ON Semiconductor MJE 13005 User Manual

Page 1
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ON Semiconductor
SWITCHMODE Series NPN Silicon Power Transistors
These devices are designed for high–voltage, high–speed power switching inductive circuits where fall time is critical. They are particularly suited for 115 and 220 V SWITCHMODE applications such as Switching Regulator’s, Inverters, Motor Controls, Solenoid/Relay drivers and Deflection circuits.
SPECIFICATION FEATURES:
CEO(sus)
Reverse Bias SOA with Inductive Loads @ T
Inductive Switching Matrix 2 to 4 Amp, 25 and 100C
700 V Blocking Capability
SOA and Switching Applications Information.
MAXIMUM RATINGS
Collector–Emitter Voltage Collector–Emitter Voltage Emitter Base Voltage Collector Current — Continuous
ООООООООООООООО
Base Current — Continuous
ООООООООООООООО
Emitter Current — Continuous
ООООООООООООООО
Total Power Dissipation @ TA = 25C
Derate above 25C
ООООООООООООООО
Total Power Dissipation @ TC = 25C
Derate above 25C
Operating and Storage Junction Temperature Range
400 V
tc @ 3A, 100C is 180 ns (Typ)
Rating
— Peak (1)
— Peak (1)
— Peak (1)
= 100C
C
Symbol
V
CEO(sus)
V
CEV
V
EBO
I
C
I
ООООО
ООООО
ООООО
ООООО
CM
I
BM
I
EM
P
P
TJ, T
I
B
I
E
D
D
stg
MJE13005
*ON Semiconductor Preferred Device
4 AMPERE
NPN SILICON
POWER TRANSISTOR
400 VOLTS
75 WATTS
CASE 221A–09
TO–220AB
Value
400 700
9 4
ОООООО
ОООООО
ОООООО
ОООООО
8 2
4 6
12
2
16 75
600
–65 to +150
Unit
Vdc Vdc Vdc Adc
ÎÎ
Adc
ÎÎ
Adc
ÎÎ
Watts
mW/C
ÎÎ
Watts
mW/C
C
*
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient Thermal Resistance, Junction to Case Maximum Lead Temperature for Soldering
ООООООООООООООО
Purposes: 1/8 from Case for 5 Seconds
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.
Semiconductor Components Industries, LLC, 2001
April, 2001 – Rev. 5
Symbol
R
θ
JA
R
θ
JC
T
ООООО
L
ОООООО
Max
62.5
1.67 275
Unit
C/WC/W
C
ÎÎ
1 Publication Order Number:
MJE13005/D
Page 2
MJE13005
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Duty Cycle
1%)
)
I
V
Vdc, T
100 C)
ELECTRICAL CHARACTERISTICS (T
= 25C unless otherwise noted)
C
Characteristic
*OFF CHARACTERISTICS
Collector–Emitter Sustaining Voltage
(I
= 10 mA, IB = 0)
C
ООООООООООООООООО
Collector Cutoff Current
(V
= Rated Value, V
CEV
ООООООООООООООООО
(V
= Rated Value, V
CEV
= 1.5 Vdc)
BE(off)
= 1.5 Vdc, TC = 100C)
BE(off)
Emitter Cutoff Current
(V
ООООООООООООООООО
= 9 Vdc, IC = 0)
EB
SECOND BREAKDOWN
Second Breakdown Collector Current with base forward biased Clamped Inductive SOA with Base Reverse Biased
*ON CHARACTERISTICS
DC Current Gain
(I
= 1 Adc, VCE = 5 Vdc)
C
ООООООООООООООООО
= 2 Adc, VCE = 5 Vdc)
(I
C
Collector–Emitter Saturation Voltage
(I
= 1 Adc, IB = 0.2 Adc)
C
ООООООООООООООООО
= 2 Adc, IB = 0.5 Adc)
(I
C
ООООООООООООООООО
(I
= 4 Adc, IB = 1 Adc)
C
(I
= 2 Adc, IB = 0.5 Adc, TC = 100C)
C
ООООООООООООООООО
Base–Emitter Saturation Voltage
(I
= 1 Adc, IB = 0.2 Adc)
C
ООООООООООООООООО
= 2 Adc, IB = 0.5 Adc)
(I
C
(I
= 2 Adc, IB = 0.5 Adc, TC = 100C)
ООООООООООООООООО
C
DYNAMIC CHARACTERISTICS
Current–Gain — Bandwidth Product
(I
= 500 mAdc, VCE = 10 Vdc, f = 1 MHz)
C
ООООООООООООООООО
Output Capacitance
(V
= 10 Vdc, IE = 0, f = 0.1 MHz)
CB
SWITCHING CHARACTERISTICS
Resistive Load (Table 2)
Delay Time Rise Time Storage Time
(VCC = 125 Vdc, IC = 2 A, IB1 = IB2 = 0.4 A, tp = 25 µs, Duty Cycle 1%)
Fall Time
Inductive Load, Clamped (Table 2, Figure 13)
Voltage Storage Time Crossover Time
(IC = 2 A, V I
= 0.4 A, V
= 0.4 A,
B1
clamp
BE(off)
= 300 Vdc,
= 5 Vdc, T
= 5
= 100C
=
C
Fall Time
*Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2%.
Symbol
V
CEO(sus)
ÎÎÎ
I
CEV
ÎÎÎ
I
EBO
ÎÎÎ
I
S/b
RBSOA
h
FE
ÎÎÎ
V
CE(sat)
ÎÎÎ
ÎÎÎ
ÎÎÎ
V
BE(sat)
ÎÎÎ
ÎÎÎ
f
T
ÎÎÎ
C
ob
t
d
t
r
t
s
t
f
t
sv
t
c
t
fi
Min
400
ÎÎ
ÎÎ
— —
ÎÎ
10
ÎÎ
8
ÎÎ
ÎÎ
— —
ÎÎ
ÎÎ
ÎÎ
4
ÎÎ
— — — —
— — —
Typ
Î
Î
— —
Î
Î
Î
Î
— —
Î
Î
Î
Î
65
0.025
0.3
1.7
0.4
0.9
0.32
0.16
Max
ÎÎ
1
ÎÎ
5 1
ÎÎ
See Figure 11 See Figure 12
60
ÎÎ
40
0.5
ÎÎ
0.6
ÎÎ
1 1
ÎÎ
1.2
ÎÎ
1.6
ÎÎ
1.5
ÎÎ
0.1
0.7 4
0.9
4
0.9
Unit
Vdc
Î
mAdc
Î
mAdc
Î
Î
Vdc
Î
Î
Î
Vdc
Î
Î
MHz
Î
pF
µs µs µs µs
µs µs µs
http://onsemi.com
2
Page 3
MJE13005
)
100
70
T
= 150°C
J
50
25°C
30
, DC CURRENT GAIN
FE
h
20
10
7
-55°C
VCE = 2 V V
= 5 V
CE
5
0.04
0.1 0.4 2 4
0.06
0.2 1
0.6
IC, COLLECTOR CURRENT (AMP)
Figure 1. DC Current Gain
1.3
V
@ IC/IB = 4
BE(sat)
V
@ VCE = 2 V
1.1
0.9 0.35
BE(on)
T
= -55°C
J
, COLLECTOR-EMITTER VOLTAGE (VOLTS
V
CE
0.55
0.45
1.6
1.2
0.8
0.4
2
0
0.03
IC = 1 A
2 A
0.1 0.2 0.5 3 , BASE CURRENT (AMP)
I
B
3 A 4 A
0.30.05
Figure 2. Collector Saturation Region
IC/IB = 4
T
= 25°C
J
0.7 1 2
T
= -55°C
J
0.7
, BASE-EMITTER VOLTAGE (VOLTS)
0.5
BE
V
0.3
0.06 0.1 10.04 0.40.2 0.6
10 k
1 k
100
10
, COLLECTOR CURRENT (A)µI
1
C
0.1
-0.4 -0.2
25°C
VOLTAGE (VOLTS)
0.25
25°C
25°C
, COLLECTOR-EMITTER SATURATION
0.15
150°C
CE(sat)
V
2
4
0.05
0.06 0.1 10.04 0.40.2 0.6 2 4
IC, COLLECTOR CURRENT (AMP)IC, COLLECTOR CURRENT (AMP)
Figure 3. Base–Emitter Voltage Figure 4. Collector–Emitter Saturation Voltage
2 k
VCE = 250 V
T
= 150°C
J
125°C 100°C
75°C
50°C
25°C
REVERSE FORWARD
0
V
, BASE-EMITTER VOLTAGE (VOLTS)
BE
Figure 5. Collector Cutoff Region
1 k 700 500
300
200
100
C, CAPACITANCE (pF)
70 50
30
20
+0.4+0.2
+0.6
0.3
C
ib
3
V
, REVERSE VOLTAGE (VOLTS)
R
10 30
Figure 6. Capacitance
150°C
10050510.5
C
ob
300
http://onsemi.com
3
Page 4
MJE13005
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
I
CPK
90% V
clamp
I
C
V
CE
I
B
90% I
t
sv
B1
t
rv
10% V
clamp
t
c
90% I
t
V
clamp
C
t
fi
ti
10%
2% I
I
CPK
C
TIME
Figure 7. Inductive Switching Measurements
Table 1. Typical Inductive Switching Performance
I
AMP
ÎÎ
2
ÎÎ
3
4
ÎÎ
NOTE: All Data recorded in the inductive Switching Circuit In Table 2.
T
C
C
Î
25
100
Î
25
100
25
Î
100
C
t
sv
ns
Î
600 900
Î
t
rv
ns
Î
70
110
Î
650 95060100
550
Î
850
70
Î
110
t
ns
Î
100 240
Î
140 330
160
Î
350
ns
Î
t
ti
fi
80
130
Î
60
100 100
Î
160
t
c
ns
ÎÎ
180 320
ÎÎ
200 350
220
ÎÎ
390
SWITCHING TIMES NOTE
In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined.
t
= Voltage Storage Time, 90% IB1 to 10% V
sv
trv = Voltage Rise Time, 10–90% V
tfi = Current Fall Time, 90–10% I
tti = Current Tail, 10–2% I
tc = Crossover Time, 10% V
C
clamp
to 10% I
clamp
C
clamp
C
An enlarged portion of the inductive switching
waveforms is shown in Figure 7 to aid in the visual identity of these terms.
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN–222:
P
= 1/2 VCCIC(tc)f
SWT
In general, trv + tfi tc. However, at lower test currents
this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified at 25°C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a “SWITCHMODE” transistor are the inductive switching speeds (t
and tsv) which are guaranteed at 100C.
c
RESISTIVE SWITCHING PERFORMANCE
1
VCC = 125 V
0.5
t
r
I
C/IB
T
= 25°C
J
= 5
0.2
0.1
t, TIME (s)µ
0.05 td @ V
BE(off)
= 5 V
0.02
0.01
0.1
0.2
I
, COLLECTOR CURRENT (AMP)
C
0.4 4120.04
Figure 8. Turn–On Time
10
t
5
s
VCC = 125 V I
= 5
C/IB
= 25°C
T
J
2
1
t, TIME (s)µ
0.5
0.3
t
f
0.2
0.1
0.1
0.2
0.5 4120.04
IC, COLLECTOR CURRENT (AMP)
Figure 9. Turn–Off Time
http://onsemi.com
4
Page 5
MJE13005
Table 2. Test Conditions for Dynamic Performance
REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING
DUTY CYCLE 10%
t
, t
r
f
TEST CIRCUITS
NOTE
PW and V RB Adjusted for Desired I
Coil Data: Ferroxcube Core #6656
VALUES
CIRCUIT
Full Bobbin (~16 Turns) #16
I
C
V
CE
TEST WAVEFORMS
5 V
P
W
10 ns
Adjusted for Desired I
CC
I
C(pk)
t
1
VCE or
V
clamp
TIME
68
0.02 µF
B1
tf CLAMPED
t
f
t
0.001 µF
1 k
+5 V
1N493
3
270
C
t
UNCLAMPED t
f
2
+5 V
33
1N4933
MJE210
1N4933
33
2N222
2
R
1 k
1 k
2N2905
47
1/2 W
MJE200
100
-V
GAP for 200 µH/20 A L
= 200 µH
coil
OUTPUT WAVEFORMS
2
1
ADJUSTED TO
t OBTAIN I
t
t
1
t
2
t
B
I
BE(off)
B
T.U.T.
C
L
coil (ICpk)
V
CC
L
coil (ICpk)
V
clamp
RESISTIVE
SWITCHING
V
CC
+125 V
L
MR826*
R
C
SCOPE
I
C
*SELECTED FOR 1 kV
5.1 k
V
clamp
V
CE
TUT
R
B
D1
51
-4.0 V
V
= 125 V
= 20 V
V
CC
V
= 300 Vdc
clamp
Test Equipment
Scope–Tektronics
475 or Equivalent
CC
R
= 62
C
D1 = 1N5820 or Equiv.
= 22
R
B
+10 V
25 µs
0
-8 V
t
, tf < 10 ns
r
Duty Cycle = 1.0%
and RC adjusted
R
B
for desired I
and I
B
C
1
0.7
0.5
0.3
0.2
0.1
0.07
(NORMALIZED)
0.05
0.03
0.02
r(t), TRANSIENT THERMAL RESISTANCE
0.01
0.01
D = 0.5
0.2
0.1
0.05
0.02
SINGLE PULSE
0.02
P
Z
= r(t) R
θ
JC(t)
R
= 1.67°C/W MAX
θ
JC
θ
JC
(pk)
D CURVES APPLY FOR POWER PULSE TRAIN SHOWN
0.01
0.05 1 2 5 10 20 50 100 200 500
0.1 0.50.2
READ TIME AT t T
- TC = P
J(pk)
(pk)
1
Z
θ
JC(t)
t
1
t
2
DUTY CYCLE, D = t1/t
2
t, TIME (ms)
Figure 10. Typical Thermal Response [Z
(t)]
θ
JC
http://onsemi.com
5
1 k
Page 6
MJE13005
SAFE OPERATING AREA INFORMATION
The Safe Operating Area Figures 11 and 12 are specified ratings for these devices under the test conditions shown.
10
5
2
1
0.5
0.2
0.1
0.05
, COLLECTOR CURRENT (AMP)
C
I
0.02
0.01 7
520
10
V
, COLLECTOR-EMITTER VOLTAGE (VOLTS)
CE
30 50 70 100
5 ms
dc
500 µs
MJE13005
200
1 ms
300 500
400
Figure 11. Forward Bias Safe Operating Area
FORWARD BIAS
There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I
– V
C
CE
limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.
The data of Figure 11 is based on T
= 25C; T
C
J(pk)
is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC 25C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 11 may be found at any case temperature by using the appropriate curve on Figure 13.
T
may be calculated from the data in Figure 10. At
J(pk)
high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.
4
T
100°C
C
I
= 2.0 A
3
2
1
, COLLECTOR CURRENT (AMP)
C(pk)
I
0
0
100 300
V
CE
MJE13005
200 400 600
, COLLECTOR-EMITTER CLAMP VOLTAGE (VOLTS)
B1
V
= 9 V
BE(off)
500 700
5 V 3 V
1.5 V 800
Figure 12. Reverse Bias Switching Safe Operating Area
REVERSE BIAS
For inductive loads, high voltage and high current must be sustained simultaneously during turn–off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage–current conditions during reverse biased turn–off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 12 gives the complete RBSOA characteristics.
POWER DERATING FACTOR
1
SECOND BREAKDOWN
0.8
0.6
0.4
0.2
0
20
THERMAL
DERATING
40 120 160
60 100 14080
T
, CASE TEMPERATURE (°C)
C
Figure 13. Forward Bias Power Derating
http://onsemi.com
6
DERATING
Page 7
MJE13005
PACKAGE DIMENSIONS
TO–220AB
CASE 221A–09
ISSUE AA
SEATING
–T–
PLANE
B
4
Q
123
F
T
A
U
C
S
H
K
Z
L
V
R J
G
D
N
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.
DIM MIN MAX MIN MAX
A 0.570 0.620 14.48 15.75 B 0.380 0.405 9.66 10.28 C 0.160 0.190 4.07 4.82 D 0.025 0.035 0.64 0.88 F 0.142 0.147 3.61 3.73 G 0.095 0.105 2.42 2.66 H 0.110 0.155 2.80 3.93 J 0.018 0.025 0.46 0.64 K 0.500 0.562 12.70 14.27 L 0.045 0.060 1.15 1.52 N 0.190 0.210 4.83 5.33 Q 0.100 0.120 2.54 3.04 R 0.080 0.110 2.04 2.79 S 0.045 0.055 1.15 1.39 T 0.235 0.255 5.97 6.47 U 0.000 0.050 0.00 1.27 V 0.045 --- 1.15 --- Z --- 0.080 --- 2.04
MILLIMETERSINCHES
http://onsemi.com
7
Page 8
MJE13005
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore: 001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700 Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.
http://onsemi.com
8
MJE13005/D
Loading...