ON Semiconductor MC33153 Technical data

ON Semiconductor
Single IGBT Gate Driver
The MC33153 is specifically designed as an IGBT driver for high power applications that include ac induction motor control, brushless dc motor control and uninterruptable power supplies. Although designed for driving discrete and module IGBTs, this device offers a cost effective solution for driving power MOSFETs and Bipolar Transistors. Device protection features include the choice of desaturation or overcurrent sensing and undervoltage detection. These devices are available in dual–in–line and surface mount packages and include the following features:
Protection Circuits for Both Conventional and Sense IGBTs
Programmable Fault Blanking Time
Protection against Overcurrent and Short Circuit
Undervoltage Lockout Optimized for IGBT’s
Negative Gate Drive Capability
Cost Effectively Drives Power MOSFETs and Bipolar Transistors
MC33153
SINGLE IGBT
GATE DRIVER
SEMICONDUCTOR
TECHNICAL DATA
8
1
P SUFFIX
PLASTIC PACKAGE
CASE 626
Representative Block Diagram
V
CC
6
V
CC
Short Circuit
Fault
Output
7
Input
4 5
Latch
Q
Overcurrent Latch
V
EE
V
CC
V
EE
Q
V
CC
S
R
S
R
V
CC
This device contains 133 active transistors.
Short Circuit Comparator
Overcurrent Comparator
Fault Blanking/
Desaturation
Comparator
Under Voltage Lockout
12 V/ 11 V
130 mV
65 mV
V
CC
270 µA
6.5 V
3
V
EE
Output
Stage
100 k
V
EE
V
V
V
V
V
CC
EE
CC
EE
CC
Current Sense
1
Input
Kelvin Gnd
2
Fault Blanking/
8
Desaturation Input
Drive Output
Current Sense
Kelvin Gnd
ORDERING INFORMATION
Device
MC33153D MC33153P
8
1
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
PIN CONNECTIONS
18
Input
2
3
V
EE
4
Input
(Top View)
Operating
Temperature Range
= –40° to +105°C
T
A
7
6
5
Fault Blanking/ Desaturation Input
Fault Output
V
CC
Drive Output
Package
SO–8
DIP–8
Semiconductor Components Industries, LLC, 2001
April, 2001 – Rev. 3
1 Publication Order Number:
MC33153/D
MC33153
MAXIMUM RATINGS
Rating Symbol Value Unit
Power Supply Voltage V
VCC to V
EE
Kelvin Ground to VEE (Note 1) KGnd – V
Logic Input V Current Sense Input V Blanking/Desaturation Input V Gate Drive Output
Source Current Sink Current Diode Clamp Current
Fault Output
Source Current Sink Current
Power Dissipation and Thermal Characteristics
D Suffix SO–8 Package, Case 751
Maximum Power Dissipation @ T
= 50°C
A
Thermal Resistance, Junction–to–Air
P Suffix DIP–8 Package, Case 626
Maximum Power Dissipation @ T
= 50°C
A
Thermal Resistance, Junction–to–Air Operating Junction Temperature T Operating Ambient Temperature T Storage Temperature Range T
NOTE: ESD data available upon request.
VCC – V
in S
BD
I
O
I
FO
P
D
R
θ
JA
P
D
R
θ
JA J
A
stg
EE
EE
20 20
VEE –0.3 to V
–0.3 to V –0.3 to V
CC CC CC
1.0
2.0
1.0
25 10
0.56 180
1.0
100
+150 °C –40 to +105 °C –65 to +150 °C
V V V A
mA
W
°C/W
W
°C/W
ELECTRICAL CHARACTERISTICS (V
= 25°C, for min/max values TA is the operating ambient temperature range that applies (Note 2), unless otherwise noted.)
T
A
Characteristic
= 15 V, VEE = 0 V, Kelvin Gnd connected to VEE. For typical values
CC
Symbol Min Typ Max Unit
LOGIC INPUT
Input Threshold Voltage
High State (Logic 1) Low State (Logic 0)
V
IH
V
IL
1.2
2.70
2.30
Input Current
High State (V Low State (V
= 3.0 V)
IH
= 1.2 V)
IL
I
IH
I
IL
– –
130
50
DRIVE OUTPUT
Output Voltage
Low State (I High State (I
Sink
Source
= 1.0 A)
= 500 mA)
Output Pull–Down Resistor R
V
OL
V
OH PD
12
2.0
13.9
100 200 k
FAULT OUTPUT
Output voltage
Low State (I High State (I
= 5.0 mA)
Sink
Source
= 20 mA)
V
FL
V
FH
12
0.2
13.3
SWITCHING CHARACTERISTICS
Propagation Delay (50% Input to 50% Output CL = 1.0 nF)
Logic Input to Drive Output Rise
Logic Input to Drive Output Fall Drive Output Rise Time (10% to 90%) CL = 1.0 nF t Drive Output Fall Time (90% to 10%) CL = 1.0 nF t
NOTES: 1.Kelvin Ground must always be between VEE and VCC.
2.Low duty cycle pulse techniques are used during test to maintain the junction temperature as close to ambient as possible. = –40°C for MC33153 T
T
low
= +105°C for MC33153
high
t
PLH(in/out)
t
PHL (in/out)
r
f
– –
80
120 – 17 55 ns – 17 55 ns
3.2
V
µA 500 100
V
2.5 –
V
1.0 –
ns 300 300
http://onsemi.com
2
MC33153
ELECTRICAL CHARACTERISTICS (continued) (V
= 25°C, for min/max values TA is the operating ambient temperature range that applies (Note 2), unless otherwise noted.)
T
A
= 15 V, VEE = 0 V, Kelvin Gnd connected to VEE. For typical values
CC
Characteristic UnitMaxTypMinSymbol
SWITCHING CHARACTERISTICS (continued)
Propagation Delay µs
Current Sense Input to Drive Output t Fault Blanking/Desaturation Input to Drive Output t
P(OC) P(FLT)
0.3 1.0 – 0.3 1.0
UVLO
Startup Voltage Disable Voltage V
V
CC start
CC dis
11.3 12 12.6 V
10.4 11 11.7 V
COMPARATORS
Overcurrent Threshold Voltage (V Short Circuit Threshold Voltage (V Fault Blanking/Desaturation Threshold (V
> 7.0 V) V
Pin8
> 7.0 V) V
Pin8
> 100 mV) V
Pin1
Current Sense Input Current (VSI = 0 V) I
SOC SSC
th(FLT)
SI
50 65 80 mV
100 130 160 mV
6.0 6.5 7.0 V – –1.4 –10 µA
FAULT BLANKING/DESATURATION INPUT
Current Source (V Discharge Current (V
Pin8
= 0 V, V
= 15 V, V
Pin8
= 0 V) I
Pin4
= 5.0 V) I
Pin4
chg
dschg
–200 –270 –300 µA
1.0 2.5 mA
TOTAL DEVICE
Power Supply Current
Standby (V Operating (C
NOTES: 1.Kelvin Ground must always be between VEE and VCC.
2.Low duty cycle pulse techniques are used during test to maintain the junction temperature as close to ambient as possible.
= VCC, Output Open)
Pin 4
= 1.0 nF, f = 20 kHz)
L
T
= –40°C for MC33153 T
low
= +105°C for MC33153
high
I
CC
– –
7.2
7.9
14 20
mA
1.5
1.0
0.5
, INPUT CURRENT (mA)
in
I
0
0
2.0 4.0 6.0 8.0 10 12 14 16
Vin, INPUT VOLTAGE (V)
Figure 1. Input Current versus Input Voltage
VCC = 15 V T
= 25°C
A
16
14
12
10
8.0
6.0
, OUTPUT VOLTAGE (V)
4.0
O
V
2.0
0
0
1.0 2.0 3.0 4.0
Vin, INPUT VOLTAGE (V)
Figure 2. Output Voltage versus Input Voltage
VCC = 15 V T
= 25°C
A
5.0
http://onsemi.com
3
MC33153
, INPUT THRESHOLD VOLTAGE (V)V
- V
3.2 VCC = 15 V
3.0
2.8
V
IH
2.6
2.4
2.2
IL
IH
2.0
-60
-40 -20 0 20 40 60 80 100 120 140
V
IL
T
, AMBIENT TEMPERATURE (°C)
A
Figure 3. Input Threshold Voltage
versus Temperature
2.5
I
= 1.0 A
2.0
Sink
, INPUT THRESHOLD VOLTAGE (V)V
- V
2.8 T
V
IH
= 25°C
A
2.7
2.6
2.5
2.4
V
2.3
IL
IH
2.2
12
13 14 15 16 17 18 19 20
IL
V
, SUPPLY VOLTAGE (V)
CC
Figure 4. Input Threshold Voltage
versus Supply V oltage
2.0
1.6
= 500 mA
1.5
1.2
1.0
0.5
, OUTPUT LOW STATE VOLTAGE (V)
OL
V
0
-60
14.0
13.9
13.8
13.7
13.6
, DRIVE OUTPUT HIGH STATE VOLTAGE (V)
13.5
OH
-60
V
= 250 mA
VCC = 15 V
-40 -20 0 20 40 60 80 100 120 140
T
, AMBIENT TEMPERATURE (°C)
A
Figure 5. Drive Output Low State Voltage
versus Temperature
VCC = 15 V I
= 500 mA
Source
-40 -20 0 20 40 60 80 100 120 140
T
, AMBIENT TEMPERATURE (°C)
A
Figure 7. Drive Output High State Voltage
versus Temperature
0.8
0.4
, OUTPUT LOW STATE VOLTAGE (V)
OL
V
0
15.0
14.6
14.2
13.8
13.4
, DRIVE OUTPUT HIGH STATE VOLTAGE (V)
13.0
OH
V
0
0.2 0.4 0.6 0.8 1.0
, OUTPUT SINK CURRENT (A)
I
Sink
Figure 6. Drive Output Low State Voltage
versus Sink Current
VCC = 15 V T
= 25°C
A
0
0.1 0.2 0.3 0.4 0.5
I
, OUTPUT SOURCE CURRENT (A)
Source
Figure 8. Drive Output High State Voltage
versus Source Current
T
= 25°C
A
VCC = 15 V
http://onsemi.com
4
MC33153
0
16
14
12
10
8.0
6.0
4.0
, DRIVE OUTPUT VOLTAGE (V)
O
2.0
V
0
70
68
66
50
55 60 65 70 75 80
V
, CURRENT SENSE INPUT VOLTAGE (mV)
Pin 1
Figure 9. Drive Output Voltage
versus Current Sense Input Voltage
VCC = 15 V V
= 0 V
Pin 4
V
> 7.0 V
Pin 8
T
= 25°C
A
VCC = 15 V
14
12
10
8.0
6.0
4.0
, FAULT OUTPUT VOLTAGE (V)
2.0
Pin 7
V
0 100
70
68
66
VCC = 15 V V
= 0 V
Pin 4
V
> 7.0 V
Pin 8
T
= 25°C
A
110 120 130 140 150 16
V
, CURRENT SENSE INPUT VOLTAGE (mV)
Pin 1
Figure 10. Fault Output Voltage
versus Current Sense Input Voltage
T
= 25°C
A
64
62
, OVERCURRENT THRESHOLD VOLTAGE (mV)
60
-60
V
SOC
-40 -20 0 20 40 60 80 100 120 140
T
, AMBIENT TEMPERATURE (°C)
A
Figure 11. Overcurrent Protection Threshold
Voltage versus Temperature
135
130
, SHORT CIRCUIT THRESHOLD VOLTAGE (mV)
125
V
SSC
-40 -20 0 20 40 60 80 100 120 140 14 16 18 20
-60
T
, AMBIENT TEMPERATURE (°C)
A
Figure 13. Short Circuit Comparator Threshold
Voltage versus Temperature
VCC = 15 V
64
62
, OVERCURRENT THRESHOLD VOLTAGE (mV)
SOC
V
60
12
14 16 18 20
VCC, SUPPLY VOLTAGE (V)
Figure 12. Overcurrent Protection Threshold
Voltage versus Supply Voltage
135
130
, SHORT CIRCUIT THRESHOLD VOLTAGE (mV)
125
SSC
12
V
V
, SUPPLY VOLTAGE (V)
CC
Figure 14. Short Circuit Comparator Threshold
Voltage versus Supply Voltage
T
= 25°C
A
http://onsemi.com
5
Loading...
+ 11 hidden pages