PANJIT 1SMB3EZ91, 1SMB3EZ82, 1SMB3EZ75, 1SMB3EZ68, 1SMB3EZ62 Datasheet

...
1SMB3EZ11 THRU 1SMB3EZ200
FEATURE
S
MECHANICAL DATA
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTIC
S
D
FSM
STG
DO-214A
A
SURFACE MOUNT SILICON ZENER DIODE
VOLTAGE - 11 TO 200 Volts Power - 3.0 Watts
l
For surface mounted applications in order to
optimize board space
l
Low profile package
l
Built-in strain relief
l
Glass passivated junction
l
Low inductance
l
Excellent clamping capability
l
Typical ID less than 1£gA above 11V
l
High temperature soldering :
260¢J/10 seconds at terminals
l
Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
MODIFIED J-BEND
Case: JEDEC DO-214AA, Molded plastic over passivated junction Terminals: Solder plated, solderable per MIL-STD-750, method 2026 Polarity: Color band denotes positive end (cathode) except Bidirectional Standard Packaging: 12mm tape(EIA-481) Weight: 0.003 ounce, 0.093 gram
Ratings at 25¢Jambient temperature unless otherwise specified.
SYMBOL VALUE UNITS
Peak Pulse Power Dissipation (Note A) Derate above 75
Peak forward Surge Current 8.3ms single half sine-wave superimposed on rated load(JEDEC Method) (Note B)
Operating Junction and Storage Temperature Range TJ,T NOTES:
A. Mounted on 5.0mm2(.013mm thick) land areas. B. Measured on 8.3ms, single half sine-wave or equivalent square wave, duty cycle = 4 pulses
¢J
P
I
3
24 15 Amps
-55 to +150 ¢J
Watts
mW/
¢J
per minute maximum.
1SMB3EZ11 THRU 1SMB3EZ200
ELECTRICAL CHARACTERISTICS (TA=25¢Junless otherwise noted) VF=1.2 V max ,
IF=500 mA for all types
Maximum Zener Impedance (Note 3.)Leakage CurrentType No.(Note 1.)NominalZener Voltage
Vz @ I
Z
T
volts(Note 2.)Testcurrent
I
Z
T
A
Z
Z
T
@
I
Z
T
OhmsZ
Z
k
@
I
Z
K
OhmsI
Z
K
mAI
R
£g
A Max@VRVolts
MaximumZene
r
Current
I
Z
M
MadcSurgeCurrent@ TA = 25¢Jir - mA(Note 4.)DeviceMarking
Cod
e
1SMB3EZ111SMB3EZ1
2
1SMB3EZ13
111
2
1
3
686
3
5
8
44.
5
4.5
70070
0
700
0.250.2
5
0.2
5
1
1
0.5
8.49.
1
9.9
22524
6
208
1.821.6
6
1.5
4
11B12
B
13B
1SMB3EZ141SMB3EZ1
5
1SMB3EZ16
1SMB3EZ171415
1
6
17535
0
4
7
4455.
5
5.5
6700700
700
7500.250.25
0.2
5
0.250.50.
5
0.5
0.510.611.4
12.
2
1319318
0
169
1501.431.33
1.2
5
1.1814B15
B
16B
17B1SMB3EZ1
8
1SMB3EZ19
1SMB3EZ201SMB3EZ221
8
1
9
20224
2
4
0
37346778750
750
7507500.2
5
0.2
5
0.250.250.5
0.5
0.50.513.
7
14.
4
15.216.7159
142
1351231.1
1
1.0
5
10.9118
B
19B
20B22
B
1SMB3EZ24
1SMB3EZ271SMB3EZ281SMB3EZ30
2
4
27283
0
3
1
28272
5910121
6
750
750750100
0
0.2
5
0.250.250.2
5
0.5
0.50.50.5
18.
2
20.62122.
5
112
1009690
0.8
3
0.740.710.6
7
24B
27B28B30B
1SMB3EZ33
1SMB3EZ361SMB3EZ391SMB3EZ43
3
3
36394
3
2
3
21191
7
2
0
22283
3
100
0
10001000150
0
0.2
5
0.250.250.2
5
0.5
0.50.50.5
25.
1
27.429.732.
7
8
2
75696
3
0.6
1
0.560.510.4
5
33B
36B39B43B1SMB3EZ471SMB3EZ511SMB3EZ5
6
1SMB3EZ62
47515
6
6
2
16151
3
1
2
38455
0
5
5
15001500200
0
200
0
0.250.250.2
5
0.2
5
0.50.50.5
0.5
35.638.842.
6
47.
1
57534
8
4
4
0.420.390.3
6
0.3
2
47B51B56B
62B
1SMB3EZ681SMB3EZ7
5
1SMB3EZ82
1SMB3EZ916875
8
2
91111
0
9.1
8.27085
9
5
11520002000
300
0
30000.250.2
5
0.2
5
0.250.50.
5
0.5
0.551.756
62.
2
69.2403
6
3
3
300.290.2
7
0.2
4
0.2268B75
B
82B
91B1SMB3EZ100
1SMB3EZ11
0
1SMB3EZ1201SMB3EZ130100
110
1201307.5
6.8
6.35.8160
225
300375300
0
400
0
450050000.2
5
0.2
5
0.250.250.5
0.5
0.50.57
6
83.
6
91.298.82
7
2
5
22210.2
0.1
8
0.160.15100
B
110
B
120B130
B
1SMB3EZ14
0
1SMB3EZ1501SMB3EZ1601SMB3EZ17
0
140
150160170
5.3
54.74.4
475
550625650
500
0
60006500700
0
0.2
5
0.250.250.2
5
0.5
0.50.50.5
106.4
114121.6130.4
1
9
18171
6
0.1
4
0.130.120.1
2
140
B
150B160B170B1SMB3EZ1801SMB3EZ1901SMB3EZ2001801902004.243.77008008757000800080000.250.250.250.50.50.5136.8144.81521514130.110.10.1180B190B200B
NOTES:
1. TOLERANCES - Suffix indicates 5% tolerance any other tolerance will be considered as a special device.
2. ZENER VOLTAGE (Vz) MEASUREMENT - guarantees the zener voltage when measured at 40 ms¡Ó 10ms from the diode body , and an ambient temperature of 25 ¢J (¡Ï 8 ¢J, -2 ¢J).
3.ZENER IMPEDANCE (Zz) DERIVATION - The zener impedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms falue equal to 10% of the dc zener current (IZT or IZK) is superimposed on IZT or IZK.
4. SURGE CURRENT (Ir) NON-REPETITIVE - The rating listed in the electrical characteristics table is maximum peak, non-repetitive, reverse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current, IZT, per JEDEC standards, however, actual device capability is as described in Figure 3.
RATING AND CHARACTERISTICS CURVES
0
.2
D = 0NOTE BELOW 0.1 SECOND,
ANY LEAD LENGTH (L)
REPETITIVE PULSES£GTJL =£KJL(t,D)PPK
3
P.W. PULSE WIDTH (ms)
NOMINAL VZ (VOLTS
)
8
-4
VZ, ZENER VOLTAGE @IZT (VOLTS
)
VZ, ZENER VOLTAGE @IZT (VOLTS
)
PP
C
C
1SMB3EZ11 THRU 1SMB3EZ200
30
D = 0.5
20
10
7 5
0.1
3
0.05
2
0.02
RESISTANCE
£c JL (t,D) TRANSIENT THERMAL
1
JUNCTION-TO-LEAD(¢J/W)
0.01
0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10
Fig. 2-TYPICAL THERMAL RESPONSE L,
500
RECTANGULAR NONREPETITIVE WAVEFORM TJ = 25¢J PRIOR TO INITIAL PULSE
2
5 10 20
50 100
K, PEAK SURGE POWER(WATTS)
300 200
100
50 30
20
10
.1 .2 .3 5 1
THERMAL RESPONSE CURVE IS APPLICABLE TO
IR, REVERSE LEADAGE(uAdc)
SINGLE PULSE£GTJL =£KJL(t)PPK
0.1
0.05
0.03
0.02
0.01
0.005
0.003
0.002
CHAR. TABLE
0.001
0.0005
0.0003
0.0002
@VR AS SPECIFIED IN ELEC.
0.0001
1 2 5 10 20 50 100 200 500 1K
Fig. 3-MAXIMUM SURGE POWER Fig. 4-TYPICAL REVERSE LEAKAGE
200
6
4
2
0
-2
£c VZ, TEMPERATURE
OEFFICIENT(mV/¢J) @ IZT
3 4 6 8 10 12
RANGE
100
) @ IZT
¢J
50 40 30
VZ, TEMPERATURE
20
£c
OEFFICIENT(mV/
10
0 20 40 60 80 100 120 140 160 180 200
RANGE
Fig. 5-UNITS TO 12 VOLTS Fig. 6-UNITS 10 TO 200 VOLTS
RATING AND CHARACTERISTICS CURVES
VZ, ZENER VOLTAGE (VOLTS)
VZ, ZENER VOLTAGE (VOLTS)
VZ, ZENER VOLTAGE (VOLTS)
CONDUCTION IS THROUGH
L, LEAD LENGTH TO HEAT SINK (INCH
)
1SMB3EZ11 THRU 1SMB3EZ200
100
50 30 20 10
5 3 2
1
0.5
0.3
IZ, ZENER CURRENT (mA)
0.2
0.1
0 1 2 3 4 5 6 7 8 9 10
IZ, ZENER CURRENT (mA)
100
0
50 30 20 10
5 3 2
1
0.5
0.3
0.2
0.1 10
30
40
50
20
60 70
80
Fig. 7-VZ = 3.9 THRU 10 VOLTS Fig. 8-VZ = 12 THRU 82 VOLTS
100
50 30 20 10
5 3 2
1
0.5
0.3
IZ, ZENER CURRENT (mA)
0.2
0.1
100 120 140 160 180 200
/W)
¢J
80 70 60 50 40
RESISTANCE (
30 20
£c JL, JUNCTION-LEAD THERMAL
10 0
PRIMARY PATH OF
THE CATHODE LEAD
0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1
90 100
Fig. 9-VZ = 100 THRU 200 VOLTS Fig. 10-TYPICAL THERMAL RESISTANCE
APPLICATION NOTE: Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended: Lead Temperature, TL, should be determined from:
TL = £cLAPD + T
A
£cLA is the lead-to-ambient thermal resistance (¢J/W) and PD is the power dissipation. The value for £cLA will
vary and depends on the device mounting method. £cLA is generally 30-40 ¢J/W for the various chips and
tie points in common use and for printed circuit board wiring. The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by:
TJ = TL + £GT
JL
£GTJL is the increase in junction temperature above the lead temperature and may be found from Figure 2 for a
train of power pulses or from Figure 10 for dc power.
£GTJL = £cLAP
D
For worst-case design, using expected limits of Iz, limits of PD and the extremes of TJ (£GTJL ) may be estimated.
Changes in voltage, Vz, can then be found from:
£GV = £c
VZ
£GT
J
£cVZ , the zener voltage temperature coefficient, is found from Figures 5 and 6.
Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly be the zener resistance. For best regulation, keep current excursions as low as possible. Data of Figure 2 should not be used to compute surge capability . Surge limitations are given in Figure 3. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 3 be exceeded.
Loading...