MC74VHC1G50
Buffer
The MC74VHC1G50 is an advanced high speed CMOS buffer
fabricated with silicon gate CMOS technology. It achieves high speed
operation similar to equivalent Bipolar Schottky TTL while maintaining
CMOS low power dissipation.
The internal circuit is composed of three stages, including a buffered
output which provides high noise immunity and stable output.
The MC74VHC1G50 input structure provides protection when
voltages up to 7.0 V are applied, regardless of the supply voltage. This
allows the MC74VHC1G50 to be used to interface 5.0 V circuits to 3.0 V
circuits.
• High Speed: t
• Low Power Dissipation: I
• Power Down Protection Provided on Inputs
• Balanced Propagation Delays
• Pin and Function Compatible with Other Standard Logic Families
• Chip Complexity: FET = 104; Equivalent Gate = 26
• These devices are available in Pb--free package(s). Specifications herein
apply to both standard and Pb--free devices. Please see our website at
www.onsemi.com for specific Pb--free orderable part numbers, or
contact your local ON Semiconductor sales office or representative.
= 3.5 ns (Typ) at VCC=5V
PD
=1mA(Max)atTA=25°C
CC
http://onsemi.com
SC--88A / SOT--353/SC--70
DF SUFFIX
CASE 419A
TSOP-- 5/SOT--23/SC--59
DT SUFFIX
CASE 483
MARKING
DIAGRAMS
d
VR
Pin 1
d = Date Code
d
VR
Pin 1
d = Date Code
1
NC
IN A
2
3
GND
Figure 1. Pinout (Top View)
IN A
1
Figure 2. Logic Symbol
5
4
OUT Y
V
CC
OUT Y
PIN ASSIGNMENT
1
2
3GND
4
5V
NC
IN A
OUT Y
CC
FUNCTION TABLE
A Input Y Output
L
H
L
H
ORDERING INFORMATION
See detailed ordering and shippinginformation in the package
dimensions section on page 4 of this data sheet.
© Semiconductor Components Industries, LLC, 2006
March, 2006 -- Rev. 12
1 Publication Order Number:
MC74VHC1G50/D
MC74VHC1G50
MAXIMUM RATINGS (Note 1)
Symbol
V
CC
V
IN
V
OUT
I
IK
I
OK
I
OUT
I
CC
P
D
θ
JA
T
L
T
J
T
stg
V
ESD
I
Latch--Up
DC Supply Voltage --0.5to+7.0 V
DC Input Voltage --0.5to+7.0 V
DC Output Voltage VCC=0
Input Diode Current -- 2 0 mA
Output Diode Current V
DC Output Current, per Pin +25 mA
DC Supply Current, VCCand GND +50 mA
Power dissipation in still air SC--88A, TSOP-- 5 200 mW
Thermal resistance SC--88A, TSOP--5 333 °C/W
Lead temperature, 1 mm from case for 10 s 260 °C
Junction temperature under bias +150 °C
Storage temperature --65 to +150 °C
ESD Withstand Voltage Human Body Model (Note 2)
Latch--Up Performance Above VCCand Below GND at 125°C(Note5) ±500 mA
1. Maximum Ratings are those values beyond which damage to the device may occur.Exposure to these conditions or conditions beyond those
indicated may adversely affect device reliability. Functional operation under absolute--maximum--rated conditions is not implied. Functional
operation should be restricted to the Recommended Operating Conditions.
2. Tested to EIA/JESD22--A114--A
3. Tested to EIA/JESD22--A115--A
4. Tested to JESD22--C101--A
5. Tested to EIA/JESD78
Characteristics Value Unit
High or Low State
< GND; V
OUT
OUT>VCC
Machine Model (Note 3)
Charged Device Model (Note 4)
--0.5to7.0
--0.5toV
CC
+0.5
+20 mA
> 2000
> 200
N/A
V
V
RECOMMENDED OPERATING CONDITIONS
Symbol Characteristics Min Max Unit
V
CC
V
IN
V
OUT
T
A
tr,t
DC Supply Voltage 2.0 5.5 V
DC Input Voltage 0.0 5.5 V
DC Output Voltage 0.0 V
CC
Operating Temperature Range -- 5 5 +125 °C
Input Rise and Fall Time VCC=3.3V± 0.3 V
f
V
=5.0V± 0.5 V
CC
0
0
100
20
Device Junction Temperature versus
Time to 0.1% Bond Failures
Junction
Temperature °C
Time, Hours Time, Years
80 1,032,200 117.8
90 419,300 47.9
100 178,700 20.4
110 79,600 9.4
120 37,000 4.2
130 17,800 2.0
140 8,900 1.0
FAILURE RATE OF PLASTIC = CERAMIC
UNTIL INTERMETALLICS OCCUR
= 130 C°
J
T
J
J
T
T
=110 C°
= 120 C°
1
NORMALIZED FAILURE RATE
1 10 100
TIME, YEARS
Figure 3. Failure Rate vs. Time
C°
C°
=80
=90
= 100 C°
J
T
J
J
T
T
1000
Junction Temperature
V
ns/V
http://onsemi.com
2
DC ELECTRICAL CHARACTERISTICS
Symbol Parameter Test Conditions
V
IH
V
IL
V
OH
V
OL
I
IN
I
CC
Minimum High--Level
Input Voltage
Maximum Low--Level
Input Voltage
Minimum High--Level
Output Voltage
IN=VIH
or V
IL
V
Maximum Low--Level
Output Voltage
IN=VIH
or V
IL
V
Maximum Input
Leakage Current
Maximum Quiescent
Supply Current
VIN=VIHor V
IOH=--50mA
VIN=VIHor V
IOH=--4mA
=--8mA
I
OH
VIN=VIHor V
IOL=50mA
VIN=VIHor V
IOL=4mA
=8mA
I
OL
IL
IL
IL
IL
VIN=5.5VorGND 0to
VIN=VCCor GND 5.5 1.0 20 40
MC74VHC1G50
V
CC
(V)
2.0
3.0
4.5
5.5
2.0
3.0
4.5
5.5
2.0
3.0
4.5
3.0
4.5
2.0
3.0
4.5
3.0
4.5
5.5
TA=25°C TA≤ 85°C -- 5 5 ≤ TA≤ 125°C
Min Typ Max Min Max Min Max
1.5
2.1
3.15
3.85
1.9
2.0
2.9
3.0
4.4
4.5
2.58
3.94
0.0
0.0
0.0
0.5
0.9
1.35
1.65
0.1
0.1
0.1
0.36
0.36
1.5
2.1
3.15
3.85
0.5
0.9
1.35
1.65
1.9
2.9
4.4
2.48
3.80
0.1
0.1
0.1
0.44
0.44
1.5
2.1
3.15
3.85
0.5
0.9
1.35
1.65
1.9
2.9
4.4
2.34
3.66
0.1
0.1
0.1
0.52
0.52
±0.1 ±1.0 ±1.0
Unit
V
V
V
V
V
V
mA
mA
AC ELECTRICAL CHARACTERISTICS C
= 50 pF, Input tr=tf=3.0ns
load
TA=25°C TA≤ 85°C -- 5 5 ≤ TA≤ 125°C
Symbol Parameter Test Conditions
t
PLH
t
PHL
,
Maximum Propagation Delay,
Input A to
Y
VCC=3.3± 0.3 V CL=15pF
C
VCC=5.0± 0.5 V CL=15pF
C
C
IN
Maximum Input Capacitance
=50pF
L
=50pF
L
Min Typ Max Min Max Min Max
4.5
6.4
3.5
4.5
7.1
10.6
5.5
7.5
8.5
12.0
6.5
8.5
10.0
14.5
8.0
10.0
4 10 10 10 pF
Unit
ns
Typical @ 25°C, VCC=5.0V
C
PD
Power Dissipation Capacitance (Note 6)
8.0
pF
6. CPDis defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: I
power consumption; P
D=CPD
¯ V
CC
2
¯ fin+ICC¯ VCC.
=CPD¯ VCC¯ fin+ICC.CPDis used to determine the no --load dynamic
)
CC(OPR
http://onsemi.com
3