The MC74LVXT4066 utilizes silicon–gate CMOS technology to
achieve fast propagation delays, low ON resistances, and low
OFF–channel leakage current. This bilateral
switch/multiplexer/demultiplexer controls analog and digital voltages
that may vary across the full power–supply range (from VCC to GND).
The LVXT4066 is identical in pinout to the metal–gate CMOS
MC14066 and the high–speed CMOS HC4066A. Each device has four
independent switches. The device has been designed so that the ON
resistances (RON) are much more linear over input voltage than R
of metal–gate CMOS analog switches.
The ON/OFF control inputs are compatible with standard LSTTL
outputs. The input protection circuitry on this device allows
overvoltage tolerance on the ON/OFF control inputs, allowing the
device to be used as a logic–level translator from 3.0V CMOS logic to
5.0V CMOS Logic or from 1.8V CMOS logic to 3.0V CMOS Logic
while operating at the higher–voltage power supply.
The MC74LVXT4066 input structure provides protection when voltages
up to 7V are applied, regardless of the supply voltage. This allows the
MC74L VXT4066 to be used to interface 5V circuits to 3V circuits.
• Fast Switching and Propagation Speeds
• High ON/OFF Output Voltage Ratio
• Low Crosstalk Between Switches
• Diode Protection on All Inputs/Outputs
• Wide Power–Supply Voltage Range (V
• Analog Input Voltage Range (V
CC
– GND) = 2.0 to 6.0 Volts
CC
– GND) = 2.0 to 6.0 Volts
• Improved Linearity and Lower ON Resistance over Input Voltage
than the MC14016 or MC14066
• Low Noise
LOGIC DIAGRAM
12
X
A
A ON/OFF CONTROL
B ON/OFF CONTROL
C ON/OFF CONTROL
D ON/OFF CONTROL
ANALOG INPUTS/OUTPUTS = XA, XB, XC, X
PIN 14 = V
PIN 7 = GND
CC
13
43
X
B
5
89
X
C
6
1110
X
D
12
D
Y
A
Y
B
ANALOG
OUTPUTS/INPUTS
Y
C
Y
D
ON
http://onsemi.com
14–LEAD SOIC
D SUFFIX
CASE 751A
14–LEAD TSSOP
DT SUFFIX
CASE 948G
PIN CONNECTION AND
MARKING DIAGRAM (Top View)
X
Y
Y
X
B ON/OFF
CONTROL
C ON/OFF
CONTROL
GND
For detailed package marking information, see the Marking
Diagram section on page 10 of this data sheet.
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — SOIC Package: – 7 mW/_C from 65_ to 125_C
TSSOP Package: – 6.1 mW/_C from 65_ to 125_C
RECOMMENDED OPERATING CONDITIONS
Symbol
V
V
V
VIO*
T
tr, t
ÎÎ
*For voltage drops across the switch greater than 1.2 V (switch on), excessive VCC current may
be drawn; i.e., the current out of the switch may contain both VCC and switch input
components. The reliability of the device will be unaffected unless the Maximum Ratings are
exceeded.
Positive DC Supply Voltage (Referenced to GND)
CC
Analog Input Voltage (Referenced to GND)
IS
Digital Input Voltage (Referenced to GND)
in
Static or Dynamic Voltage Across Switch
Operating Temperature, All Package Types
A
Input Rise and Fall Time, ON/OFF Control
f
Inputs (Figure 10)VCC = 3.3 V ± 0.3 V
ООООООООООООО
Parameter
Parameter
TSSOP Package†
VCC = 5.0 V ± 0.5 V
Value
– 0.5 to + 7.0
– 0.5 to VCC + 0.5
– 0.5 to VCC + 0.5
–20
500
450
– 65 to + 150
260
Min
Max
2.0
5.5
GND
V
CC
GND
V
CC
—
1.2
– 55
+ 85
0
100
Î
0
20
Unit
mA
mW
_
_
Unit
_
ns/V
Î
This device contains protection
V
V
V
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
V
should be constrained to the
out
C
C
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
range GND v (Vin or V
) v VCC.
out
Unused outputs must be left open.
I/O pins must be connected to a
properly terminated line or bus.
V
V
V
V
C
DC ELECTRICAL CHARACTERISTIC Digital Section(Voltages Referenced to GND)
V
ÎÎ
Symbol
V
ÎÎ
V
ÎÎ
ÎÎ
I
ОООООООО
Minimum High–Level Voltage
IH
ON/OFF Control Inputs
ОООООООО
(Note 1)
Maximum Low–Level Voltage
IL
ON/OFF Control Inputs
ОООООООО
(Note 1)
I
CC
Maximum Input Leakage Current
in
ОООООООО
ON/OFF Control Inputs
Maximum Quiescent Supply
Current (per Package)
Parameter
ООООО
Test Conditions
Ron = Per Spec
ООООО
Ron = Per Spec
ООООО
Vin = VCC or GND
ООООО
Vin = VCC or GND
VIO = 0 V
1. Specifications are for design target only. Not final specification limits.
CC
ÎÎÎ
V
3.0
4.5
ÎÎÎ
5.5
3.0
4.5
ÎÎÎ
5.5
5.5
ÎÎÎ
5.5
Guaranteed Limit
– 55 to
ÎÎ
25_C
1.2
2.0
ÎÎ
2.0
0.53
0.8
ÎÎ
0.8
± 0.1
ÎÎ
4.0
v
Î
85_C
1.2
2.0
Î
2.0
0.53
0.8
Î
0.8
± 1.0
Î
40
ÎÎ
v
125_C
1.2
2.0
ÎÎ
2.0
0.53
0.8
ÎÎ
0.8
± 1.0
ÎÎ
160
Î
Unit
Î
Î
µA
Î
µA
V
V
http://onsemi.com
2
MC74LVXT4066
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
Î
Î
Î
ÎÎÎ
Î
Î
Î
Î
DC ELECTRICAL CHARACTERISTICS Analog Section(Voltages Referenced to GND)
Guaranteed Limit
V
Symbol
R
on
ÎÎ
ÎÎ
ÎÎ
ÎÎ
∆R
on
ÎÎ
I
off
ÎÎ
ÎÎ
I
on
ÎÎ
Maximum “ON” Resistance
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Maximum Difference in “ON”
Resistance Between Any Two
ОООООООО
Channels in the Same Package
Maximum Off–Channel Leakage
ОООООООО
Current, Any One Channel
ОООООООО
Maximum On–Channel Leakage
Current, Any One Channel
ОООООООО
Parameter
Test Conditions
Vin = V
IH
ОООООО
VIS = VCC to GND
IS v 2.0 mA (Figures 1, 2)
ОООООО
Vin = V
IH
VIS = VCC or GND (Endpoints)
ОООООО
IS v 2.0 mA (Figures 1, 2)
ОООООО
Vin = V
IH
VIS = 1/2 (VCC – GND)
ОООООО
IS v 2.0 mA
Vin = V
IL
ОООООО
VIO = VCC or GND
Switch Off (Figure 3)
ОООООО
Vin = V
IH
VIS = VCC or GND
(Figure 4)
ОООООО
2.0†
ÎÎ
3.0
4.5
ÎÎ
5.5
2.0
3.0
ÎÎ
4.5
ÎÎ
5.5
3.0
4.5
ÎÎ
5.5
5.5
ÎÎ
ÎÎ
5.5
ÎÎ
†At supply voltage (VCC) approaching 2 V the analog switch–on resistance becomes extremely non–linear. Therefore, for low–voltage
operation, it is recommended that these devices only be used to control digital signals.
CC
V
– 55 to
25_C
—
ÎÎ
40
25
ÎÎ
20
—
30
ÎÎ
25
ÎÎ
20
15
10
ÎÎ
10
0.1
ÎÎ
ÎÎ
0.1
ÎÎ
v
85_C
—
Î
45
28
Î
25
—
35
Î
28
Î
25
20
12
Î
12
0.5
Î
Î
0.5
Î
v
125_C
—
ÎÎ
50
35
ÎÎ
30
—
40
ÎÎ
35
ÎÎ
30
25
15
ÎÎ
15
1.0
ÎÎ
ÎÎ
1.0
ÎÎ
Unit
Ω
Î
Î
Î
Î
Ω
Î
µA
Î
Î
µA
Î
AC ELECTRICAL CHARACTERISTICS (C
ÎÎÎ
Symbol
t
,
PLH
t
PHL
ÎÎÎ
ÎÎÎ
t
,
PLZ
t
PHZ
ÎÎÎ
ÎÎÎ
t
,
PZL
t
PZH
ÎÎÎ
ÎÎÎ
C
ОООООООООООООО
Maximum Propagation Delay , Analog Input to Analog Output
(Figures 8 and 9)
ОООООООООООООО
ОООООООООООООО
Maximum Propagation Delay, ON/OFF Control to Analog Output
(Figures 10 and 11)
ОООООООООООООО
ОООООООООООООО
Maximum Propagation Delay, ON/OFF Control to Analog Output
(Figures 10 and 1 1)
ОООООООООООООО
ОООООООООООООО
Maximum CapacitanceON/OFF Control Input
= 50 pF, ON/OFF Control Inputs: tr = tf = 6 ns)
L
Parameter
Control Input = GND
Analog I/O
ÎÎÎÎОООООООООООООО
C
PD
Power Dissipation Capacitance (Per Switch) (Figure 13)*
Feedthrough
*Used to determine the no–load dynamic power consumption: PD = CPD V
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
2
f + ICC VCC.
CC
Guaranteed Limit
V
2.0
3.0
4.5
5.5
2.0
3.0
4.5
5.5
2.0
3.0
4.5
5.5
—
—
—
CC
V
– 55 to
ÎÎ
25_C
4.0
3.0
ÎÎ
1.0
ÎÎ
1.0
30
20
ÎÎ
15
15
ÎÎ
20
12
ÎÎ
8.0
8.0
ÎÎ
10
35
1.0
ÎÎ
v
Î
85_C
6.0
5.0
Î
2.0
Î
2.0
35
25
Î
18
18
Î
25
14
Î
10
10
Î
10
35
1.0
Î
ÎÎ
v
125_C
8.0
6.0
ÎÎ
2.0
ÎÎ
2.0
40
30
ÎÎ
22
20
ÎÎ
30
15
ÎÎ
12
12
ÎÎ
10
35
1.0
ÎÎ
Î
Unit
Î
Î
Î
Î
Î
Î
pF
Î
ns
ns
ns
Typical @ 25°C, VCC = 5.0 V
15
pF
http://onsemi.com
3
MC74LVXT4066
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)
Symbol
ÎÎ
BW
ОООООООО
Maximum On–Channel Bandwidth
or Minimum Frequency Response
ÎÎ
—
ÎÎ
ÎÎ
—
ÎÎ
ÎÎ
—
ÎÎ
ÎÎ
THD
ÎÎ
ÎÎ
(Figure 5)
ОООООООО
Off–Channel Feedthrough Isolation
ОООООООО
(Figure 6)
ОООООООО
Feedthrough Noise, Control to
ОООООООО
Switch
(Figure 7)
ОООООООО
Crosstalk Between Any Two
ОООООООО
Switches
(Figure 12)
ОООООООО
Total Harmonic Distortion
ОООООООО
(Figure 14)
ОООООООО
*Guaranteed limits not tested. Determined by design and verified by qualification.
Parameter
ОООООООООООО
Test Conditions
fin = 1 MHz Sine Wave
Adjust fin Voltage to Obtain 0 dBm at V
Increase fin Frequency Until dB Meter Reads – 3 dB
ОООООООООООО
OS
RL = 50 Ω, CL = 10 pF
fin Sine Wave
ОООООООООООО
Adjust fin Voltage to Obtain 0 dBm at V
ОООООООООООО
fin = 10 kHz, RL = 600 Ω, CL = 50 pF
IS
fin = 1.0 MHz, RL = 50 Ω, CL = 10 pF
Vin v 1 MHz Square Wave (tr = tf = 3 ns)
ОООООООООООО
Adjust RL at Setup so that IS = 0 A
ОООООООООООО
RL = 600 Ω, CL = 50 pF
RL = 10 kΩ, CL = 10 pF
fin Sine Wave
ОООООООООООО
Adjust fin Voltage to Obtain 0 dBm at V
ОООООООООООО
fin = 10 kHz, RL = 600 Ω, CL = 50 pF
IS
fin = 1.0 MHz, RL = 50 Ω, CL = 10 pF
fin = 1 kHz, RL = 10 kΩ, CL = 50 pF
ОООООООООООО
THD = THD
ОООООООООООО
Measured
– THD
Source
VIS = 4.0 VPP sine wave
VIS = 5.0 VPP sine wave
V
CC
Î
4.5
5.5
Î
4.5
Î
5.5
Î
4.5
5.5
4.5
Î
5.5
Î
4.5
5.5
4.5
Î
5.5
Î
4.5
5.5
Î
4.5
Î
5.5
V
25_C
ÎÎ
150
Unit
Î
MHz
160
Limit*
ÎÎ
– 50
ÎÎ
– 50
ÎÎ
Î
dB
Î
Î
– 37
– 37
100
ÎÎ
200
ÎÎ
mV
Î
Î
PP
50
100
– 70
ÎÎ
– 70
ÎÎ
dB
Î
Î
– 80
– 80
ÎÎ
0.10
ÎÎ
Î
Î
%
0.06
http://onsemi.com
4
MC74LVXT4066
400
250
350
300
250
200
Ron (Ohms)
150
100
50
0
0.51
–55°C
25°C
85°C
125°C
1.522.50
Vin (Volts)
200
150
Ron (Ohms)
100
50
0
Is = 9mA
0.51
Is = 1mA
Is = 5mA
Is = 15mA
1.522.50
Vin (Volts)
Figure 1a. T ypical On Resistance, VCC = 2.0 V, T = 25°CFigure 1b. T ypical On Resistance, VCC = 2.0 V
35
30
25
20
15
Ron (Ohms)
10
5
125°C
85°C
25°C
–55°C
25
20
15
Ron (Ohms)
10
5
125°C
85°C
–55°C
25°C
0
1
20
Vin (Volts)
Figure 1c. T ypical On Resistance, VCC = 3.0 V
18
16
14
12
10
8
Ron (Ohms)
6
4
2
0
12
Vin (Volts)
3450
Figure 1e. T ypical On Resistance, VCC = 5.5 V
3
4
0
12
Vin (Volts)
3450
Figure 1d. T ypical On Resistance, VCC = 4.5 V
PLOTTER
125°C
85°C
25°C
–55°C
6
PROGRAMMABLE
POWER
SUPPLY
+–
ANALOG INCOMMON OUT
MINI COMPUTER
DEVICE
UNDER TEST
GND
DC ANALYZER
V
CC
Figure 2. On Resistance T est Set–Up
http://onsemi.com
5
MC74LVXT4066
V
CC
V
CC
OFF
SELECTED
CONTROL
INPUT
14
V
IL
GND
V
CC
A
7
Figure 3. Maximum Off Channel Leakage Current,
Any One Channel, Test Set–Up
V
V
14
f
in
0.1µF
7
ON
SELECTED
CONTROL
INPUT
CC
OS
CL*
V
CC
METER
dB
V
V
GND
CC
A
7
ON
SELECTED
CONTROL
INPUT
CC
14
V
IH
Figure 4. Maximum On Channel Leakage Current,
T est Set–Up
V
V
IS
f
in
0.1µF
R
L
SELECTED
CONTROL
INPUT
7
V
14
OFF
CC
OS
CL*
N/C
dB
METER
*Includes all probe and jig capacitance.
Figure 5. Maximum On–Channel Bandwidth
T est Set–Up
INPUT
V
CC
14
V
CC/2
R
L
OFF/ON
SELECTED
CONTROL
Vin ≤ 1 MHz
tr = tf = 3 ns
V
IH
V
IL
*Includes all probe and jig capacitance.
CONTROL
7
Figure 7. Feedthrough Noise, ON/OFF Control to
Analog Out, Test Set–Up
*Includes all probe and jig capacitance.
Figure 6. Off–Channel Feedthrough Isolation,
T est Set–Up
V
CC/2
R
L
V
CL*
OS
ANALOG IN
t
PLH
ANALOG OUT
50%
50%
t
PHL
V
CC
GND
I
S
Figure 8. Propagation Delays, Analog In to
Analog Out
http://onsemi.com
6
MC74LVXT4066
14
ON
SELECTED
CONTROL
7
*Includes all probe and jig capacitance.
ANALOG OUTANALOG IN
INPUT
Figure 9. Propagation Delay T est Set–Up
POSITIONWHEN TESTING t
1
2
V
CC
1
2
V
IH
V
IL
*Includes all probe and jig capacitance.
POSITIONWHEN TESTING t
1
2
ON/OFF
SELECTED
CONTROL
INPUT
7
V
CC
TEST
POINT
CL*
V
IH
CONTROL
ANALOG
OUT
50%
10%
90%
t
r
50%
50%
t
PZL
t
PZH
t
PLZ
t
PHZ
t
f
V
CC
GND
HIGH
IMPEDANCE
10%
90%
V
OL
V
OH
HIGH
IMPEDANCE
Figure 10. Propagation Delay , ON/OFF Control
to Analog Out
AND t
PHZ
PLZ
V
CC
14
AND t
1 kΩ
CL*
PZH
PZL
TEST
POINT
f
in
0.1 µF
VIH OR V
*Includes all probe and jig capacitance.
V
IS
R
L
IL
R
L
V
CC/2
ON
OFF
SELECTED
CONTROL
INPUT
7
V
CC
14
R
CL*
L
V
CC/2
V
CC/2
V
OS
R
CL*
L
Figure 11. Propagation Delay Test Set–Up
14
N/C
V
IH
V
IL
ON/OFF CONTROL
OFF/ON
7
SELECTED
CONTROL
INPUT
Figure 13. Power Dissipation Capacitance
Test Set–Up
Figure 12. Crosstalk Between Any Two Switches,
T est Set–Up
V
CC
A
N/C
f
in
*Includes all probe and jig capacitance.
0.1 µF
V
IS
7
ON
SELECTED
CONTROL
INPUT
V
CC
V
CC/2
V
V
OS
TO
DISTORTION
CL*
R
L
IH
METER
Figure 14. Total Harmonic Distortion, T est Set–Up
http://onsemi.com
7
dBm
–10
–20
–30
–40
–50
–60
–70
–80
–90
MC74LVXT4066
0
FUNDAMENTAL FREQUENCY
DEVICE
SOURCE
1.02.0
Figure 15. Plot, Harmonic Distortion
APPLICATION INFORMATION
The ON/OFF Control pins should be at VIH or VIL logic
levels, VIH being recognized as logic high and VIL being
recognized as a logic low. Unused analog inputs/outputs
may be left floating (not connected). However, it is
advisable to tie unused analog inputs and outputs to VCC or
GND through a low value resistor. This minimizes crosstalk
and feedthrough noise that may be picked–up by the unused
I/O pins.
The maximum analog voltage swings are determined by
the supply voltages VCC and GND. The positive peak analog
voltage should not exceed VCC. Similarly, the negative peak
analog voltage should not go below GND. In the example
below, the difference between VCC and GND is six volts.
VCC = 6.0 V
ON
14
ANALOG O/I
+ 6.0 V
0 V
ANALOG I/O
3.0
FREQUENCY (kHz)
Therefore, using the configuration in Figure 16, a maximum
analog signal of six volts peak–to–peak can be controlled.
When voltage transients above VCC and/or below GND
are anticipated on the analog channels, external diodes (Dx)
are recommended as shown in Figure 17. These diodes
should be small signal, fast turn–on types able to absorb the
maximum anticipated current surges during clipping. An
alternate method would be to replace the Dx diodes with
Mosorbs (Mosorb is an acronym for high current surge
protectors). Mosorbs are fast turn–on devices ideally suited
for precise DC protection with no inherent wear out
mechanism.
+ 6.0 V
0 V
V
CC
D
x
ON
D
x
V
CC
16
D
x
D
x
SELECTED
V
IH
CONTROL
INPUT
7
OTHER CONTROL
INPUTS
(VIH OR VIL)
V
IH
SELECTED
CONTROL
INPUT
7
OTHER CONTROL
INPUTS
(VIH OR VIL)
Figure 16. 6.0 V ApplicationFigure 17. Transient Suppressor Application
http://onsemi.com
8
MC74LVXT4066
+3
+5
G
S
V
+3V
GND
1.8 – 2.5V
CIRCUITRY
ANALOG
SIGNALS
R* = 2 TO 10 kΩ
14
15
5
6
14
LVXT4066
CONTROL
INPUTS
7
ANALOG
SIGNALS
+3V
GND
V
LSTTL/
NMOS/
ABT/
ALS
ANALOG
SIGNALS
14
15
5
6
LVXT4066
CONTROL
INPUTS
a. Low Voltage Logic Level Shifting Controlb. Using LVXT4066
*See Applications Note #AND8004/D for date code and traceability information.
P ACKAGE DIMENSIONS
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751A–03
ISSUE F
NOTES:
–A–
814
P 7 PL
–B–
MM
1
G
D14 PL
0.25 (0.010)T BA
7
X 45°
C
R
K
M
SS
B0.25 (0.010)
M
J
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
F
MILLIMETERSINCHES
MINMINMAXMAX
DIM
A
B
C
D
F
G
J
K
M
P
R
8.75
8.55
4.00
3.80
1.75
1.35
0.49
0.35
1.25
0.40
1.27 BSC0.050 BSC
0.25
0.19
0.25
0.10
7°
0°
6.20
5.80
0.50
0.25
0.337
0.150
0.054
0.014
0.016
0.008
0.004
0.228
0.010
0.344
0.157
0.068
0.019
0.049
0.009
0.009
7°
0°
0.244
0.019
http://onsemi.com
10
MC74LVXT4066
ÉÉ
P ACKAGE DIMENSIONS
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948G–01
ISSUE O
–T–
0.10 (0.004)
SEATING
PLANE
14X REFK
S
U
T
S
N
0.25 (0.010)
U0.15 (0.006) T
S
2X L/2
0.10 (0.004)V
14
M
8
M
L
PIN 1
IDENT.
1
S
U0.15 (0.006) T
A
–V–
B
–U–
N
F
7
DETAIL E
K
K1
J
J1
SECTION N–N
C
D
G
H
DETAIL E
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE –W–.
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty , representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability ,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly , any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer .
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 T oll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich T ime)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse T ime)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK T ime)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, England, Ireland
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
ASIA/PACIFIC : LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
T oll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, T okyo, Japan 141–8549
Phone: 81–3–5740–2745
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.