ON NCP1400ASN19T1, NCP1400ASN25T1, NCP1400ASN27T1, NCP1400ASN30T1, NCP1400ASN33T1, NCP1400ASN50T1 Schematic [ru]
NCP1400A
100 mA, Fixed Frequency
PWM Step-Up Micropower
Switching Regulator
The NCP1400A series are micropower step–up DC to DC
converters that are specifically designed for powering portable
equipment from one or two cell battery packs. These devices are
designed to start–up with a cell voltage of 0.8 V and operate down to
less than 0.2 V. With only four external components, this series allows
a simple means to implement highly efficient converters that are
capable of up to 100 mA of output current.
Each device consists of an on–chip fixed frequency oscillator, pulse
width modulation controller, phase compensated error amplifier that
ensures converter stability with discontinuous mode operation,
soft–start, voltage reference, driver, and power MOSFET switch with
current limit protection. Additionally, a chip enable feature is provided
to power down the converter for extended battery life.
The NCP1400A device series are available in the Thin SOT–23–5
package with six standard regulated output voltages. Additional
voltages that range from 1.8 V to 4.9 V in 100 mV steps can be
manufactured.
Features
• Extremely Low Start–Up Voltage of 0.8 V
• Operation Down to Less than 0.2 V
• Only Four External Components for Simple Highly Efficient
Converters
• Up to 100 mA Output Current Capability
• Fixed Frequency Pulse Width Modulation Operation
• Phase Compensated Error Amplifier for Stable Converter Operation
• Chip Enable Power Down Capability for Extended Battery Life
T ypical Applications
• Cellular Telephones
• Pagers
• Personal Digital Assistants
• Electronic Games
• Digital Cameras
• Camcorders
• Handheld Instruments
http://onsemi.com
5
1
THIN SOT–23–5
SN SUFFIX
CASE 483
PIN CONNECTIONS AND
MARKING DIAGRAM
1
CE
2
OUT
3
NC
xxx = Marking
Y= Year
W= Work Week
(Top View)
ORDERING INFORMATION
See detailed ordering and shipping information in the ordering
information section on page 2 of this data sheet.
xxxYW
5
LX
GND
4
Semiconductor Components Industries, LLC, 2002
January , 2002 – Rev. 4
V
in
CE
1
OUT
2
NC
3
Figure 1. Typical Step–Up Converter Application
LX
5
GND
NCP1400A
4
1Publication Order Number:
V
out
NCP1400A/D
NCP1400A
3000 Units
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
ORDERING INFORMATION
Output
Device
Voltage
NCP1400ASN19T11.9 VDAI
NCP1400ASN25T12.5 VDAV
NCP1400ASN27T12.7 V
NCP1400ASN30T13.0 V
NCP1400ASN33T13.3 VDAJ
NCP1400ASN50T15.0 VDAD
NOTE: The ordering information lists six standard output voltage device options. Additional devices with output voltage ranging from 1.8 V
to 5.0 V in 100 mV increments can be manufactured. Contact your ON Semiconductor representative for availability.
ABSOLUTE MAXIMUM RATINGS
RatingSymbolValueUnit
Power Supply Voltage (Pin 2)
Input/Output Pins
LX (Pin 5)
ББББББББББББББББББ
LX Peak Sink Current
CE (Pin 1)
ББББББББББББББББББ
Input Voltage Range
Input Current Range
ББББББББББББББББББ
Thermal Resistance Junction to Air
Operating Ambient Temperature Range (Note 2)
Operating Junction Temperature Range
Storage Temperature Range
NOTES:
1. This device series contains ESD protection and exceeds the following tests:
Human Body Model (HBM) 2.0 kV per JEDEC standard: JESD22–A114.
Machine Model (MM) 200 V per JEDEC standard: JESD22–A115.
2. The maximum package power dissipation limit must not be exceeded.
3. Latch–up Current Maximum Rating: 150 mA per JEDEC standard: JESD78.
4. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J–STD–020A.
T
P
D
J(max)
R
JA
T
A
Switching
Frequency
180 KHz
MarkingPackageShipping
DAA
DAB
Thin SOT–23–5
V
OUT
V
ÁÁÁ
LX
I
LX
ÁÁÁ
V
CE
I
ÁÁÁ
CE
R
θ
JA
T
A
T
J
T
stg
–0.3 to 6.0
–0.3 to 6.0
БББББ
400
БББББ
–0.3 to 6.0
–150 to 150
БББББ
250
–40 to +85
–40 to +125
–55 to +150
3000 Units
on 7 Inch Reel
ÁÁ
ÁÁ
ÁÁ
V
V
mA
V
mA
°C/W
°C
°C
°C
http://onsemi.com
2
NCP1400A
ELECTRICAL CHARACTERISTICS(For all values T
Characteristic
= 25°C, unless otherwise noted.)
A
SymbolMinTypMaxUnit
OSCILLATOR
Frequency (V
OUT
= V
x 0.96, Note 5)f
SET
OSC
144180216kHz
Frequency Temperature Coefficient (TA = –40°C to 85°C)f–0.11–%/°C
Maximum PWM Duty Cycle (V
Minimum Start–up Voltage (IO = 0 mA)V
Minimum Start–up Voltage Temperature Coefficient (TA = –40°C to 85°C)V
Minimum Operation Hold Voltage (IO = 0 mA)V
Soft–Start Time (V
0.8 V)t
OUT
OUT
= V
x 0.96)D
SET
MAX
start
start
hold
SS
687582%
–0.80.95V
––1.6–mV/°C
0.3––V
0.52.0–ms
LX (PIN 5)
LX Pin On–State Sink Current (V
= 0.4 V)
LX
I
LX
Device Suffix:
19T1
25T1
27T1
30T1
33T1
50T1
Voltage Limit (V
= VCE = V
OUT
x 0.96, VLX “L’’ Side)V
SET
Off–State Leakage Current (VLX = 5.0 V, TA = –40°C to 85°C)I
LXLIM
LKG
80
80
100
100
100
100
0.650.81.0V
–0.51.0µA
90
120
125
130
135
160
–
–
–
–
–
–
CE (PIN 1)
CE Input Voltage (V
High State, Device Enabled
Low State, Device Disabled
OUT
= V
SET
x 0.96)
V
CE(high)
V
CE(low)
0.9
–
–
–
–
0.3
CE Input Current (Note 6)
High State, Device Enabled (V
Low State, Device Disabled (V
= VCE = 5.0 V)
OUT
= 5.0 V, VCE = 0 V)
OUT
I
CE(high)
I
CE(low)
–0.5
–0.5
0
0.15
0.5
0.5
TOTAL DEVICE
Output Voltage (V
0.8 V, IO = 4.0 mA)
in
V
OUT
Device Suffix:
19T1
25T1
27T1
30T1
33T1
50T1
Output Voltage Temperature Coefficient (TA = –40°C to +85°C)
V
1.853
2.438
2.633
2.925
3.218
4.875
OUT
1.9
2.5
2.7
3.0
3.3
5.0
1.948
2.563
2.768
3.075
3.383
5.125
Device Suffix:
19T1
25T1
27T1
30T1
33T1
50T1
Operating Current 2 (V
Off–State Current (V
OUT
Operating Current 1 (V
= VCE = V
OUT
+0.5 V, Note 5)I
SET
= 5.0 V, VCE = 0 V, TA = –40°C to +85°C, Note 6)I
= VCE = V
OUT
SET
x 0.96, f
= 180 kHz)
OSC
DD2
OFF
I
DD1
–
–
–
–
–
–
–7.015µA
–0.61.5µA
100
100
100
100
100
150
–
–
–
–
–
–
Device Suffix:
19T1
25T1
27T1
30T1
33T1
50T1
5. V
means setting of output voltage.
SET
6. CE pin is integrated with an internal 10 MΩ pull–up resistor.
–
–
–
–
–
–
23
32
32
37
37
70
50
60
60
60
60
100
mA
V
µA
V
ppm/°C
µA
http://onsemi.com
3
NCP1400A
2.1
2.0
1.9
1.8
, OUTPUT VOLTAGE (V)
NCP1400ASN19T1
1.7
OUT
V
L = 22 µH
T
1.6
0
6.0
5.5
5.0
Vin= 0.9 V
4.5
NCP1400ASN50T1
, OUTPUT VOLTAGE (V)
L = 22 µH
4.0
OUT
V
T
3.5
0
Vin= 1.5 V
Vin= 0.9 VVin= 1.2 V
= 25°C
A
4020
, OUTPUT CURRENT (mA)
I
O
6080
Figure 2. NCP1400ASN19T1 Output Voltage
vs. Output Current
Vin= 3.0 V
Vin= 1.5 V
= 25°C
A
20100
IO, OUTPUT CURRENT (mA)
Vin= 2.0 V
806040
Figure 4. NCP1400ASN50T1 Output Voltage
vs. Output Current
100
3.4
3.2
Vin= 2.0 V
3.0
Vin= 0.9 V
2.8
, OUTPUT VOLTAGE (V)
V
NCP1400ASN30T1
L = 22 µH
2.6
OUT
2.4
= 25°C
T
A
080604020100
Vin= 1.2 V
I
, OUTPUT CURRENT (mA)
O
Vin= 1.5 V
Figure 3. NCP1400ASN30T1 Output Voltage
vs. Output Current
100
80
60
Vin= 0.9 V
40
EFFICIENCY (%)
NCP1400ASN19T1
L = 22 µH
20
= 25°C
T
A
0
080604010020
Vin= 1.2 V
IO, OUTPUT CURRENT (mA)
Vin= 1.5 V
Figure 5. NCP1400ASN19T1 Efficiency vs.
Output Current
100
Vin= 2.5 V
80
Vin= 0.9 V
60
40
EFFICIENCY (%)
NCP1400ASN30T1
L = 22 µH
20
= 25°C
T
A
0
060402080100
Vin= 1.2 V
IO, OUTPUT CURRENT (mA)
Vin= 1.5 V
Vin= 2.0 V
Figure 6. NCP1400ASN30T1 Efficiency vs.
Output Current
100
80
60
40
EFFICIENCY (%)
20
0
080604020100
http://onsemi.com
4
Vin= 3.0 V
Vin= 0.9 V
NCP1400ASN50T1
L = 22 µH
= 25°C
T
A
Vin= 1.5 V
Vin= 2.0 V
IO, OUTPUT CURRENT (mA)
Figure 7. NCP1400ASN50T1 Efficiency vs.
Output Current
NCP1400A
, OPERATING CURRENT (µA)
DD1
I
80
70
60
50
40
30
20
10
100
80
60
NCP1400ASNXXT1
L = 10 µH
= 25°C
T
A
0
1.5
2.0
V
, OUTPUT VOLTAGE (V)
OUT
3.5
4.03.02.54.5
Figure 8. NCP1400ASNXXT1 Operating
Current (I
) vs. Output Voltage
DD1
5.5–505075250100–25
5.0
100
80
60
40
NCP1400ASN30T1
, OPERATING CURRENT (µA)
20
V
DD1
I
Open–loop Test
0
1.0
0.8
0.6
= 3.0 V x 0.96
OUT
, AMBIENT TEMPERATURE (°C)
T
A
Figure 9. NCP1400ASN30T1 Current
Consumption vs. Temperature
, VOLTAGE LIMIT (V)
40
NCP1400ASN50T1
V
= 5.0 V x 0.96
, OPERATING CURRENT (µA)
DD1
I
20
OUT
Open–loop Test
0
–505075250100–25–505075250100–25
0.4
LX
, V
0.2
LXLIM
V
TA, AMBIENT TEMPERATURE (°C)
Figure 10. NCP1400ASN50T1 Current
Consumption vs. Temperature
1.0
0.8
0.6
, VOLTAGE LIMIT (V)
0.4
LX
, V
LXLIM
V
NCP1400ASN30T1
0.2
V
= 3.0 V x 0.96
OUT
0
–505075250100–25–505075250100–25
TA, AMBIENT TEMPERATURE (°C)
1.0
0.8
0.6
, VOLTAGE LIMIT (V)
0.4
LX
, V
0.2
LXLIM
V
Figure 12. NCP1400ASN30T1 VLX Voltage Limit
vs. Temperature
NCP1400ASN19T1
V
= 1.9 V x 0.96
OUT
0
TA, AMBIENT TEMPERATURE (°C)
Figure 11. NCP1400ASN19T1 VLX Voltage Limit
vs. Temperature
NCP1400ASN50T1
V
= 5.0 V x 0.96
OUT
0
TA, AMBIENT TEMPERATURE (°C)
Figure 13. NCP1400ASN50T1 VLX Voltage Limit
vs. Temperature
http://onsemi.com
5
NCP1400A
0
3.2
3.1
3.0
2.9
, OUTPUT VOLTAGE (V)
OUT
V
NCP1400ASN30T1
L = 10 µH
2.8
2.7
= 4.0 mA
I
O
V
= 1.2 V
in
–505075250100–25–505075250100–25
T
, AMBIENT TEMPERATURE (°C)
A
5.1
5.0
4.9
4.8
, OUTPUT VOLTAGE (V)
4.7
OUT
V
4.6
Figure 14. NCP1400ASN30T1 Output Voltage
vs. Temperature
300
250
200
150
300
250
200
150
NCP1400ASN50T1
L = 10 µH
I
= 4.0 mA
O
V
= 1.2 V
in
TA, AMBIENT TEMPERATURE (°C)
Figure 15. NCP1400ASN50T1 Output Voltage
vs. Temperature
100
NCP1400ASN30T1
V
= 3.0 V x 0.96
, OSCILLATOR FREQUENCY (kHz)
50
OSC
f
OUT
Open–loop Test
0
–505075250100–25
TA, AMBIENT TEMPERATURE (°C)
Figure 16. NCP1400ASN30T1 Oscillator
Frequency vs. T emperature
100
90
80
70
60
, MAXIMUM DUTY CYCLE (%)
MAX
D
NCP1400ASN30T1
V
50
40
OUT
Open–loop Test
–5050100250–25
= 3.0 V x 0.96
TA, AMBIENT TEMPERATURE (°C)
Figure 18. NCP1400ASN30T1 Maximum Duty
Cycle vs. T emperature
75
100
NCP1400ASN50T1
V
, OSCILLATOR FREQUENCY (kHz)
50
OSC
f
0
–50507525010
= 5.0 V x 0.96
OUT
Open–loop Test
–25
TA, AMBIENT TEMPERATURE (°C)
Figure 17. NCP1400ASN50T1 Oscillator
Frequency vs. T emperature
100
90
80
70
60
, MAXIMUM DUTY CYCLE (%)
MAX
D
NCP1400ASN50T1
V
50
40
OUT
Open–loop Test
–5050100250–25
= 5.0 V x 0.96
TA, AMBIENT TEMPERATURE (°C)
75
Figure 19. NCP1400ASN50T1 Maximum Duty
Cycle vs. T emperature
http://onsemi.com
6
Loading...
+ 11 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.