarm message corresponding to the setting of E3.13 AI2 - 4mA monitor and E3.14 AI2 - 4mA response.
At the analog input AI3 the reference value fell below 3 mA. This leads to an alarm message corresponding to the setting of E3.16 AI3 - 4mA monitor and E3.17 AI3 - 4mA response.
At the analog input AI4 the reference value fell below 3 mA. This leads to an alarm message corresponding to the setting of E3.19 AI4 - 4mA monitor and E3.20 AI4 - 4mA response.
According to the setting of D6.03 Bus error behaviour a bus fault caused by exceeded runtime or a loss of control leads to an alarm message.
At the frequency input FP the reference value fell short by 50 % of the setting f
. This leads to an alarm message
min
corresponding to the setting of E3.22 FP - f monitoring and E3.23 FP - monitoring resp..
According to the setting of E1.49 Feed in monitoring and E1.50 Feed in mon. reaction the trigger of the feed-in monitoring leads to an alarm message.
The digital input function ON-lock (E3.48) signalizes a problem which leads to an alarm message corresponding to the setting of E3.49 ON lock response.
The function n-monitoring (E1.38) leads to an alarm message corresponding to the setting of E1.45 n-monitoring response.
The thermal mathematical motor model has reached the set alarm level for motor M1.
See parameter E2.19 M1 - response. The thermal mathematical motor model has reached the set
alarm level for motor M2. See parameter E2.31 M2 - response. The overspeed protection (E2.48) has triggered and signalizes
an alarm corresponding to the setting of the parameter E2.49 Overspeed response.
81
Matrix operating panel Alarm index (dec.) Description
The thermistor (PTC) or thermal switch, assigned to motor M1 (see motor assignment E2.01, E2.06, E2.11) has detected an
TH - ϧ M1 >
18
overtemperature. As a result an alarm message is activated corresponding to
the set reaction for the respective thermistor. The thermistor (PTC) or thermal switch, assigned to motor M2
(see motor assignment E2.01, E2.06, E2.11) has detected an
TH - ϧ M2 > 19
overtemperature. As a result an alarm message is activated corresponding to
the set reaction for the respective thermistor. The thermistor (PTC) or thermal switch (see motor assignment
E2.01, E2.06, E2.11), which is planned for the general use, has
TH - ϧ Ext > 20
detected an overtemperature. An alarm message is as a result activated corresponding to
the reaction setting for the respective thermistor. The underload function (E2.61) recognises a motor underload
Underload
21
and activates an alarm message corresponding to the setting of E2.62 Underload response
Limitation active 22 A limitation function is active.
Ramp adaption
Service M1
Service M2
23
24
25
The set acceleration or deceleration ramp cannot be maintained and is automatically extended.
The operating hours counter (A5.01) for motor M1 has exceeded the set time interval (A5.02).
The operating hours counter (A5.04) for motor M2 has exceeded the set time interval (A5.05).
The operating hours counter (A5.08) for the power part of the
Service Power On
26
device (device is supplied with mains voltage) has exceeded the set time interval.
Service fan
27
The operating hours counter (A5.10) for the power part fan has
exceeded the set time interval (A5.11). Simulation active 28 The Simulation mode (F2.45) is activated. Download active 29 The PC program Matrix 3 executes a parameter download.
One or several function modules are incompletely E6 incomplete
30
parameterized (the end of each function group belonging
together must be a time module !).
Wrong control mode
32
The selected function cannot be combined with the actual
control mode. Para. Set 1 36 Faulty Eprom-zone for parameter set 1 Para. Set 2 37 Faulty Eprom-zone for parameter set 2
IGBT ϧ >
38
IGBT overtemperature, determined by the thermal
mathematical inverter model
8 P01 034.00/00 HALS
82
These alarm/info messages can be read out under address 43 dec / 002B hex.
Trip messages
Matrix operating panel Trip index (dec.) Description
Undervoltage 01
There is an undervoltage situation.
See parameter E3.29 V< response.
The DC link voltage has exceeded the hardware protection level
V>> at deceleration 02
of 825 V due to a deceleration.
Extend deceleration ramps or activate motor brakes B5.01
Braking mode.
The DC link voltage has exceeded the protection level of 756 V.
Line overvoltage 03
As the fault evaluation only occurs with impulse inhibit, a line
overvoltage situation takes place !
DC charging fault 04 The charging process of the DC link could not be completed.
The frequency inverter is operated at the intelligent >pDRIVE< LX
DC missing 05
rectifier. The DC link voltage, made available by this rectifier, has
shut down.
Precharging fault 06
Fault of the soft charge device (half controlled thyristor bridge).
Only for devices larger than >pDRIVE< MX eco 4V18.
Line fault 1p 08 Loss of one mains phase Line fault 2-3p 09 Loss of two or three mains phases Motor short circuit 10 Phase short circuit at the output (shut down due to overcurrent)
Earth fault at the output
Motor earth fault 11
Registration by means of the software (only for devices up to and
including >pDRIVE< MX eco 4V75)
Motor earth fault 1 12
The differential current determined from the three motor phases
is larger than 25 % of the nominal current of the inverter.
Overcurrent at the output
Overcurrent 13
Registration by means of the software (only with devices up to
and including >pDRIVE< MX eco 4V75)
IGBT ϧ >> 14
8 P01 034.00/00 HALS
Motor phase fault 3p 15 Loss of the three motor phases
IGBT overtemperature, determined by the thermal mathematical
inverter model
Motor phase U lost 16 Loss of motor phase U Motor phase V lost 17 Loss of motor phase V Motor phase W lost 18 Loss of motor phase W Inverter overtemp. 19 Inverter overtemperature (overload, cooling problem) Unknown MC 20 Unknown power part PTC short circuit 21 Short-circuit at a thermistor sensor (PTC). PTC open circuit 22 A thermistor sensor (PTC) is open ASIC Init fault 23 Asic on the motor control cannot be initialised.
The desaturation protection of an IGBT has triggered.
IGBT fault 25
The registration of this fault occurs only with devices larger than
>pDRIVE< MX eco 4V75.
Motor short circuit 28
The automatically running test routine B3.43 Automatic SC test
has detected a short circuit at the output.
Fault of the current transformer, its voltage supply or the
Current measure defect 30
evaluation electronics.
The registration of this fault occurs only with devices larger than
>pDRIVE< MX eco 4V75.
MC E² zones invalid 32 Motor control EEProm defect CPU fault 33 Internal electronic fault
83
Matrix operating panel Trip index (dec.) Description
ISL fault 34 Communication fault on the internal serial link
MTHA fault 35
Overspeed 36
Security hold 37
Asic for time measurement defect (undervoltage time determination)
The motor has exceeded the maximum allowed Overspeed level (E2.50).
There is a fault in the area of the internal monitoring for function
"Safe Standstill" (PWR). IO12 comm. failue 38 Communication fault at option card >pDRIVE< IO12 Opt. comm fault 39 Communication fault at an option card Wrong otion board 40 Defect or unknown option card used Bus fault 41 A bus fault occurred due to exceeded run time or loss of control. Param. config. fault 42 Parameter settings invalid Reference fault AI2 43 At analog input AI2 the reference value fell below 3 mA. Reference fault AI3 44 At the analog input AI3 the reference value fell below 3 mA. Reference fault AI4 45 At the analog input AI4 the reference value fell below 3 mA.
Reference fault FP 46
At the frequency input FP the reference value fell short by 50 %
of the setting f
min
.
The thermistor (PTC) or thermal switch, assigned to motor M1 TH M1 ϧ >> 47
(see motor assignment E2.01, E2.06, E2.11), has detected an
overtemperature.
The thermistor (PTC) or thermal switch, assigned to motor M2 TH M2 ϧ >> 48
(see motor assignment E2.01, E2.06, E2.11), has detected an
overtemperature.
The thermistor (PTC) or thermal switch (see motor assignment TH - ϧ gen. >> 49
E2.01, E2.06, E2.11), which is planned for the general use, has
detected an overtemperature.
ϧ M1 > 50
ϧ M2 > 51
Stall protection 52
Underload 53
The thermal mathematical motor model has reached the set
trigger level for motor M1.
The thermal mathematical motor model has reached the set
trigger level for motor M2.
The stall protection has triggered due to a rotor blockade or a
highly overloaded starting. See parameters E2.42 to E2.45.
The underload function (E2.61) has recognized a motor
underload. Speed check fault 54 The function n-monitoring (E1.38) has recognised an overspeed. Feed in << 55 The function Feed in monitoring (E1.49) has triggered. AT-fault 1 56 Fault at the execution of the autotuning routine
Config. fault 57
Ext. fault 1 58
Ext. fault 2 59
EEProm application software incompatible or changed power
part
An external fault is signalized via a digital input function (see
E3.34 to E3.38).
An external fault is signalized via a digital input function (see
E3.41 to E3.45). Contactor fault 60 Line contactor control defect (response monitoring) Motor contactor err (c) 61 Motor contactor control (response monitoring) active Motor contactor err (o) 62 Motor contactor control (release monitoring) active
ON-lock 63
The digital input function ON-lock (E3.48) caused a protective
shut-down. Internal SW error 64 Internal software fault (e.g. defect parameter settings) Power rating fault 65 Unclear power part assignment
8 P01 034.00/00 HALS
84
Matrix operating panel Trip index (dec.) Description
Incompatible MC 66 Motor control is not compatible to the application software Flash fault APP 67 Flash Eprom on the application software defect Indus zone fault 68 Value for calibration on the application software defect Eprom fault APP 69 EEProm on the application software defect Limitation active 71 A limit function is active
Ramp adaption 72
The set acceleration or deceleration ramp cannot be maintained and is automatically extended.
24V fault 73 Problem with the external 24 V buffer voltage
These trip messages can be read out under address 72 dec / 0048 hex.
8 P01 034.00/00 HALS
85
Schneider Electric Power Drives GmbH
Ruthnergasse 1 A-1210 Vienna Phone: +43 (0)1 29191 0 Fax: +43 (0)1 29191 15 www.pdrive.com
>pDRIVE< stands for intelligent high-performance.
As one of the leading providers of inverters and motors, we know from experience that quality without compromising, consolidated advice and more flexible service lead to longstanding research and expertise. Therefore we dedicate an essential part of our activities to permanently optimising processes and developing solutions for target groups which will meet even the highest demands.
8 P01 034.00/00a HALS
www.pdrive.com
Information quick at hand - under www.pdrive.com.
In addition to company specifications we have made available to you a detailed list of technical data for all our products as well as helpful software tools to set up the parameters of our inverters.
The right to make technical changes is reserved.
Loading...