OXFORD OX16C950-TQC60-B, OX16C950-PCC60-B Datasheet

F
EATURES
OX16C950 rev B
High Performance UART
with 128 byte FIFOs
128-byte deep transmitter / receiver FIFO
Fully software compatible with industry standard 16C550 type UARTs
Pin compatible with TL16C550B/C, ST16C650 and TL16C750
IBM PC/AT compatible
Baud rates up to 15 Mbps in normal mode and 60Mbps in external 1x clock mode
Readable FIFO levels
Flexible clock prescaler from 1 to 31.875
Isochronous mode using external 1x baud rate clock up to 60Mbps
9-bit data framing as well as 5,6,7 and 8
Detection of bad data in the receiver FIFO
Automated in-band flow control using programmable
Xon/Xoff characters
Transmitter and receiver can be disabled
R
EV
B E
NHANCEMENTS
Automated out-of-band flow control using CTS# / RTS# and DSR# / DTR#
Readable in-band and out-of-band flow control status
Programmable special character detection
Arbitrary trigger levels for receiver and transmitter FIFO
interrupts and automatic in-band and out-of-band flow control
Transmitter idle interrupt (shift register and FIFO both
empty)
Optional Infra-red (IrDA) receiver and transmitter
operation
RS-485 buffer enable signals
Software channel reset
Four byte device ID
Sleep mode (low operating current)
System clock up to 60 MHz (at 5V), 50 MHz at 3.3V
44 PLCC and 48 TQFP packages
5 volts operation (PLCC), 3.3/ 5V operation TQFP
The OX16C950B is an enhanced, fully backward-compatible revision of the OX16C950 rev A. The chief enhancements are as follows –
All known errata fixed
Enhanced features first offered in OX16PCI954 added – these include controls for sleep-mode sensitivity, ability to read FCR and Good Data Status
3V operation possible with 48 pin TQFP
Enhanced isochronous clocking options (optional inversions)
Enhanced system clock selection options (use of CLKSEL as a clock input)
Readable TxRdy, RxRdy status and forcing TxRdy or RxRdy inactive
Hereafter OX16C950 rev B is simply referred to as OX16C950.
Oxford Semiconductor Ltd. 25 Milton Park, Abingdon, Oxon, OX14 4SH, UK OX16C950 rev B Datasheet R1.2 – May 2001 Tel: +44 (0)1235 824900 Fax: +44 (0)1235 821141 Part No. OX16C950-PCC60-B
Oxford Semiconductor 2001
ESCRIPTION
D
The OX16C950 is a single-channel ultra-high performance UART offering data rates up to 15Mbps and 128-deep transmitter and receiver FIFOs. Deep FIFOs reduce CPU overhead and allow utilisation of higher data rates.
It is software compatible with the widely used industry­standard 16C550 type devices and compatibles, as well as other OX16C95x family devices. It is pin-compatible with the TL16C550, ST16C650 devices.
In addition to increased performance and FIFO size, the OX16C950 also provides enhanced features including improved flow control. Automated software flow control using Xon/Xoff and automated hardware flow control using CTS#/RTS# and DSR#/DTR# prevent FIFO over-run. Flow control and interrupt thresholds are fully programmable and readable, enabling programmers to fine-tune the
performance of their system. FIFO levels are readable to facilitate fast driver applications.
The addition of software reset enables recovery from unforeseen error condition allowing drivers to restart gracefully. The OX16C950 supports 9-bit data frames used in multi-drop industrial protocols. It also offers multiple external clock options for isochronous applications, e.g. ISDN, xDSL.
The OX16C950 is ideally suited to PC applications, such as high-speed COM port add-in cards which enable PC users to take advantage of the maximum performance of analogue modems or ISDN terminal adapters. It is also suitable for any equipment requiring high speed RS232/RS422/RS485 interfaces. Fabricated in 0.6µm process, OX16C950 also has a low operating current and sleep mode for battery powered applications.
Oxford Semiconductor Ltd. 25 Milton Park, Abingdon, Oxon, OX14 4SH, UK OX16C950 rev B Datasheet R1.2 – May 2001 Tel: +44 (0)1235 824900 Fax: +44 (0)1235 821141 Part No. OX16C950-PCC60-B
Oxford Semiconductor 2001
OXFORD SEMICONDUCTOR LTD.
ONTENTS
C
OX16C950 rev B
FEATURES....................................................................................................................................................................................... 1
REV B ENHANCEMENTS................................................................................................................................................................ 1
DESCRIPTION ................................................................................................................................................................................. 2
CONTENTS ...................................................................................................................................................................................... 3
1 PERFORMANCE COMPARISON .............................................................................................................................................. 5
2 BLOCK DIAGRAM ..................................................................................................................................................................... 6
3 PIN INFORMATION.................................................................................................................................................................... 7
4 PIN DESCRIPTIONS .................................................................................................................................................................. 8
4.1 F
5 MODE SELECTION.................................................................................................................................................................. 13
5.1 450 M
5.2 550 MODE........................................................................................................................................................................... 13
5.3 E
5.4 750 M
5.5 650 M
5.6 950 M
6 REGISTER DESCRIPTION TABLES....................................................................................................................................... 15
7 RESET CONFIGURATION....................................................................................................................................................... 19
7.1 H
7.2 S
8 TRANSMITTER & RECEIVER FIFOS...................................................................................................................................... 20
8.1 FIFO C
9 LINE CONTROL & STATUS .................................................................................................................................................... 21
9.1 F
9.2 LINE CONTROL REGISTER ‘LCR’........................................................................................................................................... 21
9.3 L
10 INTERRUPTS & SLEEP MODE............................................................................................................................................... 23
10.1 INTERRUPT ENABLE REGISTER ‘IER’ ..................................................................................................................................... 23
10.2 I
10.3 I
10.4 S
11 MODEM INTERFACE............................................................................................................................................................... 25
11.1 M
11.2 MODEM STATUS REGISTER ‘MSR’........................................................................................................................................ 26
12 OTHER STANDARD REGISTERS .......................................................................................................................................... 27
12.1 DIVISOR LATCH REGISTERS ‘DLL & DLM’............................................................................................................................. 27
12.2 S
13 AUTOMATIC FLOW CONTROL .............................................................................................................................................. 28
13.1 ENHANCED FEATURES REGISTER ‘EFR’................................................................................................................................ 28
13.2 S
13.3 A
13.4 A
14 BAUD RATE GENERATION.................................................................................................................................................... 30
14.1 G
14.2 CLOCK PRESCALER REGISTER ‘CPR’.................................................................................................................................... 31
14.3 T
14.4 I
14.5 TTL C
URTHER PIN INFORMATION
ODE
........................................................................................................................................................................... 13
XTENDED
ODE ODE ODE
ARDWARE RESET
OFTWARE RESET
ONTROL REGISTER
ALSE START BIT DETECTION
INE STATUS REGISTER
NTERRUPT STATUS REGISTER NTERRUPT DESCRIPTION
LEEP MODE
ODEM CONTROL REGISTER
CRATCH PAD REGISTER
PECIAL CHARACTER DETECTION UTOMATIC IN-BAND FLOW CONTROL UTOMATIC OUT-OF-BAND FLOW CONTROL
ENERAL OPERATION
IMES CLOCK REGISTER
NPUT CLOCK OPTIONS
LOCK MODULE
ODE
550 M
........................................................................................................................................................................... 13
........................................................................................................................................................................... 13
........................................................................................................................................................................... 14
............................................................................................................................................................... 19
............................................................................................................................................................... 19
....................................................................................................................................................................... 25
................................................................................................................................................. 11
.......................................................................................................................................................... 13
‘FCR’ ......................................................................................................................................... 20
............................................................................................................................................... 21
‘LSR’.............................................................................................................................................. 22
‘ISR’ ..................................................................................................................................... 24
..................................................................................................................................................... 24
‘MCR’ ..................................................................................................................................... 25
‘SPR’ ........................................................................................................................................... 27
......................................................................................................................................... 29
................................................................................................................................... 29
........................................................................................................................... 29
.......................................................................................................................................................... 30
‘TCR’............................................................................................................................................. 31
........................................................................................................................................................ 33
........................................................................................................................................................... 33
Data Sheet Revision 1.2 Page 3
OXFORD SEMICONDUCTOR LTD.
OX16C950 rev B
14.6 E
14.7 C
15 ADDITIONAL FEATURES ....................................................................................................................................................... 34
15.1 A
15.2 FIFO F
15.3 A
15.4 TRANSMITTER TRIGGER LEVEL ‘TTL’..................................................................................................................................... 36
15.5 R
15.6 F
15.7 D
15.8 CLOCK SELECT REGISTER ‘CKS’ .......................................................................................................................................... 37
15.9 N
15.10 M
15.11 R
15.12 G
15.13 DMA S
15.14 P
15.15 C
16 OPERATING CONDITIONS ..................................................................................................................................................... 40
17 DC ELECTRICAL CHARACTERISTICS.................................................................................................................................. 40
17.1 5V O
17.2 3V O
18 AC ELECTRICAL CHARACTERISTICS.................................................................................................................................. 42
18.1 5V O
18.2 3V O
19 TIMING WAVEFORMS............................................................................................................................................................. 44
20 PACKAGE INFORMATION...................................................................................................................................................... 46
21 ORDERING INFORMATION .................................................................................................................................................... 47
NOTES............................................................................................................................................................................................ 48
CONTACT DETAILS...................................................................................................................................................................... 49
XTERNAL 1X CLOCK MODE
RYSTAL OSCILLATOR CIRCUIT
DDITIONAL STATUS REGISTER
ILL LEVELS
DDITIONAL CONTROL REGISTER
ECEIVER INTERRUPT
LOW CONTROL LEVELS
EVICE IDENTIFICATION REGISTERS
INE-BIT MODE REGISTER
ODEM DISABLE MASK EADABLE OOD-DATA STATUS REGISTER
ORT INDEX REGISTER LOCK ALTERATION REGISTER
PERATION PERATION
PERATION PERATION
‘TFL & RFL’............................................................................................................................................ 34
FCR ‘RFC’ .................................................................................................................................................... 38
TATUS REGISTER
.................................................................................................................................................................... 40
.................................................................................................................................................................... 41
.................................................................................................................................................................... 42
.................................................................................................................................................................... 43
................................................................................................................................................. 33
............................................................................................................................................ 33
‘ASR’................................................................................................................................... 34
‘ACR’................................................................................................................................ 34
RIGGER LEVEL
. T
‘FCL & FCH’.................................................................................................................................. 36
‘NMR’ ......................................................................................................................................... 37
‘MDM’......................................................................................................................................... 38
‘DMS’ ....................................................................................................................................... 39
‘PIX’............................................................................................................................................ 39
‘RTL’ ....................................................................................................................... 36
...................................................................................................................................... 36
‘GDS’ .............................................................................................................................. 39
‘CKA’............................................................................................................................... 39
Data Sheet Revision 1.2 Page 4
OXFORD SEMICONDUCTOR LTD.
ERFORMANCE COMPARISON
P
1
Feature OX16C950 16C450 16C550 16C650 16C750
External 1x baud rate clock Yes No No No No
Max baud rate in normal mode 15 Mbps 115 kbps 115 kbps 1.5 Mbps 1 Mbps
Max baud rate in 1x clock mode 60 Mbps n/a n/a n/a n/a
FIFO depth 128 1 16 32 64
Sleep mode Yes No No Yes Yes
Auto Xon/Xoff flow Yes No No Yes No Auto CTS#/RTS# flow Yes No No Yes Yes Auto DSR#/DTR# flow Yes No No No No
No. of Rx interrupt thresholds 127 1 4 4 4 No. of Tx interrupt thresholds 128 1 1 4 1 No. of flow control thresholds 128 n/a n/a 4 n/a
Transmitter empty interrupt Yes No No No No
Readable status of flow control Yes n/a No No No
Readable FIFO levels Yes n/a No No No
Clock prescaler options 248 n/a n/a 2 n/a
Rx/Tx disable Yes No No No No
Software reset Yes No No No No
Device ID Yes No No No No
9-bit data frames Yes No No No No
RS485 buffer enable Yes No No No No
Infra-red (IrDA) Yes No No Yes No
OX16C950 rev B
Table 1 OX16C950 performance compared with 16C450, 16C550, 16C650 and 16C750 devices
Improvements of the OX16C950 over previous generations of PC UART:
Deeper FIFOs: OX16C950 offers 128-byte deep FIFOs for the transmitter and receiver.
Higher data rates: Transmission and reception baud rates up to 15Mbps. A flexible clock prescaler offers division ratios of 1 to 31 7/8 in steps of 1/8 using a divide-by-“M N/8” circuitry. The flexible prescaler allows users to select from a wide variety of input clock frequencies as well as access to higher baud rates whilst maintaining compatibility with existing software drivers (see section 14.2).
External clock options: The receiver can accept an external 1x clock on the DSR# input. The transmitter can accept a 1x clock on the RI# input and/or assert its own (Nx) clock on the DTR# output. In 1x mode, asynchronous data may be transmitted and received at speeds up to 60Mbps (see section 14.6).
Automatic flow control: The UART automatically handles either or both in-band (software) flow control (transmitting and receiving Xon/Xoff characters) and out-of-band (hardware) flow control using the RTS#/CTS# or DSR#/DTR# modem control lines.
Special character detection: The receiver can be programmed to generate an interrupt upon reception of a particular character value.
Power-down: The device can be placed in ‘sleep mode’ to conserve power.
Readable FIFO levels: Driver efficiency can be improved by using readable FIFO levels.
Selectable trigger levels: The receiver FIFO threshold can be arbitrarily programmed. The transmitter FIFO threshold and thresholds for automatic flow control can be programmed to operate at a variety of trigger levels.
Additional control: The transmitter and receiver can be independently disabled.
Data Sheet Revision 1.2 Page 5
OXFORD SEMICONDUCTOR LTD.
OX16C950 rev B
Additional status: Software drivers are able to read the status of in-band and out-of-band automatic flow control, and distinguish between Xoff and special character received interrupts.
Software reset: The software driver may reset the device to recover from unforeseen or unusual error conditions.
Transmitter empty interrupt: The transmitter can generate an interrupt when the FIFO and shift register are both empty.
RS485 buffer enable: The DTR# pin may be re-assigned as a buffer-enable signal for RS485 line driver in half-duplex mode (see ACR[4:3] in section 15.3).
LOCK DIAGRAM
B
2
A[2:0]
D[7:0]
CS0
CS1
CS2#
IOR
IOR#
IOW
IOW#
ADS#
FIFOSEL
RESET
RXRDY#
TXRDY#
DDIS
XTLI
XTLO
CLKSEL
BDOUT#
RCLK
Bus
Interface
Control and DMA Interface
Clock & Baud Rate Generator
Internal Data Bus
Internal Control Bus
Figure 1: OX16C950 Block Diagram
Device ID:
Four bytes of device ID are available to identify the OX16C950 device to software drivers.
Infra-red ‘IrDA’ interface: The UART contains an IrDA compliant modulator and demodulator.
9-bit data framing: The OX16C950 may be configured to use in 9-bit character framing for multi-drop protocols where a tag ID (9 differentiates address and data characters.
Control
and
Status
Registers
Transmitter
128 Byte
FIFO
Receiver
128 Byte
FIFO
Power supply
Modem Control
Interface
Interrupt
Control
Logic
SOUT
SIN
VDD
GND
RTS#
DTR#
OUT1
OUT2
CTS#
DSR#
DCD#
RI#
INTSEL
INT
th
bit)
Data Sheet Revision 1.2 Page 6
OXFORD SEMICONDUCTOR LTD.
OX16C950 rev B
P
3
IN INFORMATION
DB5
DB6
DB7
RCLK
SIN
NC
SOUT
CS0
CS1
CS2#
BDOUT#
44 Pin Plastic Leaded Chip Carrier
DB4
DB3
DB2
DB1
DB0
FIFOSEL
VDD
RI#
DCD#
DSR#
CTS#
6543214443424140
7 39
8 38
9 37
10 36
11 35
12 34
13 33
14 32
15 31
16 30
17 29
18 19 20 21 22 23 24 25 26 27 28
XTLI
OX16C950-PCC60-B
IOW
IOW#
XTLO
GND
IOR#
CLKSEL
IOR
DDIS
ADS#
TXRDY#
RESET
OUT1#
DTR#
RTS#
OUT2#
INTSEL#
INT
RXRDY#
A0
A1
A2
48 Pin Thin Quad Flat Pack
VSEL
DB4
DB3
DB2
DB1
DB0
VDD
RI#
DCD#
DSR#
CTS#
FIFOSEL
NC
DB5
DB6
DB7
RCLK
NC
SIN
SOUT
CS0
CS1
CS2#
BDOUT#
48 47 46 45 44 43 42 41 40 39 38 37
1 36
2 35
3 34
4 33
5 32
6 31
7 30
8 29
9 28
10 27
11 26
12 25
13 14 15 16 17 18 19 20 21 22 23 24
NC
OX16C950-TQC60-B
XTLI
XTLO
IOW#
IOW
GND
IOR#
IOR
CLKSEL
DDIS
ADS#
TXRDY#
INTSEL#
RESET
OUT1#
DTR#
RTS#
OUT2#
INT
RXRDY#
A0
A1
A2
NC
Data Sheet Revision 1.2 Page 7
OXFORD SEMICONDUCTOR LTD.
OX16C950 rev B
4
PIN DESCRIPTIONS
PLCC TQFP Dir1 Name Description Clock
18 14 I XTLI Crystal oscillator input or external clock pin.
Maximum frequency 60 MHz @ 5V, 50 MHz @ 3.3V
19 15 O XTLO Crystal oscillator output. Not used when an alternative TTL level clock is
applied to XTLI and can be left unconnected.
23 21 IU CLKSEL The state of this pin on power up configures the internal clock prescaler. This
pin has an internal pull-up. When CLKSEL pin is high the pre-scalar is bypassed. Connect this pin to GND to enable the internal clock prescaler (see section 14.2). The complement of this pin is loaded in MCR[7] after a hardware reset.
This pin can also be used as an alternative external clock pin under software control (replacing XTLI and thus reducing noise/power due to XTLO) for embedded applications
Processor Interface
39 35 I RESET Active-high hardware reset. Hardware reset is described in section 7.1. This
pin must be tied inactive when not in use.
14, 15 9,
10
I CS0,CS1 Active-high chip select. All chip select pins must be active for the device to
be selected. 16 11 I CS2# Active-low chip select. 29 -31 26 – 28 I A[2:0] Address lines to select channel registers. 28 24 I ADS# Active-low address strobe. When ADS# signal is low, the address (A[2:0])
and chip select signal (CS0, CS1, CS2#) drive the internal logic, otherwise
they are latched at the level they were when low-to-high transition of ADS#
signal occurred. This pin is used when address and chip selects are not
stable during read or write cycles. If this functionality is not required, this pin
can be permanently tied to GND. 9 - 2 4 – 2,
I/O DB[7:0] Eight-bit 3-state data bus.
47 – 43
26 22 O DDIS Drive Disable. This pin goes active (high) when CPU is not reading from
OX16C950. This signal can be used to disable an external transceiver. 20
21
16
17
I
IOW#
I
IOW
Active-low write strobe. When IOW# is used to write the chip, IOW should be
tied low (inactive).
Active-high write strobe. When IOW is used to write the chip, IOW# should be
tied high (inactive). 24
25
19
20
I
IOR#
I
IOR
Active-low read strobe. When IOR# is used to read from the chip, IOR should
be tied low (inactive).
Active-high read strobe. When IOR is used to read from the chip, IOR#
should be tied high (inactive).
Data Sheet Revision 1.2 Page 8
OXFORD SEMICONDUCTOR LTD.
OX16C950 rev B
PLCC TQFP Dir1 Name Description Serial port pins
13 8 O
O
SOUT
IrDA_Out
Transmitter serial data output.
This pin is re-defined to IrDA output when IrDA mode is enabled, i.e. MCR[6] set in Enhanced mode.
36 32 O RTS# Active-low Request-To-Send output. Whenever the automated RTS# flow
control is enabled, the RTS# pin is de-asserted and re-asserted if the receiver FIFO reaches or falls below a pair of programmed flow control thresholds, respectively. This pin’s state is controlled by bit 1 of the MCR. RTS may also be used as a general-purpose output.
O
O
I
DTR#
485_EN
Tx_Clk_Out
SIN
IrDA_In
Active-low modem Data-Terminal-Ready output. Whenever the automated DTR# flow control is enabled, the DTR# pin is asserted and de-asserted if the receiver FIFO reaches or falls below a pair of programmed flow control thresholds, respectively. The state is set by bit 0 of the MCR. DTR may also be used as a general purpose output.
In RS485 half-duplex mode, the DTR# pin may be programmed to reflect the state of the transmitter empty bit (or it’s inverse) to automatically control the direction of the RS485 transceiver buffer (see ACR[4:3]).
Transmitter 1x (or baud rate generator output) clock. For isochronous applications, the 1x (or Nx) transmitter clock may be asserted on the DTR# pin (see CKS[5:4]). Receiver serial data input.
This pin is re-defined to IrDA input when IrDA mode is enabled, i.e. MCR[6]
37 33 O
11 7 I
set in Enhanced mode.
40 38 I CTS# Active-low Clear-To-Send input. Whenever the automated CTS# flow control
is enabled and the CTS# pin is de-asserted, the transmitter will complete the current character and enter the idle mode until the CTS# pin is re-asserted. However, flow control characters are transmitted regardless of the state of the CTS# pin. The state of this pin is reflected in bit 4 of the MSR. It can also be used as a general-purpose input.
41 39 I
I
DSR#
Rx_Clk_In
Active-low modem Data-Set-Ready input. Whenever the automated DSR# flow control is enabled and the DSR# pin is de-asserted, the transmitter will complete the current character and enter the idle mode until the DSR# pin is re-asserted. However, flow control characters are transmitted regardless of the state of the DSR# pin. The state of this pin is reflected in bit 5 of the MSR. It can also be used as a genera- purpose input.
External receiver clock for isochronous applications. The Rx_Clk_In is selected when CKS[1:0] = ‘01’.
42 40 I DCD# Active-low modem Data-Carrier-Detect input. The state of this pin is reflected
in bit 7 of the MSR. It can also be used as a general-purpose input
43 41 I
I
RI#
Tx_Clk_In
Active-low modem Ring-Indicator input. The state of this pin is reflected in bit 6 of the MSR. It can also be used as a general-purpose input. RI can be configured as tx and rx for a 1x clock in isochronous operation.
External transmitter clock. This clock can be used by the transmitter (and by the receiver indirectly) when CKS[6]=’1’.
17 12 O BDOUT# Baud out. BDOUT# is a Nx (usually 16x, see TCR) clock signal for the
transmitter. It is the output of the baud generator module. The receiver can use this clock by connecting BDOUT# to the RCLK pin or setting CKS[1:0] to ’10’ where BDOUT# will be connected to RCLK internally. In this case setting CKS[2] to ‘1’ will disable the BDOUT# pin to conserve power.
10 5 I RCLK Receiver clock. RCLK is the Nx (usually 16x, see TCR) baud rate clock for
the receiver.
Data Sheet Revision 1.2 Page 9
OXFORD SEMICONDUCTOR LTD.
OX16C950 rev B
PLCC TQFP Dir1 Name Description Interrupt & DMA Pins
33 30 O INT The serial channel has a three-state interrupt output. This signal goes active
(high) when an interrupt condition occurs. The three-state logic is controlled
by INTSEL# and MCR[3] as described below.
27
23 O TXRDY# Signal for DMA transfer of transmitter data. There are two modes of DMA
signalling described in section 8.1.
32 29 O RXRDY# Signal for DMA transfer of received data. There are two modes of DMA
signalling described in section 8.1.
34 36 IU INTSEL# Active-low interrupt select. This pin has an internal pull-up resistor. When
INTSEL# is high or unconnected, the INT pin is enabled and MCR[3] is
ignored. When INTSEL# is low, the tri-state control of INT is controlled by
MCR[3]. In this case INT is enabled when MCR[3] is set and is high-
impedance when MCR[3] is low.
This pin is used to save the external three-state buffer for the interrupt pin.
When using this facility, the INT output should be pulled down to GND using
a 1KΩ resistor.
Miscellaneous Pins 38 34 O OUT1# This user defined output pin reflects the complement of MCR[2]. It is inactive
(high) after a hardware reset or during loopback mode.
35 31 O OUT2# This user defined output pin reflects the complement of MCR[3]. It is inactive
(high) after a hardware reset or during loopback mode
1 37 ID FIFOSEL FIFO select. This pin has an internal pull-down. For backward compatibility
with 16C550, 16C650 and 16C750 devices the FIFO depth is 16 when
FIFOSEL is low or left open. The FIFO size is 128 when FIFOSEL is high.
The unlatched state of this pin is readable by software. The FIFO size may
be set to 128 by writing a 1 in FCR[5] when LCR[7] is set or by putting the
device into Enhanced mode, thus overriding the state of the FIFOSEL pin.
This pin is unconnected in 16C550 and 16C750 devices.
- 48 ID VSEL Voltage selector. This pin is used to control the voltage thresholds on all input pins. When low (or unconnected), 5V biased TTL thresholds are used. When high, 3V biased TTL thresholds are used. Generally should be tied high when the OX16C950 is being powered off 3 Volts, and low (or unconnected) when powered off 5 Volts. If tied high under 5V operation, CMOS compatible input thresholds are obtained.
As this pin is not accessible in the PLCC, the PLCC is unsuitable for 3V applications.
12 1, 13,
NC These pins are not connected.
25, 6
Power and Ground
22 18 GND Ground (0 Volts). The GND pin should be tied to ground.
44 42 VDD Power supply. The VDD pin should be tied to 5 Volts or 3.3 Volts
Table 2: Pin Descriptions
Note 1: Direction key:
I Input IU Input with pull-up ID Input with pull-down O Output I/O Bi-directional Note: Attention should be given to high frequency decoupling of power and ground pins due to the high frequency internal switching that occurs
under normal operation
Data Sheet Revision 1.2 Page 10
OXFORD SEMICONDUCTOR LTD.
4.1
Further Pin Information
OX16C950 rev B
Pin Description Action when used Action when not used
Bus Interface Pins
CS0 Chip Select Connect to active high chip select generation
logic
CS1 Chip Select Connect to active high chip select generation
logic
CS2# Chip Select Connect to active low chip select generation
logic
IOR Additional I/O Read Control Connect to processors active high I/O read
line (and tie IOR# high)
IOW Additional I/O Write Control Connect to processors active high I/O write
line (and tie IOW# high)
Tie high – All chip selects must be active in order to access the device Tie high – All chip selects must be active in order to access the device Tie low – All chip selects must be active in order to access the device Tie low (IOR# will be used to control I/O read operations) Tie low (IOW# will be used to control I/O read operations)
Control Pins
INTSEL# Interrupt Control Mode Tie low to allow software enable/disable of the
interrupt pin.
Leave unconnected (Pulled high internally to leave the interrupt pin permanently enabled).
DMA Pins
RXRDY# DMA Control signal output Connect direct to DMA control circuitry Leave unconnected TXRDY# DMA Control signal output Connect direct to DMA control circuitry Leave unconnected
Clock Related Pins
BDOUT# Baud rate generator output Connect direct to the RCLK pin in order to run
Leave unconnected the receiver with the same clock as the transmitter
RCLK Receiver clock input Connect directly to a suitable receiver clock
n/a
source (Usually the BDOUT# pin)
XTLI Crystal circuit input Connect to suitable clock input n/a XTLO Crystal circuit output Connect to crystal oscillator circuit
Leave unconnected
Miscellaneous Pins
DDIS Driver Disable output Connect to active high bus transceiver drive
Leave unconnected disable (goes high when device is not being read from)
ADS# Address Strobe In Connect direct to external control circuitry
Tie low (Low-High transition on this pin latches CS0-2 and A0-2)
OUT1# User defined output Connect direct to TTL input of external circuit
Leave unconnected to control
OUT2# User defined output Connect direct to TTL input of external circuit
Leave unconnected to control
Common Channel Pins
SOUT Serial data output Connect to a suitable line driver
SIN Serial data input Connect to a suitable line receiver
RTS# Request-To-Send Modem
signal output
CTS# Clear-To-Send Modem signal
input
DTR# Data-Terminal-Ready
Modem signal output
DSR# Data-Set-Ready
Modem signal input
Connect to a suitable line driver
Connect to a suitable line receiver
Connect to a suitable line driver
Connect to a suitable line receiver
Leave unconnected
(Serial data can not be transmitted)
Leave unconnected
(Serial data can not be received)
Leave unconnected
Tie high
Leave unconnected
Tie high
Data Sheet Revision 1.2 Page 11
OXFORD SEMICONDUCTOR LTD.
Pin Description Action when used Action when not used
DCD# Data-Carrier-Detect
Modem signal input
RI# Ring-Indicator
Modem signal input
INT Interrupt Output Connect to an available processor interrupt
Connect to a suitable line receiver
Connect to a suitable line receiver
line
Tie high
Tie high
Leave unconnected
(Interrupts can not be used)
OX16C950 rev B
Data Sheet Revision 1.2 Page 12
OXFORD SEMICONDUCTOR LTD.
ODE SELECTION
M
5
The OX16C950 device is a single channel device software compatible with the 16C450, 16C550, 16C654 and 16C750 UARTs. The operation of the OX16C950 depends on a number of mode settings. These modes are referred to throughout this data sheet. The FIFO depth and compatibility modes are tabulated below:
UART Mode FIFO
450 1 0 X X X
550 16 1 0 0 0
Extended 550 128 1 0 X 1
650 128 1 1 X X 750 128 1 0 1 0
950* 128 1 1 X X
450 Mode
5.1
After a hardware reset bit 0 of the FIFO Control Register (‘FCR’) is cleared, hence OX16C950 is compatible with the 16C450. The transmitter and receiver FIFOs (referred to as the ‘Transmit Holding Register’ and ‘Receiver Holding Register’ respectively) have a depth of one. This is referred to as ‘Byte mode’. When FCR[0] is cleared, all other mode selection parameters are ignored.
size
FCR[0] Enhanced mode
(EFR[4]=1)
Table 3: UART Mode Configuration
* Note that 950 mode configuration is identical to 650 configuration
(guarded with LCR[7] = 1)
guard. Once FCR[5] is set, the software should clear LCR[7] for normal operation.
The 16C750 additional features over the 16C550 are available as long as the UART is not put into Enhanced mode (i.e. EFR[4] should be ‘0’). These features are:
1. Deeper FIFOs
2. Automatic RTS/CTS out-of-band flow control
3. Sleep mode
FCR[5]
OX16C950 rev B
FIFOSEL
pin
5.2
550 Mode
Connect FIFOSEL to GND or leave it unconnected. After a hardware reset, writing a 1 to FCR[0] will increase the FIFO size to 16, providing compatibility with 16C550 devices. Since this pin is a no-connect in 16C550 devices, replacing a 16C550 with OX16C950 would result in a 550 compatible device with 16 byte deep FIFOs.
5.3
Extended 550 Mode
Connect FIFOSEL to VDD. Writing a 1 to FCR[0] will now increase the FIFO size to 128, thus providing a 550 device with 128 deep FIFOs.
5.4
750 Mode
For compatibility with 16C750, leave FIFOSEL unconnected.
Writing a 1 to FCR[0] will increase the FIFO size to 16. In a similar fashion to 16C750, the FIFO size can be further increased to 128 by writing a 1 to FCR[5]. Note that access to FCR[5] is protected by LCR[7]. I.e., to set FCR[5], software should first set LCR[7] to temporarily remove the
650 Mode
5.5
The OX16C950 is compatible with the 16C650 when EFR[4] is set, i.e. the device is in Enhanced mode. As 650 software drivers usually put the device into Enhanced mode, running 650 drivers on the OX16C950 device will result in 650 compatibility with 128 deep FIFOs, as long as FCR[0] is set. This is regardless of the state of the FIFOSEL pin or package option. Note that the 650 emulation mode of the OX16C950 provides 128 byte deep FIFOs whereas the standard 16C650 has only 32 byte FIFOs.
650 mode has the same enhancements as the 16C750 over the 16C550, but these are enabled using different registers.
There are also additional enhancements over those of the 16C750 in this mode, these are:
1. Automatic in-band flow control
2. Special character detection
3. Infra-red “IrDA-format” transmit and receive mode
4. Transmit trigger levels
5. Optional clock prescaler
Data Sheet Revision 1.2 Page 13
OXFORD SEMICONDUCTOR LTD.
OX16C950 rev B
5.6
950 Mode
The additional features offered in OX16C950 (950 mode) generally only apply when the UART is in Enhanced mode (EFR[4]=’1’). Provided FCR[0] is set, in Enhanced mode the FIFO size is 128 regardless of the state of FIFOSEL.
Note that 950 mode configuration is identical to that of 650 mode, however additional 950 specific features are enabled using the Additional Control Register ‘ACR’ (see section 15.3). In addition to larger FIFOs and higher baud rates, the enhancements of the 16C950 over the 16C654 are:
Selectable arbitrary trigger levels for the receiver and transmitter FIFO interrupts
Improved automatic flow control using selectable arbitrary thresholds
DSR#/DTR# automatic flow control
Transmitter and receiver can be optionally disabled
Software reset of device
Readable FIFO fill levels
Optional generation of an RS-485 buffer enable signal
Four-byte device identification (0x16C95003)
Readable status for automatic in-band and out-of­band flow control
External 1x clock modes (see section 14.4)
Flexible “M N/8” clock prescaler (see section 14.2)
Programmable sample clock to allow data rates up to 15 Mbps (see section 14.3)
9-bit data mode The 950 trigger levels are enabled when ACR[5] is set (bits 4 to 7 of FCR are ignored). Then arbitrary trigger levels can be defined in RTL, TTL, FCL and FCH registers (see section 15). The Additional Status Register (‘ASR’) offers flow control status for the local and remote transmitters. FIFO levels are readable using RFL and TFL registers.
The UART has a flexible prescaler capable of dividing the system clock by any value between 1 and 31.875 in steps of 0.125. It divides the system clock by an arbitrary value in “M N/8” format, where M and N are 5 and 3-bit binary numbers programmed in CPR[7:3] and CPR[2:0] respectively. This arrangement offers a great deal of flexibility when choosing an input clock frequency to synthesize arbitrary baud rates. The default division value is 4 to provide backward compatibility with 16C650 devices.
The user may apply an external 1x (or Nx) clock for the transmitter and receiver to the RI# and DSR# pin respectively. The transmitter clock may be asserted on the DTR# pin. The external clock options are selected through the CKS register (offset 0x02 of ICR).
It is also possible to define the over-sampling rate used by the transmitter and receiver clocks. The 16C450/16C550 and compatible devices employ 16 times over-sampling, i.e. There are 16 clock cycles per bit. However, OX16C950 can employ any over-sampling rate from 4 to 16 by programming the TCR register. This allows the data rates to be increased to 460.8 Kbps using a 1.8432MHz clock, or 15 Mbps using a 60 MHz clock. The default value after a reset for this register is 0x00, which corresponds to a 16 cycle sampling clock. Writing 0x01, 0x02 or 0x03 will also result in a 16 cycle sampling clock. To program the value to any value from 4 to 15 it is necessary to write this value into TCR i.e. to set the device to a 13 cycle sampling clock it would be necessary to write 0x0D to TCR. For further information see sections 14.3.
The OX16C950 also offers 9-bit data frames for multi-drop industrial applications.
Data Sheet Revision 1.2 Page 14
OXFORD SEMICONDUCTOR LTD.
EGISTER DESCRIPTION TABLES
R
6
OX16C950 rev B
The three address lines select the various registers in the UART. Since there are more than 8 registers, selection of the registers is also dependent on the state of the Line Control Register ‘LCR’ and Additional Control Register ‘ACR’:
1. LCR[7]=1 enables the divider latch registers DLL and DLM.
2. LCR specifies the data format used for both transmitter and receiver. Writing 0xBF (an unused format) to LCR enables
access to the 650 compatible register set. Writing this value will set LCR[7] but leaves LCR[6:0] unchanged. Therefore, the data format of the transmitter and receiver data is not affected. Write the desired LCR value to exit from this selection.
3. ACR[7]=1 enables access to the 950 specific registers.
4. ACR[6]=1 enables access to the Indexed Control Register set (ICR) registers as described on page 17.
Register
Name
THR 1 000 W Data to be transmitted
RHR 1 000 R Data received
IER
650/950
Mode
550/750
Mode
FCR 3
650 mode
750 mode
950 mode
Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1,2
001 R/W
010 W
CTS
interrupt
mask
RHR Trigger
RHR Trigger
Unused
Level
Level
RTS
interrupt
mask
Alternate
Unused
Special
Char.
Detect
sleep mode
THR Trigger
FIFO
Size
Level
Sleep mode
Unused
Modem
interrupt
mask
DMA
Mode /
Tx
Trigger
Enable
Rx Stat
interrupt
mask
Flush
THR
THRE
interrupt
mask
Flush
RHR
RxRDY
interrupt
mask
Enable
FIFO
ISR 3 010 R
LCR 4 011 R/W
3,4
MCR
550/750
Mode
650/950
Mode
3,5
LSR
Normal
9-bit data
mode
MSR 3 110 R DCD RI DSR CTS
SPR 3
Normal
9-bit data
mode
Additional Standard Registers – These registers require divisor latch access bit (LCR[7]) to be set to 1.
DLL 000 R/W Divisor latch bits [7:0] (Least significant byte)
DLM 001 R/W Divisor latch bits [15:8] (Most significant byte)
100 R/W
101 R
111 R/W
FIFOs
enabled
Divisor
latch
access
Baud
prescale
Data
Error
Tx
break
Unused
IrDA
mode
Tx Empty
Interrupt priority
(Enhanced mode)
Force parity
CTS &
RTS Flow
Control
XON-Any
THR
Empty
Indexed control register offset value bits
Odd /
even
parity
Internal
Loop Back
Enable
Rx
Break
Temporary data storage register and
Unused
Parity
enable
OUT2
(Int En)
Framing
Error
Delta
DCD
Interrupt priority
(All modes)
Number
of stop
bits
OUT1 RTS DTR
Parity
Error
th
Rx
9
data bit Trailing
RI edge
Data length
Overrun
Error
Delta
DSR
Interrupt pending
RxRDY
Delta
CTS
9th Tx
data bit
Table 4: Standard 550 Compatible Registers
Data Sheet Revision 1.2 Page 15
Loading...
+ 34 hidden pages