The MC34161/MC33161 are universal voltage monitors intended
for use in a wide variety of voltage sensing applications. These devices
offer the circuit designer an economical solution for positive and
negative voltage detection. The circuit consists of two comparator
channels each with hysteresis, a unique Mode Select Input for channel
programming, a pinned out 2.54 V reference, and two open collector
outputs capable of sinking in excess of 10mA. Each comparator
channel can be configured as either inverting or noninverting by the
Mode Select Input. This allows over, under, and window detection of
positive and negative voltages. The minimum supply voltage needed
for these devices to be fully functional is 2.0 V for positive voltage
sensing and 4.0V for negative voltage sensing.
Applications include direct monitoring of positive and negative
voltages used in appliance, automotive, consumer, and industrial
equipment.
See detailed ordering and shipping information in the package
dimensions section on page 15 of this data sheet.
MC34161/D
MC34161, MC33161, NCV33161
MAXIMUM RATINGS (Note 1)
RatingSymbolValueUnit
Power Supply Input VoltageV
Comparator Input Voltage RangeV
Comparator Output Sink Current (Pins 5 and 6) (Note 2)I
Comparator Output VoltageV
CC
in
Sink
out
Power Dissipation and Thermal Characteristics (Note 2)
P Suffix, Plastic Package, Case 626
Maximum Power Dissipation @ TA = 70°C
Thermal Resistance, Junction-to-Air
D Suffix, Plastic Package, Case 751
Maximum Power Dissipation @ TA = 70°C
Thermal Resistance, Junction-to-Air
DM Suffix, Plastic Package, Case 846A
Thermal Resistance, Junction-to-Ambient
Operating Junction TemperatureT
Operating Ambient Temperature (Note 3)
MC34161
P
D
R
q
JA
P
D
R
q
JA
R
q
JA
J
T
A
MC33161
NCV33161
Storage Temperature RangeT
stg
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. This device series contains ESD protection and exceeds the following tests:
Human Body Model 2000 V per MIL-STD-883, Method 3015.
Machine Model Method 200 V.
2. Maximum package power dissipation must be observed.
3. T
=0°C for MC34161T
low
-40°C for MC33161+105°C for MC33161
= +70°C for MC34161
high
-40°C for NCV33161+125°C for NCV33161
40V
-1.0to+40V
20mA
40V
800
100
450
178
240
mW
°C/W
mW
°C/W
°C/W
+150°C
°C
0to+70
-40to+105
-40 to +125
-55to+150°C
http://onsemi.com
2
MC34161, MC33161, NCV33161
ELECTRICAL CHARACTERISTICS (V
= 5.0 V, for typical values TA = 25°C, for min/max values TA is the operating ambient
CC
temperature range that applies [Notes 4 and 5], unless otherwise noted.)
CharacteristicsSymbolMinTypMaxUnit
COMPARATOR INPUTS
Threshold Voltage, Vin Increasing (TA = 25°C)
(TA = T
min
to T
max
)
Threshold Voltage Variation (VCC = 2.0 V to 40 V)
Threshold Hysteresis, Vin DecreasingV
Threshold Difference |V
Reference to Threshold Difference (V
th1
- V
|V
th2
- V
), (V
- V
ref
in1
ref
)V
in2
Input Bias Current (Vin = 1.0 V)
(Vin = 1.5 V)
V
DV
th
H
D
RTD
I
IB
1.245
1.235
th
-7.015mV
1.27
-
1.295
1.295
152535mV
-1.015mV
1.201.271.32V
-
-
40
85
MODE SELECT INPUT
Mode Select Threshold Voltage (Figure 6) Channel 1
Channel 2
V
th(CH1)
V
th(CH2)
V
ref
+0.15
0.3
V
ref
0.63
+0.23
V
ref
COMPARATOR OUTPUTS
Output Sink Saturation Voltage (I
Off-State Leakage Current (VOH = 40 V)I
= 2.0 mA)
Sink
(I
= 10 mA)
Sink
(I
= 0.25 mA, VCC = 1.0 V)
Sink
V
OL
OH
-
-
-
0.05
0.22
0.02
-01.0
REFERENCE OUTPUT
Output Voltage (IO = 0 mA, TA = 25°C)V
Load Regulation (IO = 0 mA to 2.0 mA)Reg
Line Regulation (VCC = 4.0 V to 40 V)Reg
Total Output Variation over Line, Load, and Temperature
DV
Short Circuit CurrentI
ref
load
line
ref
SC
2.482.542.60V
-0.615mV
-5.015mV
2.45-2.60V
-8.530mA
TOTAL DEVICE
Power Supply Current (V
Operating Voltage Range (Positive Sensing)
, V
, V
Mode
= GND) ( VCC = 5.0 V)
in1
in2
(Negative Sensing)
(VCC = 40 V)
I
CC
V
CC
-
-
2.0
4.0
450
560
-
-
4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
5. T
=0°C for MC34161T
low
-40°C for MC33161+105°C for MC33161
=+70°C for MC34161
high
-40°C for NCV33161+125°C for NCV33161
200
400
+0.30
0.9
0.3
0.6
0.2
700
900
40
40
V
nA
V
V
mA
mA
V
http://onsemi.com
3
MC34161, MC33161, NCV33161
6.0
VCC = 5.0 V
RL = 10 k to V
5.0
T
A = 25°C
CC
4.0
3.0
2.0
, OUTPUT VOLTAGE (V)
TA = 85°C
out
TA = 25°C
V
1.0
TA = -40°C
0
1.221.281.231.241.251.261.271.29
Vin, INPUT VOLTAGE (V)
Figure 2. Comparator Input Threshold Voltage
3600
3000
2400
1800
1200
, OUTPUT PROPAGATION DELAY TIME (ns)
PHL
t
600
VCC = 5.0 V
TA = 25°C
4.06.002.0
PERCENT OVERDRIVE (%)
1. V
= GND, Output Falling
Mode
2. V
= VCC, Output Rising
Mode
3. V
= VCC, Output Falling
Mode
4. V
= GND, Output Rising
Mode
1
2
3
4
8.010
TA = 85°C
TA = 25°C
TA = -40°C
500
VCC = 5.0 V
400
V
= GND
Mode
TA = 25°C
300
200
IB
100
I , INPUT BIAS CURRENT (nA)
0
1.03.02.004.05.0
Vin, INPUT VOLTAGE (V)
Figure 3. Comparator Input Bias Current
versus Input Voltage
8.0
Undervoltage Detector
Programmed to trip at 4.5 V
R1 = 1.8 k, R2 = 4.7 k
6.0
RL = 10 k to V
Refer to Figure 17
4.0
, OUTPUT VOLTAGE (V)
out
2.0
V
0
02.04.06.08.0
CC
TA = -40°C
TA = -25°C
TA = -85°C
VCC, SUPPLY VOLTAGE (V)
Figure 4. Output Propagation Delay Time
versus Percent Overdrive
6.0
Channel 2 ThresholdChannel 1 Threshold
5.0
4.0
VCC = 5.0 V
RL = 10 k to V
CC
3.0
2.0
, CHANNEL OUTPUT VOLTAGE (V)
1.0
out
V
0
TA = 85°C
TA = 25°C
TA = -40°C
TA = -40°C
1.03.000.51.52.52.03.5
V
, MODE SELECT INPUT VOLTAGE (V)
Mode
Figure 6. Mode Select Thresholds
TA = 85°C
TA = 25°C
Figure 5. Output Voltage versus Supply Voltage
40
VCC = 5.0 V
35
TA = 25°C
30
25
20
15
10
, MODE SELECT INPUT CURRENT ( A)μ
5.0
Mode
0
I
1.03.02.004.05.0
V
, MODE SELECT INPUT VOLTAGE (V)
Mode
Figure 7. Mode Select Input Current
versus Input Voltage
http://onsemi.com
4
MC34161, MC33161, NCV33161
2.8
2.4
2.0
1.6
1.2
0.8
ref
V , REFERENCE VOLTAGE (V)
0.4
0
0
-2.0
-4.0
-6.0
0
VCC = 5.0 V
V
Mode
10302040
VCC, SUPPLY VOLTAGE (V)
Figure 8. Reference Voltage
versus Supply Voltage
= GND
V
Mode
TA = 25°C
= 85°C
A
T
= GND
= 25°C
A
T
2.610
V
Max = 2.60 V
ref
2.578
2.546
V
Typ = 2.54 V
ref
2.514
2.482
, REFERENCE OUTPUT VOLTAGE (V)
ref
V
2.450
V
Min = 2.48 V
ref
-55-250255075100125
TA, AMBIENT TEMPERATURE (°C)
Figure 9. Reference Voltage
versus Ambient Temperature
0.5
VCC = 5.0 V
V
= GND
Mode
0.4
0.3
0.2
TA = 25°C
TA = 85°C
VCC = 5.0 V
V
= GND
Mode
TA = -40°C
-8.0
, REFERENCE VOLTAGE CHANGE (mV)
ref
V
-10
1.00
Figure 10. Reference Voltage Change
0.8
V
= GND
Mode
0.6
Pins 2, 3 = 1.5 V
0.4
, SUPPLY CURRENT (mA)
0.2
CC
I
0
= -40°C
A
T
2.03.04.05.06.07.08.0
I
, REFERENCE SOURCE CURRENT (mA)
ref
versus Source Current
V
= V
Mode
CC
Pins 2, 3 =
GND
V
= V
Mode
Pin 1 = 1.5 V
Pin 2 = GND
ICC measured at Pin 8
TA = 25°C
100
203040
VCC, SUPPLY VOLTAGE (V)
Figure 12. Supply Current versus
Supply Voltage
0.1
, OUTPUT SATURATION VOLTAGE (V)
out
V
0
4.00
I
, OUTPUT SINK CURRENT (mA)
out
8.01216
Figure 11. Output Saturation Voltage
versus Output Sink Current
1.6
1.2
ref
0.8
VCC = 5.0 V
V
, INPUT SUPPLY CURRENT (mA)
0.4
CC
I
0
4.00
I
, OUTPUT SINK CURRENT (mA)
out
8.01216
= GND
Mode
TA = 25°C
Figure 13. Supply Current
versus Output Sink Current
http://onsemi.com
5
MC34161, MC33161, NCV33161
V
CC
8
V
Mode Select
Input 1
Input 2
ref
1
7
+
2
3
-
+
1.27V
+
-
+
1.27V
Reference
+
+
GND
2.54V
2.8V
0.6V
-
+
-
+
4
Channel 1
Channel 2
Figure 14. MC34161 Representative Block Diagram
Output 1
6
Output 2
5
Mode Select
Pin 7
GND0
V
ref
VCC (>2.0V)0
Input 1
Pin 2
Output 1
Pin 6
1
0
1
1
0
1
0
1
1
0
Input 2
Pin 3
0
1
0
1
0
1
Output 2
Pin 5Comments
0
1
1
0
1
0
Channels 1 & 2: Noninverting
Channel 1: Noninverting
Channel 2: Inverting
Channels 1 & 2: Inverting
Figure 15. Truth Table
http://onsemi.com
6
Loading...
+ 12 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.