OXFORD OX16C954-PCC60-B, OX16C954-TQC60-B Datasheet

OX16C954 rev B
FEATURES
High Performance Quad UART with 128-byte FIFOs
Intel / Motorola Bus Interface
Four independent full-duplex asynchronous 16C950 high performance UART channels
128-byte deep FIFO per transmitter and receiver
UARTs fully software compatible with industry
Pin compatible with TL16C554 and ST16C654
Baud rates up to 15 Mbps in normal mode and
60Mbps in external 1x clock (isochronous) mode
Readable FIFO levels
Flexible clock prescaler from 1 to 31.875
Automated in-band flow control using programmable
Xon/Xoff characters, in both directions
Automated out-of-band flow control using CTS#/RTS# and/or DSR#/DTR#
Arbitrary trigger levels for receiver and transmitter FIFO interrupts and automatic in-band and out-of­band flow control
Readable in-band and out-of-band flow control status
Programmable special character detection
Infra-red (IrDA) receiver and transmitter option
5, 6, 7, 8 and 9-bits data framing
Detection of bad data in the receiver FIFO
Independent channel reset by software
Transmitter and receiver can be disabled
Transmitter idle interrupt
RS-485 buffer enable signals
Four byte device ID
Sleep mode (low operating current)
System clock up to 60 MHz at 5V, 50 MHz at 3.3V
5.0 volt or 3.3v operation*
68pin PLCC and 80pin TQFP package options.
*Only the 80pin TQFP package supports operation at 5v or 3.3v.
REV B ENHANCEMENTS
The OX16C954B is an enhanced, backward-compatible revision of the OX16C954 rev A. It uses the newer core as in the OX16C950 rev B. The chief enhancements are as follows –
All known errata fixed
Full TCR range from 4-16
Enhanced controls for sleep-mode sensitivity, ability to read FCR and Good Data Status
3.3V operation with 80 pin TQFP
Enhanced isochronous clocking options (optional inversions, DTR/DSR)
Hereafter OX16C954 rev B is simply referred to as OX16C954.
Oxford Semiconductor Ltd.  Oxford Semiconductor 2001 25 Milton Park, Abingdon, Oxon, OX14 4SH, UK OX16C954 rev B Data Sheet R1.0 – November 2001 Tel: +44 (0)1235 824900 Fax: +44 (0)1235 821141 Part Nos. OX16C954-PCC60-B / OX16C954_TQC60_B
ESCRIPTION
D
The OX16C954 is a single chip solution for 4 channel serial add-in cards.
Each UART channel in the OX16C954 offers data rates up to 15Mbps and 128-byte deep transmitter and receiver FIFOs. Deep FIFOs reduce CPU overhead and allow utilisation of higher data rates.
Each UART channel is software compatible with the widely used industry-standard 16C550 devices and compatibles, as well as the OX16C95x family of high performance UARTs. It is pin-compatible with the TL16C554, ST16C654 devices.
In addition to increased performance and FIFO size, the UARTs also provide the full set of OX16C95x enhanced features. These include improved flow controls such as automated software flow control using Xon/Xoff and automated hardware flow control using CTS#/RTS# and DSR#/DTR# to prevent FIFO over-run.
Flow control and interrupt thresholds are fully programmable and readable, enabling programmers to fine-tune the performance of their system. FIFO levels are readable to facilitate fast driver applications.
The addition of software reset enables recovery from unforeseen error conditions allowing drivers to restart gracefully. The OX16C954 supports 9-bit data frames used in multi-drop industrial protocols. It also offers multiple external clock options for isochronous applications, e.g. ISDN, xDSL.
The OX16C954 is ideally suited to PC applications, such as high-speed multi-port add-in cards that enable PC users to take advantage of the maximum performance of analogue modems or ISDN terminal adapters. It is also suitable for any equipment requiring high speed RS232/RS422/RS485 interfaces.
Fabricated in 0.6µm process, OX16C954 also has a low operating current and sleep mode for battery powered applications.
Oxford Semiconductor Ltd.  Oxford Semiconductor 2001 25 Milton Park, Abingdon, Oxon, OX14 4SH, UK OX16C954 rev B Data Sheet R1.0 – November 2001 Tel: +44 (0)1235 824900 Fax: +44 (0)1235 821141 Part Nos. OX16C954-PCC60-B / OX16C954_TQC60_B
OX16C954 rev B
OXFORD SEMICONDUCTOR LTD.
ONTENTS
C
FEATURES.................................................................................................................................................................................................1
REV B ENHANCEMENTS.........................................................................................................................................................................1
DESCRIPTION............................................................................................................................................................................................2
CONTENTS.................................................................................................................................................................................................3
1 PERFORMANCE COMPARISON......................................................................................................................................................5
2 BLOCK DIAGRAM...............................................................................................................................................................................7
3 PIN INFORMATION.............................................................................................................................................................................8
4 PIN DESCRIPTIONS .........................................................................................................................................................................10
4.1 Further Pin Information...........................................................................................................................................................15
5 MODE SELECTION...........................................................................................................................................................................16
5.1 450 Mode....................................................................................................................................................................................16
5.2 550 Mode....................................................................................................................................................................................16
5.3 Extended 550 Mode..................................................................................................................................................................16
5.4 750 Mode....................................................................................................................................................................................16
5.5 650 Mode....................................................................................................................................................................................16
5.6 950 Mode....................................................................................................................................................................................17
6 REGISTER DESCRIPTION TABLES...............................................................................................................................................18
7 RESET CONFIGURATION................................................................................................................................................................22
7.1 Hardware Reset.........................................................................................................................................................................22
7.2 Software Reset..........................................................................................................................................................................22
8 TRANSMITTER AND RECEIVER FIFOS........................................................................................................................................23
8.1 FIFO Control Register ‘FCR’...................................................................................................................................................23
9 LINE CONTROL & STATUS.............................................................................................................................................................24
9.1 False Start Bit Detection..........................................................................................................................................................24
9.2 Line Control Register ‘LCR’....................................................................................................................................................24
9.3 Line Status Register ‘LSR’......................................................................................................................................................25
10 INTERRUPTS & SLEEP MODE.......................................................................................................................................................26
10.1 Interrupt Enable Register ‘IER’...............................................................................................................................................26
10.2 Interrupt Status Register ‘ISR’................................................................................................................................................27
10.3 Interrupt Description................................................................................................................................................................27
10.4 Sleep Mode.................................................................................................................................................................................28
11 MODEM INTERFACE........................................................................................................................................................................28
11.1 Modem Control Register ‘MCR’..............................................................................................................................................28
11.2 Modem Status Register ‘MSR’................................................................................................................................................29
12 OTHER STANDARD REGISTERS...................................................................................................................................................30
12.1 Divisor Latch Registers ‘DLL & DLM’....................................................................................................................................30
12.2 Scratch Pad Register ‘SPR’.....................................................................................................................................................30
13 AUTOMATIC FLOW CONTROL.......................................................................................................................................................31
13.1 Enhanced Features Register ‘EFR’........................................................................................................................................31
13.2 Special Character Detection...................................................................................................................................................32
13.3 Automatic In-band Flow Control............................................................................................................................................32
13.4 Automatic Out-of-band Flow Control....................................................................................................................................32
14 BAUD RATE GENERATION.............................................................................................................................................................33
14.1 General Operation.....................................................................................................................................................................33
14.2 Clock Prescaler Register ‘CPR’..............................................................................................................................................34
14.3 Times Clock Register ‘TCR’....................................................................................................................................................34
14.4 Input Clock Options..................................................................................................................................................................36
Data Sheet Revision 1.0 Page 3
OX16C954 rev B
OXFORD SEMICONDUCTOR LTD.
14.5 TTL Clock Mode........................................................................................................................................................................36
14.6 External 1x Clock Mode...........................................................................................................................................................36
14.7 Crystal Oscillator Circuit.........................................................................................................................................................36
15 ADDITIONAL FEATURES................................................................................................................................................................37
15.1 Additional Status Register ‘ASR’...........................................................................................................................................37
15.2 FIFO Fill levels ‘TFL & RFL’.....................................................................................................................................................37
15.3 Additional Control Register ‘ACR’.........................................................................................................................................37
15.4 Transmitter Trigger Level ‘TTL’..............................................................................................................................................39
15.5 Receiver Interrupt. Trigger Level ‘RTL’.................................................................................................................................39
15.6 Flow Control Levels ‘FCL’ & ‘FCH’........................................................................................................................................39
15.7 Device Identification Registers..............................................................................................................................................39
15.8 Clock Select Register ‘CKS’....................................................................................................................................................40
15.9 Nine-bit Mode Register ‘NMR’.................................................................................................................................................40
15.10 Modem Disable Mask ‘MDM’..............................................................................................................................................41
15.11 Readable FCR ‘RFC’............................................................................................................................................................41
15.12 Good-data status register ‘GDS’.......................................................................................................................................41
15.13 DMA Status Register ‘DMS’................................................................................................................................................42
15.14 Port Index Register ‘PIX’.....................................................................................................................................................42
15.15 Clock Alteration Register ‘CKA’........................................................................................................................................42
16 OPERATING CONDITIONS..............................................................................................................................................................43
17 DC ELECTRICAL CHARACTERISTICS.........................................................................................................................................44
17.1 5V Operation..............................................................................................................................................................................44
17.2 3.3V Operation...........................................................................................................................................................................45
18 AC ELECTRICAL CHARACTERISTICS.........................................................................................................................................46
18.1 5V Operation..............................................................................................................................................................................46
18.2 3.3V Operation...........................................................................................................................................................................47
19 TIMING WAVEFORMS......................................................................................................................................................................48
20 PACKAGE INFORMATION...............................................................................................................................................................50
21 ORDERING INFORMATION.............................................................................................................................................................52
NOTES......................................................................................................................................................................................................53
CONTACT DETAILS................................................................................................................................................................................54
Data Sheet Revision 1.0 Page 4
OX16C954 rev B
OXFORD SEMICONDUCTOR LTD.
1 P
ERFORMANCE COMPARISON
Feature OX16C954 16C454 16C554 16C654 16C750
Integrated Serial channels 4 4 4 4 1
Good-Data status Yes No No No No
External 1x baud rate clock Yes No No No No
Max baud rate in normal mode 15 Mbps 115 kbps 115 kbps 1.5 Mbps 1 Mbps
Max baud rate in 1x clock mode 60 Mbps n/a n/a n/a n/a
FIFO depth 128 1 16 64 64
Sleep mode Yes No No Yes Yes
Auto Xon/Xoff flow Yes No No Yes No
Auto CTS#/RTS# flow Yes No No Yes Yes
Auto DSR#/DTR# flow Yes No No No No No. of Rx interrupt thresholds 128 1 4 4 4 No. of Tx interrupt thresholds 128 1 1 4 1 No. of flow control thresholds 128 n/a n/a 4 n/a
Transmitter empty interrupt Yes No No No No
Readable status of flow control Yes n/a No No No
Readable FIFO levels Yes n/a No No No
Clock prescaler options 248 n/a n/a 2 n/a
Rx/Tx disable Yes No No No No
Software reset Yes No No No No
Device ID Yes No No No No
9-bit data frames Yes No No No No
RS485 buffer enable Yes No No No No
Infra-red (IrDA) Yes No No Yes No
Table 1 OX16C954 performance compared with 16C454, 16C554, 16C654 and 16C750 devices
Improvements of the OX16C954 over previous generations of PC UARTs:
Deeper FIFOs: The OX16C954 offers 128-byte deep FIFOs for the transmitter and receiver.
Higher data rates: Transmission and reception baud rates up to 15Mbps. A flexible clock prescaler offers division ratios of 1 to 31 7/8 in steps of 1/8 using a divide-by-“M N/8” circuitry. The flexible prescaler allows users to select from a wide variety of input clock frequencies as well as access to higher baud rates whilst maintaining compatibility with existing software drivers (see section 14.2).
External clock option: The receiver can accept an external clock on the DSR# input. The transmitter can accept a 1x clock on the RI# input and/or assert its own (Nx) clock on the DTR# output. In 1x mode, asynchronous data may be transmitted and received at speeds up to 60 Mbps (see section 14.6).
Automatic flow control: The UART automatically handles either or both in-band (software) flow control (transmitting and receiving Xon/Xoff characters) and out-of-band (hardware) flow control using the RTS#/CTS# or DSR#/DTR# modem control lines.
Special character detection: The receiver can be programmed to generate an interrupt upon reception of a particular character value.
Power-down: The device can be placed in ‘sleep mode’ to conserve power
Readable FIFO levels: Driver efficiency can be improved by using readable FIFO levels.
Selectable trigger levels: The receiver FIFO threshold can be arbitrarily programmed. The transmitter FIFO threshold and
Data Sheet Revision 1.0 Page 5
OX16C954 rev B
OXFORD SEMICONDUCTOR LTD.
thresholds for automatic flow control can be programmed to operate at a variety of trigger levels.
TX/RX Disable: The transmitter and receiver can be independently disabled.
Additional status: Software drivers are able to read the status of in-band and out-of-band automatic flow control, and distinguish between XOFF and special character received interrupts.
Software reset: The software driver may reset the device to recover from unforeseen or unusual error conditions.
Transmitter empty interrupt: The transmitter can generate an interrupt when the FIFO and shift register are both empty.
RS485 buffer enable: The function of the DTR# pin may be re-assigned to buffer­enable signal for RS485 line driver in half-duplex mode (see ACR[4:3] in section 15.3).
Device ID: Four bytes of device ID are available to identify the OX16C954 device to software drivers.
Infrared ‘IrDA’ interface: The UART contains an IrDA compliant modulator and demodulator.
9-bit data framing The UART may be configured for use in 9-bit character framing for multi-drop protocols, where a tag ID (9th bit) differentiates address and data characters.
Dual Voltage Operation(TQFP)
The 80pin TQFP package option can operate with supply voltages of either 5.0v or 3.3v, thereby reducing inventory controls. The VDETECT pin will need to be set according
to the voltage environment.
Data Sheet Revision 1.0 Page 6
OX16C954 rev B
OXFORD SEMICONDUCTOR LTD.
2 B
LOCK DIAGRAM
CS0# / CS# CS1# / A[3] CS2# / A[4]
IOW# / R/W#
FIFOSEL
RESET / RESET#
RXRDY#
TXRDY#
CLKSEL
A[2:0]
D[7:0]
CS3#
I/M#
IOR#
VDD GND
XTLI
XTLO
2
4
Intel &
Motorola
Bus
Interface
Power supply
Control and DMA Interface
Clock &
Baud Rate Generator
Internal Data Bus
Internal Control Bus
SERIAL CHANNEL n ( 1 of 4 shown )
Transmitter
128 Byte
FIFO
Receiver
128 Byte
FIFO
Control
and
Status
Registers
Modem Control
Interface
Interrupt
Control
Logic
SOUTn
SINn
RTSn# DTRn# OUT1n OUT2n
CTSn# DSRn# DCDn# RIn#
INTn
INTEN#
VDETECT*
Data Sheet Revision 1.0 Page 7
5v / 3.3v
IO Buffer Control
Figure 1: OX16C954 Block Diagram
NOTE : VDETECT pin is only available on the 80pin TQFP package option
OX16C954 rev B
OXFORD SEMICONDUCTOR LTD.
IN
FIF
60
59
58
57
56
55
54
53
52
51
50
CS2# / A4
49
48
47
46
45
44
3 PIN INFORMATION
68pin PLCC
DC D0 #
OS
TS
SI
GN
RI 0#
DB
DB
DB
DB
DB
DB
N0
D
7
6
5
4
DB
3
2
1
DB 0
EL
EL
#
#
DC D3
SI
RI
#
N3
3#
DSR0# CTS0#
DTR0#
VDD
RTS0# INT0 / IRQ# CS0# / DS#
SOUT0
IOW# / R/W#
SOUT1
CS1# / A3
INT1
RTS1#
GND DTR1#
CTS1# DSR1#
9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
DC D1 #
CL
SI
RI
KS
1#
N1
EL
OX16C954-PCC60-B
I/M
A2 A1 A0
#
RE
RX
TX
SE
XT
XT LI
RD
T /
LO
Y#
RE SE T#
RD Y#
GN D
SI N2
DSR3# CTS3#
DTR3# GND RTS3# INT3 CS3#
SOUT3 IOR# SOUT2
INT2 RTS2# VDD DTR2#
CTS2# DSR2#
DC
RI
D2
2#
#
Data Sheet Revision 1.0 Page 8
OX16C954-PCC60-B (Rev B) is pin compatible with the previous part OX16C954-PCC60-A (Rev A).
OX16C954 rev B
OXFORD SEMICONDUCTOR LTD.
IOW# / R/R#
80pin TQFP
TXRDY3#
DCD3#
RI3#
SIN3
FIFOSEL#
INTSEL#
DB0 DB1 DB2
NC DB3 DB4 DB5 DB6 DB7
GND SIN0
RI0#
DCD0#
RXRDY0#
RXRDY3#
DSR3#
CTS3#
DTR3#
GND
Z_RTS3
767779 78 717275 74 73 70 666769 68 616265 64 6380
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 252422 23 302926 27 28 31 353432 33 403936 37 38
SOUT3
CS3#
INT3
OX16C954_TQC60_B
NC
IOR#
SOUT2
CS2# / A4
INT2
RTS2#
VDD
DTR2#
CTS2#
TXRDY2#
DSR2#
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
RXRDY2# DCD2# RI2# SIN2 GND TXRDY# RXRDY# RESET/RESET# VDETECT XTLO XTLI I/M# A0 A1 A2 CLKSEL SIN1 RI1# DCD1# TXRDY1#
Data Sheet Revision 1.0 Page 9
DSR0#
TXRDY0#
CTS0#
DTR0#
VDD
RTS0#
SOUT0
CS0# / DS#
INT0 / IRQ#
NC
SOUT1
CS1# / A3
INT1
GND
RTS1#
CTS1#
DTR1#
DSR1#
RXRDY1#
OX16C954 rev B
OXFORD SEMICONDUCTOR LTD.
4 PIN DESCRIPTIONS
Please refer to Section 3 for actual Signal Name to Pin Number assignments, for the selected package.
TQFP PLCC Dir1 Name Description Clock
50 35 I XTLI Crystal oscillator input or external clock pin, for the UART channels.
Crystal oscillator frequency maximum 60MHz
51 36 O XTLO Crystal oscillator output.
Not used when an alternative TTL level clock is applied to XTLI and can be left unconnected
45 30 I CLKSEL This pin is provided to select an internal clock prescaler on power up. In
16C554 devices this pin is a VDD. When CLKSEL pin is high the internal prescaler is bypassed (a 1.8432MHz clock is assumed). Connect this pin to GND to enable the internal clock prescaler. The complement of this pin is loaded in bit 7 of the MCR register after a hardware reset.
This pin can also be used as an alternative external clock pin under software control (replacing XTLI and thus reducing noise/power due to XTLO) for embedded applications.
Processor Interface Pins in Intel Mode (I/M# = ‘1’)
53 37 I
73 68 33 28
46 to 48 32 to 34 I A[2:0] Address lines to select the Uart (channel) registers. 15 to 11
9 to 7 31 18 I IOW# Active-low write strobe in Intel bus mode. 70 52 I IOR# Active-low read strobe in Intel bus mode.
Processor Interface Pins in Motorola Mode (I/M# = ‘0’)
53 37 I RESET# Active-low Hardware Reset. The configuration of OX16C954 after a
28 16 I DS# Active-low Data-Strobe.
70 73 68 33
46 to 48 32 to 34 I A[2:0] Address lines to select the UART (channel) registers.
54 50 20 16
5 to 1 68 to 66
52 54 50 20
RESET Active-high Hardware Reset. The configuration of OX16C954 after a
I
CS[3]#
I
CS[2]#
I
CS[1]#
I
CS[0]#
I/O DB[7:0] Eight-bit 3-state data bus.
I
UNUSED In Motorola bus mode these pins are unused and must be connected to I I
A4 I
A3
hardware reset is described in section 7.1. This pin exhibits a small hysteresis to provide noise immunity. This pin must be tied inactive when not in use. Active-low Chip-Selects for each Uart channel, in Intel bus mode. CS3# - Chip select for Uart 3 CS2# - Chip select for Uart 2 CS1# - Chip select for Uart 1 CS0# - Chip select for Uart 0
hardware reset is described in section 7.1. This pin exhibits a small hysteresis to provide noise immunity. This pin must be tied inactive when not in use.
(In Motorola bus mode, individual registers are accessed using DS#, R/W# and A[4:0])
VDD or GND. The A[4:3] combination selects individual channels as follows:
00 = UART 0 selected 01 = UART 1 selected 10 = UART 2 selected 11 = UART 3 selected
Data Sheet Revision 1.0 Page 10
OX16C954 rev B
OXFORD SEMICONDUCTOR LTD.
TQFP PLCC Dir1 Name Description Processor Interface Pins in Motorola Mode (I/M# = ‘0’) Contd.
15 to 11 9 to 7 31 18 I R/W# Read-not-write signal. This signal should be high during read cycles and
Serial Port Pins 72 69 32 29
72 69 32 29 75 66 35 26
77 64 37 24
77 64 37 24
77 64 37 24 4 57 44 17
4 57 44 17 78 63 38 23
5 to 1 68 to 66
53 51 19 17
53 51 19 17 56 48 22 14
58 46 24 12
58 46 24 12
58 46 24 12 63 41 29 7
63 41 29 7 59 45 25 11
I/O DB[7:0] Eight-bit 3-state data bus.
O O O O
O O O O O O O O
O O O O
O O O O
O O O O I I I I
I I I I I I I I
SOUT[3]
SOUT[2]
SOUT[1]
SOUT[0]
IrDA_Out[3]
IrDA_Out[2]
IrDA_Out[1]
IrDA_Out[0]
RTS[3]#
RTS[2]#
RTS[1]#
RTS[0]#
DTR[3]#
DTR[2]#
DTR[1]#
DTR[0]#
485_En[3]
485_En[2]
485_En[1]
485_En[0]
TxClkOut[3]
TxClkOut[2]
TxClkOut[1]
TxClkOut[0]
SIN[3]
SIN[2]
SIN[1]
SIN[0]
IrDA_In[0:3]
IrDA_In[0:3]
IrDA_In[0:3]
IrDA_In[0:3]
CTS[3]#
CTS[2]#
CTS[1]#
CTS[0]#
low during write cycles.
Serial data output, Uart 3 Serial data output, Uart 2 Serial data output, Uart 1 Serial data output, Uart 0
UART IrDA data outputs, each Uart, respectively. Serial data output pins are redefined as IrDA data outputs when MCR[6] of the corresponding UART channel is set in enhanced mode
Active-low Request-To-Send output, for each uart respectively. Whenever the automated RTS# flow control is enabled for the corresponding channel, the RTS# pin is de-asserted and re-asserted if the receiver FIFO reaches or falls below a pair of programmed flow control thresholds, respectively. The state is controlled by bit 1 of the MCR.
RTS may also be used as a general-purpose output.
Active-low modem “data-terminal-ready output”, for each uart respectively. If automated DTR# flow control is enabled for the corresponding UART channel, the DTR# pin is asserted and deasserted if the receiver FIFO reaches or falls below the channel’s programmed thresholds, respectively. The state is set by bit 0 of the MCR. DTR may also be used as a general purpose output.
In RS485 half-duplex mode, the DTR# pin of each UART channel may be programmed to reflect the state of the channel’s transmitter empty bit (or its inverse) to automatically control the direction of the RS485 transceiver buffer (see register ACR[4:3])
Transmitter 1x (or baud rate generator output) clock. For isochronous applications, the 1x (or Nx) transmitter clock may be asserted on the uart’s DTR# pin (see CKS[5:4]). Serial data input, UART 3. Serial data input, UART 2. Serial data input, UART 1. Serial data input, UART 0.
UART IrDA data inputs, for each uart respectively. Serial data input pins redefined as IrDA data inputs when MCR[6] of the corresponding UART channel is set in enhanced mode
Active-low modem “clear-to-send” input, for each uart respectively. If automated CTS# flow control is enabled for the corresponding UART channel, upon deassertion of the CTS# pin, the channel’s transmitter will complete the current character and enter the idle mode until the CTS# pin is reasserted. Note: flow control characters are transmitted regardless of the state of the CTS# pin. The state of this pin is reflected in bit 4 of the MSR.
It can also be used as a general-purpose input.
Data Sheet Revision 1.0 Page 11
OX16C954 rev B
OXFORD SEMICONDUCTOR LTD.
TQFP PLCC Dir1 Name Description Serial Port Pins Contd.
79 62 39 22
79 62 39 22
2 59 42 19
3 58 43 18
3 58 43 18
Interrupt & DMA Pins 1 61 41 21
55
80 60 40 20
54 38 O RXRDY# Signal for DMA transfer of received data.
60 44 26 10
60 44 26 10
61 43 27 9
62 42 28 8
62 42 28 8
No pin No pin No pin No pin
39
No pin No pin No pin No pin
I I I I
I I I I
I I I I
I I I I
I I I I
O O O O
O TXRDY# Signal for the DMA transfer of transmitter data.
O O O O
DSR[3]#
DSR[2]#
DSR[1]#
DSR[0]#
RxClkIn[3]
RxClkIn[2]
RxClkIn[1]
RxClkIn[0]
DCD[3]#
DCD[2]#
DCD[1]#
DCD[0]#
RI[3]#
RI[2]#
RI[1]#
RI[0]#
Ext_CK[3]
Ext_CK[2]
Ext_CK[1]
Ext_CK[0]
TXRDY3#
TXRDY2#
TXRDY1#
TXRDY0#
RXRDY3#
RXRDY2#
RXRDY1#
RXRDY0#
Active-low modem “data-set-ready” input, for each uart respectively. If automated DSR# flow control is enabled for the corresponding UART channel, upon deassertion of the channel’s DSR# pin, the transmitter will complete the current character and enter the idle mode until the DSR# pin is reasserted. Note: flow control characters are transmitted regardless of the state of the DSR# pin. The state of this pin is reflected in bit 5 of the MSR. It can also be used as a general-purpose input.
External receiver clock for isochronous applications for each uart respectively. Selected when CKS[1:0] = ‘01’.
Active-low modem Data-Carrier-Detect input, for each uart respectively. The state of this pin is reflected in bit 7 of the MSR. It can also be used as a general-purpose input.
Active-low modem Ring-Indicator input, for each uart respectively. The state of this pin is reflected in bit 6 of the MSR. It can also be used as a general-purpose input. RI can be configured as tx and rx for a 1x clock in isochronous operation.
External transmitter clock for each uart respectively. This clock can be used by the transmitter (and by the receiver indirectly) when CKS[6] = ‘1’.
Signal for the DMA transfer of transmitter data, for Uart 3. Signal for the DMA transfer of transmitter data, for Uart 2. Signal for the DMA transfer of transmitter data, for Uart 1. Signal for the DMA transfer of transmitter data, for Uart 0.
There are two modes of DMA signalling described in section 8.1
This pin is the wire ”OR-ed” function of the TXRDY# signals of all channels.
Signal for the DMA transfer of receiver data, for Uart 3. Signal for the DMA transfer of receiver data, for Uart 2. Signal for the DMA transfer of receiver data, for Uart 1. Signal for the DMA transfer of receiver data, for Uart 0.
There are two modes of DMA signalling described in section 8.1
This pin is the wire ”OR-ed” function of the RXRDY# signals of all channels.
Data Sheet Revision 1.0 Page 12
OX16C954 rev B
OXFORD SEMICONDUCTOR LTD.
TQFP PLCC Dir1 Name Description Interrupt & DMA Pins Contd.
74 67 34
27
27
Miscellaneous Pins 6 65 ID INTSEL# Active-low Interrupt enable.
49 31
5 64 I FIFOSEL# FIFO SIZE select.
52 No pin ID VDETECT 3.3v or 5.0v I/O buffer selection.
55 49 21
15
15
O O O
O
OD
IU I/M# Intel or Motorola bus interface select.
INT[3]
INT[2]
INT[1]
INT0
IRQ#
Interrupt pin for Uart channel 3 (Intel Bus mode) Interrupt pin for Uart channel 2 (Intel Bus mode) Interrupt pin for Uart channel 1 (Intel Bus mode)
Each of these serial channels have a 3-state interrupt output (enabled by MCR[3] and INTSEL# pin) which goes active (high) when an interrupt condition occurs. The interrupt is disabled after a hardware reset. Interrupt pin for Uart channel 0, in Intel bus mode. This serial channel has a 3-state interrupt output (enabled by MCR[3] and INTSEL# pin) which goes active (high) when an interrupt condition occurs. The interrupt is disabled after a hardware reset.
Device interrupt pin (for all uart channels) in Motorola bus mode. This pin goes active (low) when the interrupt signal from any of the 4 channels is asserted. Otherwise it is in the high-impedance state.
When this pin is left open or connected to GND, the three-state interrupts that are available on INT[3:0] are enabled according to the setting of MCR[3]. If this pin is high interrupts are enabled regardless of the state of MCR[3].
This pin is ignored in Motorola bus mode.
When this pin is tied high or left open, the Intel bus interface is selected. When this pin is tied low, the Motorola bus interface is selected where RESET, IOW#, CS0#, CS1# are CS2# are re-assigned and CS3#, IOR# and INTSEL# are unused. In Motorola mode, all the interrupt lines of the internal uart channels are wired “OR-ed” onto the IRQ# pin. In 16C554 this pin is unconnected.
For backward compatibility with 16C554, 16C654 and 16C754 devices the FIFO depth is 16 when FIFOSEL# is high and 128 when FIFOSEL# is low. The unlatched state of this pin is readable by software. The FIFO size may be set to 128 by writing a 1 in FCR[5] when LCR[7] is set or by putting the device into Enhanced mode, thus overriding the state of the FIFOSEL# pin. Pin 64 is a VDD in 16C554 and 16C654 devices (PLCC).
This pin must be tied according to the voltage supply used to power the TQFP package option. For 5v supply voltage : Vdetect must be tied low. For 3.3v supply voltage : Vdetect must be tied high.
NOTE : The PLCC package option does not bond-out this pin, which is internally pulled down to gnd. So the PLCC is suitable for 5v operation only.
Data Sheet Revision 1.0 Page 13
OX16C954 rev B
OXFORD SEMICONDUCTOR LTD.
TQFP PLCC Dir1 Name Description Power, Ground, No Connects
16, 36, 56, 76
6, 23, 40, 57
GND Ground pin.
All GND pins must be tied to ground.
25, 65 13, 47 VDD Power pin.
PLCC : All VDD pins must be tied to 5 Volts. TQFP : All VDD pins must be tied to 5v or 3.3v. (Note that the VDETECT
pin must be set according to the selected voltage environment). 10, 30, 71
-
NC No Connects
These pins are not connected to any pads within the device, and can be
left open.
Table 2: Pin Descriptions
Direction key:
I, Input IU Input with pull-up ID Input with pull-down O Output I/O Bi-directional OD Open drain
Note: All unused signal input pins should be tied to VDD or GND as applicable and must not be left floating. For high speed operation (XTAL >
10MHz), card designers are recommended to follow the guidelines for high-speed digital design such as maintaining PCB tracks as short as possible, using a multi-layer PCB with separate power and ground planes, and using good-quality de-coupling capacitors.
Attention should be given to high frequency decoupling of power and ground pins due to the high frequency internal switching that occurs
under normal operation
Data Sheet Revision 1.0 Page 14
OX16C954 rev B
OXFORD SEMICONDUCTOR LTD.
Additional address
4.1 Further Pin Information
Pin Description Action when used Action when not used
I/M# Intel / Motorola Mode Tie high for Intel™ style bus mode Leave unconnected (Internal pull-up) CS0#-CS3# Chip selects Connect direct to active low channel select
I/M# Intel / Motorola Mode Tie low for Motorola ™ style bus mode n/a DS# (CS0#) Data Strobe Connect direct to data strobe generator logic n/a
A3-4 (CS1-2#) IRQ# (INT0) Global interrupt Interrupt for all channels. Connect to an CS3# Unused n/a Tie high
INT1-3 Unused n/a Leave unconnected
INTSEL
RXRDY# DMA Control signal TXRDY# DMA Control signal
SOUT Serial data output Connect to a suitable line driver SIN Serial data input Connect to a suitable line receiver RTS# Request- To-Send CTS# Clear-To-Send DTR# Data-Terminal-Ready DSR# Data-Set-Ready DCD# Data-Carrier-Detect RI# Ring-Indicator INT Interrupt Output Connect to an available processor interrupt
Intel ™ Mode Bus Interface Pins
n/a
signals for UART channels 0-3 respectively
Motorola™ Mode Bus Interface Pins
Must be tied low for Motorola mode
lines
Connect direct to channel selection logic A[4:3] = 00 = ch. 1, 01 = ch. 2 etc.
n/a
Leave unconnected
available processor interrupt line
(Interrupts can not be used)
Control Pins
Interrupt Control Mode (used in Intel mode only)
Tie high to keep the interrupt pins permanently enabled.
Tie low or leave unconnected to allow software enable/disable of the interrupt pin.
DMA Pins
Connect direct to DMA control circuitry Leave unconnected
output
Connect direct to DMA control circuitry Leave unconnected
output
Common Channel Pins
Leave unconnected (Serial data can not be transmitted) Leave unconnected
Connect to a suitable line driver
Modem signal output Modem signal input
Connect to a suitable line receiver Connect to a suitable line driver
Modem signal output Modem signal input
Connect to a suitable line receiver Connect to a suitable line receiver
Modem signal input
Connect to a suitable line receiver
Modem signal input
(Serial data can not be received) Leave unconnected
Tie high Leave unconnected Tie high Tie high Tie high Leave unconnected
line
(Interrupts can not be used)
Data Sheet Revision 1.0 Page 15
OX16C954 rev B
OXFORD SEMICONDUCTOR LTD.
5 MODE SELECTION
The OX16C954 device is a four-channel device backward compatible with the 16C454, 16C554, 16C654 and 16C750 UARTs. Each of the four channels are identical and independent in terms of functionality, with the exception of some shared pins (for example, CLKSEL, FIFOSEL#, CLK and RESET). The remainder of this document therefore discusses the operation of a single channel only.
The operation of each Uart Channel depends on a number of mode settings, which are referred to throughout this section. The modes, conditions and corresponding FIFO depth are tabulated below:
UART Mode FIFO
size
450 1 0 X X X 550 16 1 0 0 1
Extended 550 128 1 0 X 0
650 128 1 1 X X 750 128 1 0 1 1
9501 128 1 1 X X
Note 1: 950 mode configuration is identical to 650 configuration
5.1 450 Mode
After a hardware reset, bit 0 of the FIFO Control Register (‘FCR’) is cleared, hence the UART is compatible with the 16C450. The transmitter and receiver FIFOs (referred to as the ‘Transmit Holding Register’ and ‘Receiver Holding Register’ respectively) have a depth of one. This is referred to as ‘Byte mode’. When FCR[0] is cleared, all other mode selection parameters are ignored.
5.2 550 Mode
Connect FIFOSEL# to VDD. After a hardware reset, writing a 1 to FCR[0] will increase the FIFO size to 16, providing compatibility with 16C550 devices. Since this pin is VDD in 16C554 devices, replacing a 16C554 with OX16C954 would result in a 550 compatible device with 16 byte deep FIFOs.
5.3 Extended 550 Mode
Connect FIFOSEL# to GND. Writing a 1 to FCR[0] will now increase the FIFO size to 128, thus providing a 550 device with 128 deep FIFOs.
5.4 750 Mode
Writing a 1 to FCR[0] will increase the FIFO size to 16. In a similar fashion to 16C750, the FIFO size can be further increased to 128 by writing a 1 to FCR[5]. Note that access to FCR[5] is protected by LCR[7]. i.e., to set FCR[5],
FCR[0] Enhanced mode
(EFR[4]=1)
Table 3: UART Mode Configuration
software should first set LCR[7] to temporarily remove the guard. Once FCR[5] is set, the software should clear LCR[7] for normal operation.
The 16C750 additional features are available as long as the UART is not put into Enhanced mode; i.e. ensure EFR[4] = ‘0’. These features are:
Deeper FIFOs
Automatic RTS/CTS out-of-band flow control
Sleep mode
5.5 650 Mode
The OX16C954 UART is compatible with the 16C650 when EFR[4] is set, i.e. the device is in Enhanced mode. As 650 software drivers usually put the device in Enhanced mode, running 650 drivers on the one of the UART channels will result in 650 compatibility with 128 deep FIFOs, as long as FCR[0] is set. Note that the 650 emulation mode of the OX16C954 provides 128-deep FIFOs whereas the standard 16C650 has only 32 byte FIFOs.
650 mode has the same enhancements as the 16C750 over the 16C550, but these are enabled using different registers.
There are also additional enhancements over those of the 16C750 in this mode. These are -
1. Automatic in-band flow control
2. Special character detection
FCR[5]
(guarded with LCR[7] = 1)
FIFOSEL#
Pin
Data Sheet Revision 1.0 Page 16
OX16C954 rev B
OXFORD SEMICONDUCTOR LTD.
3. Infra-red “IrDA-format” transmit and receive mode
4. Transmit trigger levels
5. Optional clock prescaler
5.6 950 Mode
The additional features offered in 950 mode generally only apply when the UART is in Enhanced mode (EFR[4]=’1’). Provided FCR[0] is set, in Enhanced mode the FIFO size is 128 regardless of the state of FIFOSEL#.
Note that 950 mode configuration is identical to that of 650 mode, however additional 950 specific features are enabled using the Additional Control Register ‘ACR’ (see section 15.3). In addition to larger FIFOs and higher baud rates, the enhancements of the 950 mode over 650 emulation mode are:
Selectable arbitrary trigger levels for the receiver and
transmitter FIFO interrupts
Improved automatic flow control using selectable arbitrary thresholds
DSR#/DTR# automatic flow control
Transmitter and receiver can be optionally disabled
Software reset of device
Readable FIFO fill levels
Optional generation of an RS-485 buffer enable signal
Four-byte device identification (0x16C95404)
Readable status for automatic in-band and out-of-
band flow control
External 1x clock modes (see section14.4)
Flexible “M+N/8” clock prescaler (see section 14.2)
Programmable sample clock to allow data rates up to
15 Mbps (see section 14.3).
9-bit data mode
The 950 trigger levels are enabled when ACR[5] is set (bits 4 to 7 of FCR are ignored). Then arbitrary trigger levels can be defined in RTL, TTL, FCL and FCH registers (see
section 15). The Additional Status Register (‘ASR’) offers flow control status for the local and remote transmitters. FIFO levels are readable using RFL and TFL registers.
The UART has a flexible prescaler capable of dividing the system clock by any value between 1 and 31.875 in steps of 0.125. It divides the system clock by an arbitrary value in “M+N/8” format, where M and N are 5- and 3-bit binary numbers programmed in CPR[7:3] and CPR[2:0] respectively. This arrangement offers a great deal of flexibility when choosing an input clock frequency to synthesise arbitrary baud rates. The default division value is 4 to provide backward compatibility with 16C650 devices.
The user may apply an external 1x (or Nx) clock for the transmitter and receiver to the RI# and DSR# pin respectively. The transmitter clock may instead be asserted on the DTR# pin. The external clock options are selected through the CKS register (offset 0x02 of ICR).
It is also possible to define the over-sampling rate used by the transmitter and receiver clocks. The 16C450/16C550 and compatible devices employ 16 times over-sampling, where there are 16 clock cycles per bit. However the 950 UART can employ any over-sampling rate from 4 to 16 by programming the TCR register. This allows the data rates to be increased to 460.8 Kbps using a 1.8432MHz clock, or 15 Mbps using a 60 MHz clock. The default value after a reset for this register is 0x00, which corresponds to a 16 cycle sampling clock. Writing 0x01, 0x02 or 0x03 will also result in a 16 cycle sampling clock. To program the value to any value from 4 to 15 it is necessary to write this value into the TCR i.e. to set the device to a 13 cycle sampling clock it would be necessary to write 0x0D to TCR. For further information see section 14.3.
The UART also offers 9-bit data frames for multi-drop industrial applications.
Data Sheet Revision 1.0 Page 17
Loading...
+ 37 hidden pages