ON MC74VHC1GT50DF, MC74VHC1GT50DT Schematic [ru]

MC74VHC1GT50
Noninverting Buffer / CMOS Logic Level Shifter
TTL−Compatible Inputs
The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.
The device input is compatible with TTL−type input thresholds and the output has a f ull 5 V C MOS l evel o utput s wing. T he input p rotection circuitry on this device allows overvoltage tolerance on the input, allowing the device to be used as a logic−level translator from 3 V CMOS logic to 5 V CMOS Logic or from 1.8 V CMOS logic to 3 V CMOS Logic while operating at the high−voltage power supply.
The MC74VHC1GT50 input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage. This allows the MC74VHC1GT50 to be used to interface high voltage to low voltage circuits. The output structures also provide protection when V device destruction caused by supply voltage − input/output voltage mismatch, battery backup, hot insertion, etc.
= 0 V. These input and output structures help prevent
CC
http://onsemi.com
5
1
SC−88A/SOT−353/SC−70
DF SUFFIX
CASE 419A
5
1
TSOP−5/SOT−23/SC−59
DT SUFFIX
CASE 483
MARKING
DIAGRAMS
5
M
VL M G
G
1
5
VL M G
G
1
Features
Designed for 1.65 V to 5.5 V
High Speed: t
= 3.5 ns (Typ) at VCC = 5 V
PD
Low Power Dissipation: I
TTL−Compatible Inputs: V
CMOS−Compatible Outputs: V
Operation
CC
= 1 mA (Max) at TA = 25°C
CC
= 0.8 V; VIH = 2.0 V, VCC = 5 V
IL
> 0.8 VCC; VOL < 0.1 VCC @Load
OH
Power Down Protection Provided on Inputs and Outputs
Balanced Propagation Delays
Pin and Function Compatible with Other Standard Logic Families
Chip Complexity: FETs = 104; Equivalent Gates = 26
Pb−Free Packages are Available
5
NC
1
2
IN A
34
Figure 1. Pinout (Top View)
V
CC
OUT YGND
VL = Device Code M = Date Code* G = Pb−Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary
depending upon manufacturing location.
PIN ASSIGNMENT
1 2
3 GND
4
5V
FUNCTION TABLE
A Input Y Output
L
H
NC
IN A
OUT Y
CC
L
H
IN A
Figure 2. Logic Symbol
© Semiconductor Components Industries, LLC, 2007
February, 2007 − Rev. 13
1
OUT Y
ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.
1 Publication Order Number:
MC74VHC1GT50/D
MC74VHC1GT50
MAXIMUM RATINGS
Symbol Characteristics Value Unit
V
V
V
I
I
OUT
I
q
T
V
I
Latchup
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Opera t i n g Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
1. Tested to EIA/JESD22−A114−A
2. Tested to EIA/JESD22−A115−A
3. Tested to JESD22−C101−A
4. Tested to EIA/JESD78
DC Supply Voltage −0.5 to +7.0 V
CC
DC Input Voltage −0.5 to +7.0 V
IN
DC Output Voltage VCC = 0
OUT
I
Input Diode Current −20 mA
IK
Output Diode Current V
OK
High or Low State
< GND; V
OUT
OUT
> V
CC
−0.5 to 7.0
−0.5 to V
CC
+20 mA DC Output Current, per Pin +25 mA DC Supply Current, VCC and GND +50 mA
CC
P
Power dissipation in still air SC−88A, TSOP−5 200 mW
D
Thermal resistance SC−88A, TSOP−5 333 °C/W
JA
T
Lead temperature, 1 mm from case for 10 secs 260 °C
L
T
Junction temperature under bias +150 °C
J
Storage temperature −65 to +150 °C
stg
ESD Withstand Voltage Human Body Model (Note 1)
ESD
Machine Model (Note 2)
Charged Device Model (Note 3)
> 2000
> 200
N/A Latchup Performance Above VCC and Below GND at 125°C (Note 4) ±500 mA
+ 0.5
V
V
RECOMMENDED OPERATING CONDITIONS
Symbol Characteristics Min Max Unit
V
V
V
t
DC Supply Voltage 1.65 5.5 V
CC
DC Input Voltage 0.0 5.5 V
IN
DC Output Voltage VCC = 0
OUT
T
Operating Temperature Range −55 +125 °C
A
, tfInput Rise and Fall Time VCC = 3.3 V ± 0.3 V
r
High or Low State
V
= 5.0 V ± 0.5 V
CC
0.0
0.0
0 0
5.5
V
100
20
CC
ns/V
Device Junction Temperature versus Time to 0.1% Bond Failures
Junction
Temperature °C
Time, Hours Time, Years
80 1,032,200 117.8
90 419,300 47.9 100 178,700 20.4 110 79,600 9.4 120 37,000 4.2 130 17,800 2.0 140 8,900 1.0
Figure 3. Failure Rate vs. Time Junction Temperature
FAILURE RATE OF PLASTIC = CERAMIC UNTIL INTERMETALLICS OCCUR
= 130 C°
J
T
J
J
T
T
= 110 C°
= 120 C°
1
NORMALIZED FAILURE RATE
1 10 100
TIME, YEARS
C°
C°
= 80
= 90
= 100 C°
J
T
J
J
T
T
1000
V
http://onsemi.com
2
MC74VHC1GT50
Î
l
Î
Î
DC ELECTRICAL CHARACTERISTICS
V
CC
Symbol Parameter Test Conditions (V) Min Typ Max Min Max Min Max Unit
V
IH
Minimum High−Level Input Voltage
1.65 to 2.29
2.3 to 2.99
3.0
4.5
5.5
V
IL
Maximum Low−Level Input Voltage
1.65 to 2.29
2.3 to 2.99
3.0
4.5
5.5
OH
OL
I
IN
Minimum High−Level Output Voltage
Maximum Low−Level Output Voltage
Maximum Input Leakage
V
= V
IN
IH
IOH = −50 mA
1.65 to 2.99
3.0
4.5
V
= VIH
IN
I
= −4 mA
OH
= −8 mA
I
OH
VIN = V
IL
IOL = 50 mA
3.0
4.5
1.65 to 2.99
3.0
4.5
V
= V
IN
IL
IOL = 4 mA
= 8 mA
I
OL
3.0
4.5
VIN = 5.5 V or GND 0 to
5.5
V
V
Current Maximum
I
CC
Quiescent
VIN = VCC or GND 5.5 1.0 20 40
Supply Current
I
CCT
Quiescent Supply
Input: VIN = 3.4 V 5.5 1.35 1.50 1.65 mA
Current
I
OPD
Output Leakage
V
= 5.5 V 0.0 0.5 5.0 10
OUT
Current
TA = 25°C TA 85°C −55 TA 125°C
0.50 V
CC
0.45 V
CC
1.4
2.0
2.0
VCC − 0.1
2.9
4.4
2.58
3.94
3.0
4.5
0.0
0.0
0.10 V
0.15 V
0.53
0.8
0.8
0.1
0.1
0.1
0.36
0.36
CC CC
0.50 V
CC
0.45 V
CC
1.4
2.0
2.0
VCC − 0.1
2.9
4.4
2.48
3.80
0.10 V
0.15 V
0.53
0.8
0.8
0.1
0.1
0.1
0.44
0.44
CC CC
VCC − 0.1
$0.1 $1.0 $1.0
0.50 V
0.45 V
1.4
2.0
2.0
2.9
4.4
2.34
3.66
CC CC
0.10 V
0.15 V
0.53
0.8
0.8
0.1
0.1
0.1
0.52
0.52
CC CC
V
V
V
V
V
V
mA
mA
mA
= 50 pF
= 50 pF
= 50 pF
= 3.0 ns
f
Min
TA = 25°C
Typ
4.5
6.3
3.5
4.3
Max
13.3
19.5
10.0
13.5
6.7
7.7
TA 85°C
Min
−55 TA 125°C
Max
14.5
22.0
11.0
15.0
7.5
8.5
Min
Max
17.5
25.5
13.0
17.5
8.5
9.5
5 10 10 10 pF
Unit
ns
ns
AC ELECTRICAL CHARACTERISTICS C
ÎÎ
Symbo
t
PLH
t
PHL
C
ÎÎÎÎ
,
Maximum Propagation Delay, Input A to Y
Maximum Input
IN
Capacitance
Parameter
ОООООООО
Test Conditions
VCC = 1.8 ± 0.15 V CL = 15 pF 16.6 18.0 22.0 ns VCC = 2.5 ± 0.2 V CL = 15 pF
VCC = 3.3 ± 0.3 V CL = 15 pF
VCC = 5.0 ± 0.5 V CL = 15 pF
= 50 pF, Input tr = t
load
C
C
C
L
L
L
Typical @ 25°C, VCC = 5.0 V
C
Power Dissipation Capacitance (Note 5)
PD
12
pF
5. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I power consumption; P
= CPD V
D
2
fin + ICC VCC.
CC
= CPD VCC fin + ICC. CPD is used to determine the no−load dynamic
)
CC(OPR
http://onsemi.com
3
Loading...
+ 4 hidden pages