Panasonic 2SA1739G User Manual

This product complies with the RoHS Directive (EU 2002/95/EC).
Transistors
2SA1739G
Silicon PNP epitaxial planar type
For high speed switching
Complementary to 2SC3938G
High speed switching
Low collector-emitter saturation voltage V
S-Mini type package, allowing downsizing of the equipment and
automatic insertion through the tape packing
CE(sat)
Package
Code SMini3-F2
Marking Symbol: AX
Pin Name
1. Base
Absolute Maximum Ratings Ta = 25°C
Parameter Symbol Rating Unit
Collector-base voltage (Emitter open) V
Collector-emitter voltage (Base open) V
Emitter-base voltage (Collector open) V
Collector current I
Peak collector current I
Collector power dissipation P
Junction temperature T
Storage temperature T
CBO
CEO
EBO
C
CP
C
j
55 to +150 °C
stg
15 V
15 V
4V
50 mA
100 mA
150 mW
150 °C
2. Emitter
3. Collector
Electrical Characteristics Ta = 25°C ± 3°C
Parameter Symbol Conditions Min Typ Max Unit
Collector-base cutoff current (Emitter open)
Emitter-base cutoff current (Collector open)
Forward current transfer ratio h
Collector-emitter saturation voltage V
Transition frequency f
Collector output capacitance C
(Common base, input open circuited)
Turn-on time t
Turn-off time t
Storage time t
Note) 1. Measuring methods are based on JAPANESE INDUSTRIAL STANDARD JIS C 7030 measuring methods for transistors.
2.*: Rank classification
Rank Q R No-rank
h
FE1
Marking symbol AXQ AXR AX
Product of no-rank is not classified and have no marking symbol for rank.
50 to 120 90 to 150 50 to 150
I
CBO
I
EBO
*
FE1
h
FE2
CE(sat)IC
T
ob
on
off
stg
VCB = 8 V, IE = 0 0.1 µA
VCE = 3 V, IC = 0 0.1 µA
VCE = 1 V, IC = 10 mA 50 150
VCE = 1 V, IC = 1 mA 30
= 10 mA, IB = 1 mA 0.1 0.2 V
VCB = 10 V, IE = 10 mA, f = 200 MHz 800 1 500 MHz
VCB = 5 V, IE = 0, f = 1 MHz 1 pF
Refer to the switching time
measurement circuit 20 ns
12 ns
19 ns
Publication date: April 2007 SJC00347AED
1
2SA1739G
This product complies with the RoHS Directive (EU 2002/95/EC).
Switching time measurement circuit
t
, t
Test circuit t
on
off
90%
t
off
V
= 9.8 V
IN
= 8.0 V
V
BB
CE
IB = 600 µA
VCC = 1.5 V
10%
Ta = 25°C
500 µA
400 µA
300 µA
200 µA
100 µA
V
OUT
)
V
BB
2 k 62
0.1 µF
V
IN
52
51
0
IN
= Ground
BB
10%
90%
t
on
V
V
OUT
V
IC V
60
50
)
mA (
40
C
30
20
Collector current I
10
0
0 12−10−8−2 −6−4
Collector-emitter voltage VCE (V
Test circuit
stg
= 10 V
V
BB
VCC = 3 V
508 30
0.1 µF
V
IN
34
51
0
V
IN
V
OUT
100
) V
(
CE(sat)
10
1
0.1
Collector-emitter saturation voltage V
0.01
1 10 100 1 000
V
90%
t
stg
V
IN
CE(sat)
90%
= 9.0 VVIN = 5.8 V
I
Collector current IC (mA
V
OUT
C
IC / IB = 10
T
= 75°C
a
25°C
25°C
PC T
200
a
)
mW
160
(
C
120
80
40
Collector power dissipation P
0
0 16040 12080
C
IC / IB = 10
Ta = 25°C
25°C
75°C
)
Ambient temperature Ta (°C
V
100
) V
(
BE(sat)
10
1
0.1
BE(sat)
I
Base-emitter saturation voltage V
0.01
)
1 10 100 1 000
Collector current IC (mA
)
hFE I
240
200
FE
160
120
Ta = 75°C
80
25°C
Forward current transfer ratio h
25°C
40
0
0.1 1 10 100
C
Collector current IC (mA
2
VCE = 10 V
)
fT I
2 400
2 000
)
MHz
(
1 600
T
1 200
800
Transition frequency f
400
0
1 10 100
E
Emitter current IE (mA
SJC00347AED
VCB = 10 V f = 200 MHz
= 25°C
T
a
)
Cob V
2.4
(pF)
ob
2.0
C
1.6
1.2
0.8
0.4
Collector output capacitance
(Common base, input open circuited)
0
1 10 100
CB
IE = 0 f = 1 MHz T
a
Collector-base voltage VCB (V
= 25°C
)
Loading...
+ 2 hidden pages