All specifications are subject to change without notice.
PREFACE
This Maintenance Manual describes the field maintenance methods for LED Page Printers.
This manual is written for use by service persons. Please note that you should refer to the Printer
Handbook for the handling and operating methods of the equipment.
ture 77 ˚F (25 ˚C))
(7) Paper feeding methodAutomatic paper feed or manual paper feed
(8) Paper delivery methodFace down
(9) Resolution300 dpi x 300 dpi, 600 dpi x 600 dpi (quasi)
(10)Power input230 VAC +15%, -14% (for OEL/INT)
120 VAC +6%, -15% (for ODA)
(11)Power consumptionPeak:450W
Typical operation:100W
Idle:30W
Power save mode:5W
1 - 3
(12) Temperature and humidity
C
Temperature
During operation
In storage
aution: Temperature and humidity in storage are measured with the PN212
being packed; they are valid for one year.
10 to 32 ˚C
–10 to +43 ˚C
20 to 80% RH (relative humidity)
10 to 90% RH (relative humidity)
1.4.1Certification Label
The safety certification label is affixed to the following location of the OKIPAGE 4w:
ODA
OEL
/OKI-INT
1.4.2Warning Label
Warning labels are affixed to the locations that may cause bodily injury.
During maintenance, do work with enough care while following instructions on these warning
labels.
1 - 5
2.OPERATION DESCRIPTION
2.OPERATION DESCRIPTION
The OKIPAGE 4w consists of a main control board, a high-voltage power supply board, a power
supply unit, and an electro-photographic processor. The OKIPAGE 4w receives print data from
a higher-level interface and sequentially stores it in memory. The OKIPAGE 4w decodes and
edits the received data while storing print data from the interface in memory. It sequentially
transfers the edited data to the LED head for each dot line. The electro-photographic processor
then prints the data on sheets of paper.
The display of the higher-level host is used for device operation and status display.
Figure 2-1 is the block diagram of the OKIPAGE 4w.
2 - 1
EEPROM
Parallel
I/F
LED head
Main motor
Electromagnetic
clutch
Sensors
TEMP
TR-VSEN
TR-ISEN
Reset
circuit
10 MHz
MSM65917
(nX-8 core)
Address
latch
EPROM
(52 KByte)
OE
CS
A8 ~ A15
AD0 ~ AD7A0 ~ A7
D0 ~ D3
A0 ~ A10
D0 ~ D7
D-RAM
(128 KByte)
DriverHigh-voltage power I/F
LED
HEAT ON
5V
5V
OVL
CN
Parallel
I/F
Parallel
I/F
LED head
Main motor
Electromagnetic
clutch
LS07
Driver
Main motor
Electromagnetic
clutch
LED head
Driver
Driver
AC output ON/OFF
Switching
power supply
<Power Supply Unit>
<Main Control Board>
<High-voltage Power Supply Board>
LED
Thermistor
EP cartridge
Heater
(Halogen lamp)
AC
(120 V/230 V)
Manual feed sensor
Paper sensor
Outlet sensor
Toner sensor
Cover open switch
LED
Sensors
TEMP
High-voltage
power I/F
TR-VSEN
TR-ISEN
HEAT ON
+24 V
+5 V
0VL
0VP
M
High voltage
power
supply
Figure 2-1 Block Diagram
2 - 2
2.1Main Control Board
.
The main control board consists of a one-chip CPU, a program ROM, a DRAM, an EEPROM, a
host interface circuit, and a mechanism driving circuit. The mechanism driving circuit consists of
a LED head, a main motor, and an electromagnetic clutch.
(1) One-chip CPU
The one-chip CPU is a custom CPU (8-bit internal bus, 8-bit external bus, 10-MHz clock)
incorporating mask ROM and CPU peripheral devices. This CPU has the functions listed in
the table below.
Built-in DeviceFunction
DRAM controller
DMA controller
Parallel interface controller
Video output port
LED STB output port
Timer
I/O port
A/D converter
(2) Program ROM
Program ROM contains a program for the equipment. EPROM is used as program ROM.
When mask ROM in the one-chip CPU explained in (1) above is valid, the EPROM is not
mounted. (For details on short wiring setting, see Section 7.2.)
(3) DRAM
DRAM is used as resident memory.
Controls DRAM.
Transfers image data from Parallel I/F to DRAM, from DRAM to a video output port and
between CPU and DRAM.
Controls the parallel interface.
Controls LED head.
Generates various control timings for monitoring paper feeding and a paper size.
Inputs and outputs the sensor signals and motor signals, etc.
Also performs I/O for EEPROM.
Inputs the feedback signals from a high-voltage generation circuit and thermistor signal
(4) EEPROM
EEPROM holds the following data:
• Menu data
• Counter value
• Adjustment value
(5) Parallel interface
The parallel interface receives parallel data from the host; it conforms to the IEEE1284
specification.
2 - 3
2.2Power Supply Unit
The power supply unit supplies +5 V and +24 V to the main control board according to 230 VAC
/120 VAC.
Output voltageApplication
+5 V
+24 V
Used to generate a logic circuit and a high voltage.
Used to drive the motor and electromagnetic clutch.
The power supply unit also contains a heater drive circuit.
2.3High-Voltage Power Supply Board
(1) High-Voltage power supply circuit
The high-voltage power supply circuit generates the following voltages required for the
electro-photographic processor from +5 V according to the control sequence from the main
control board. When the cover is open, +5 V supply is automatically interrupted to stop highvoltage output.
OutputApplication
CH
–1.35 KV
DB
–300 V/+300 V
SB
–450 V/ 0 V
CB
+400 V
TR
+500 V ~ +3.5 KV/–750 V
Voltage
Voltage to be applied to a charge roller.
Voltage to be applied to a developing roller.
Voltage to be applied to a sponge roller.
Voltage to be applied to a cleaning roller.
Voltage to be applied to a transfer roller.
Caution: The TR voltage varies with medium and transfer roller impedance.
2 - 4
(2) Sensors
.
.
.
gh
The high-voltage power supply board consists of the high-voltage power supply circuit that
supplies power to the electro-photographic processor system and the photosensor that
detects a paper feeding system and toners.
Figure 2-2 shows the sensor layout drawing.
Exit roller
Outlet sensor
Heat roller
Transfer roller
Paper sensor
Toner
sensor
assy
Manual feed sensor
Paper feeding direction
Feed roller
Hopping
roller
Figure 2-2
SensorFunctionSensing State
Manual feed
sensor
Paper sensor
Outlet sensor
Toner sensor
Monitors whether paper was inserted into the manual feed sensor
section.
Detects the leading part of the paper.
Monitors paper feeding.
Monitors paper feeding and the paper size according to the paper
sensor arrival and passing time.
Detects the low toner status.
ON: Paper exists.
OFF: No paper exists
ON: Paper exists.
OFF: No paper exists
ON: Paper exists.
OFF: No paper exists
ON (long): Toner low
OFF (short): Toner Hi
2 - 5
2.4Electro-Photographic Processor
The electro-photographic processor prints out the image data to be sent from the main control
board on sheets of paper. Figure 2-3 shows the layout drawing of the electro-photographic
processor.
(1) Image drum unit
The image drum unit makes a toner adhere to the formed electrostatic latent image with static
electricity. This electrostatic latent image is formed by the lights irradiated from LED heads.
(2) Electromagnetic clutch
The electromagnetic clutch controls the rotation of the hopping roller according to signals
from the control block.
2 - 6
Exit roller
10
OFF
26.50
ON
64.60
Single tray
Transfer roller
(ø 15.000)
Heat roller
(ø 19.910)
Outlet sensor
Cleaning roller
(ø 9.000)
Charge roller
(ø 9.000)
6.85
6.77
LED head
17.23
Drum roller
(ø 16.000)
20.32
12.72
23.18
Developing roller
(ø 14.000)
32.00
Paper sensor
10
Hopping roller
OFF
10
OFF
ON
Tray printing
Figure 2-3 Layout Drawing of Electro-Photographic Processor
2 - 7
Feed roller
Manual
printing
Manual feed sensor
(3) Pulse motor (Main)
n
p
This pulse motor of 48 steps/rotation is two-phase excited by the signal from the main control
board; it performs feeding control by switching normal rotation to reverse rotation or vice
versa and turning on/off the electromagnetic clutch. The relationship between the main
motor, electromagnetic clutch, regist gear, drum gear, hopping roller is shown in the table
below and on the subsequent pages.
Main MotorElectromagnetic Clutch
Normal rotation
Reverse rotation
OFF
ON
OFF
Hopping Roller
Non-rotation
Rotation
Non-rotation
Regist GearDrum GearOperatio
Non-rotation
Rotation
Rotation
Rotation
Rotation
Rotation
Warm-u
Hopping
Prinitng
(4) LED head
The shift and latch registers receive image data from the main control board for each dot line.
2,560 or 2,496 LEDs are driven to radiate the image drum.
(5) Heat Assy
The heat Assy consists of a heater, a heat roller, a thermistor, and a thermostat.
The power supply unit supplies AC voltage to the heater according to the HEATON signal
from the main control board to heat the heat roller. The main control board monitors the heat
roller temperature via the thermistor and keeps the temperature constant by turning on/off
the heater AC voltage supply.
If the heat roller temperature rises abnormally, the thermostat of the heater voltage supply
circuit functions to forcibly suspend the AC voltage supply.
Hopping operation from the tray, however, is performed when the electromagnetic clutch is turned on.
Figure 2-4 Schematic Drawing of OKIPAGE 4w Paper Feeding
2 - 9
2.5Electro-Photographic Process
(1) Electro-photographic process
The electro-photographic process is outlined below.
1 Charging
The surface of the OPC drum is charged negatively and uniformly by applying the DC
voltage to the CH roller.
2 Exposure
Light emitted from the LED head irradiates the negatively charged surface of the OPC
drum. The surface potential of the irradiated surface attenuates to form the electrostatic
latent image corresponding to the image signal.
3 Development and residual toner recovery
The negatively charged toner is brought into contact with the OPC drum, adhering to the
electrostatic latent image on the OPC drum by static electricity. This adhesion causes
the electrostatic latent image to change to a visible image.
At the same time, the residual toner on the OPC drum is attracted to the developing
rollerby static electricity.
4 Transfer
When paper is placed over the image drum surface, the positive charge which is
opposite in polarity to that of the toner, is applied to the reverse side by the transfer roller.
The toner is attracted by the positive charge and is transferred onto the paper. This
results in the transfer of the toner image formed on the image drum onto the paper.
5 Cleaning
The cleaning roller temporarily attracts the residual toner on the transferred OPC drum
with static electricity, then returns the toner to the OPC drum.
6 Fusing
The transferred unfused toner image is fused to a sheet of paper by applying heat and
pressure to the image.
Figure 2-5 is a flow for the electro-photographic process.
2 - 10
Paper
feed
n
tion
holder
sectio
Manual
Control signal
LED head
Power
Exposure
supply
Toner
Developing
cartridge
roller
Paper
supply
Transfer
Hopping
Feed roller
Paper sensor
Transfer roller
sensor
Manual feed
roller
: Paper feeding path
: OPC drum rotation direc
Power
supply
roller
Charge
Paper delivery
Charging
Power
supply
CleaningDevelopment
roller
Cleaning
Paper feeding
roller
Paper eject
Fusing
Outlet sensor
Power
supply
roller
Back-up
Heat roller
Figure 2-5 Flow for Electro-Photographic Process
Paper ejectionFusingCleaningTransferDevelopmentPaper feedPaper hopping
2 - 11
2.5.1Explanation of Each Process Operation
(1) Hopping
As shown in the figure below, the clutch for hopping is turned on/off according to current ON/
OFF to a coil.
When the clutch is OFF
Hopping gear
Coil
Spring for resetting
Clutch plate
Magnetic
substance plate
Pin
Hopping roller
When the clutch is ON
Hopping shaft
Hopping gear
Engagement section
Clutch plate
When the clutch is on, the hopping gear engages with the clutch plate to rotate the hopping
roller.
When the clutch is off, the hopping gear is separated from the clutch plate by the spring for
resetting, disabling the rotation of the hopping roller.
2 - 12
(2) Printing and warm-up
At warm-up
Triple gear
Transfer gear
Resist gear
Idle gear
Planetary gear
a
Pulse motor (main)
Hopping gear
a"
a'
Gear A
Rotate the pulse motor (main) in the a direction. The planetary gear rotates in the a’ direction,
dislocating its position in the a” direction. This causes the planetary gear to be separated from
gear A. The hopping gear will not rotate. The triple gear and transfer gear rotate via the idle
gear to drive the EP unit.
At printing
Transfer gear
Resist gear
Hopping gear
Triple gear
b"
b'
Gear A
The paper is further advanced in synchronization to the print data.
Idle gear
Planetary gear
b
Pulse motor (main)
2 - 13
(3) Charging
Charging is performed by applying DC voltage to the charge roller that is in contact with the
surface of the OPC drum.
High-
voltage
power
supply
OPC drum
Charge roller
(4) Exposure
High-
voltage
power
supply
Light emitted from the LED head irradiates the negatively charged surface of the OPC drum.
The surface potential of the irradiated surface attenuates to form the electrostatic latent
image corresponding to the image signal.
LED head
Charge roller
OPC drum
LED head
2 - 14
Paper
OPC drum
(5) Development
The electrostatic latent image on the surface of the OPC drum is changed to a visible toner
image by applying a toner to it. Development is performed in the contact part between the
OPC drum and developing roller.
1 The sponge roller negatively charges a toner and applies it to the developing roller.
Developing blade
Charge roller
Sponge roller
Developing roller
OPC drum
2 The toner applied to the developing roller is thin-coated by the developing blade.
3 A toner adheres to the exposure part of the OPC drum in the contact part between the
OPC drum and developing roller. This causes the electrostatic latent image to be
changed to a visible image.
2 - 15
(6) Transfer
The transfer roller is composed of conductive sponge material. This roller is set so that the
surface of the OPC drum and sheets of paper will adhere closely.
A sheet of paper is placed on the surface of the OPC drum and the positive charge opposite
to the negative charge of a toner is applied from the reverse side by the transfer roller.
When a high negative voltage is applied from the power supply to the transfer roller, the
positive charge induced on the surface of the transfer roller moves to the paper side at the
contact part between the transfer roller and the sheet of paper. The positive charge on the
lower side of the sheet of paper then causes the negatively charged toner adhering to the
surface of the OPC drum to move to the upper side of the sheet. This enables transfer to the
sheet of paper.
OPC drum
Transfer roller
Paper
High-voltage
power supply
2 - 16
(7) Fusing
The transferred unfused toner image is fused to a sheet of paper because heat and pressure
are applied when it passes between the heat roller and back-up roller.
The Teflon-coated heat roller contains a 400 W heater (Halogen lamp) that heats the heat
roller. The thermistor on the surface of the heat roller keeps the temperature of the heat roller
constant. A thermostat is also installed for safety. If temperature rises abnormally, this
thermostat opens to suspend voltage supply to the heater.
The back-up roller is pressurized to the heat roller by the pressure spring on each side.
Thermistor
Separation claw
Heat roller
Heater
Back-up roller
Pressure spring
(8) Cleaning
After transfer has terminated, the cleaning roller temporarily draws in the untransferred
residual toner adhering to the OPC drum with static electricity and then returns it to the OPC
drum.
OPC drum
Cleaning roller
High-voltage
power supply
Transfer roller
2 - 17
2.6Paper Jam Detection
it
us
.0
.0
mm
The OKIPAGE 4w monitors the paper status when the power supply is on and during printing. In
the following cases, the OKIPAGE 4w interrupts the printing process as a paper jam. Printing can
be recovered by opening the cover, removing the jammed paper, and closing the cover.
Error
Cause of Error
Paper inlet jam••Only the manual feed sensor detects "Paper exists" when the power supply is on.
The leading part of the paper does not reach the paper sensor although hopping
operation was performed three time.
Paper feed jam• The leading part of the paper does not reach the outlet sensor within a fixed time after
has passed the paper sensor.
Paper outlet jam• The trailing part of the paper does not pass the outlet sensor within L mm after the
leading part of the paper has passed the outlet sensor.
2.52" (64 mm) L 15.77" (400.6 mm)
<=<
=
Paper size error• The trailing part of the paper does not pass the paper sensor within L mm after the
leading part of the paper has passed the paper sensor.
2.52" (64 mm) L 15.77" (400.6 mm)
<=<
=
Paper Feed Check List
Type of Error
Supervisory Sensor
Reference Value
Error
PluseMin
Paper feed error
Paper feed jam1
Paper size error
Paper outlet jam
Paper feed jam 2
Electromagnetic clutch ON/
Paper sensor ON
Paper sensor ON/
Outlet sensor ON
Paper sensor ON/
Paper sensor OFF
Outlet sensor ON/
Outlet sensor OFF
Paper end sensor OFF/
Outlet sensor OFF
2 - 18
69.8
122.9
2.52" (64 mm) L
<=<
15.77" (400.56 mm)
2.52" (64 mm) L
<=<
15.77" (400.56 mm)
121.9
35
20.0
=
=
—
45.0
20.0
—
—
—
45
20
Unit:
P
ulse motor
(
E
c
M
s
P
O
main)
Normal
rotation
OFF
Reverse
rotation
lectromagnetic
lutch
anual feed
ensor
aper sensor
utlet sensor
Operation mode
OFF
ON
OFF
ON
OFF
ON
OFF
ON
Warm-upPaper feedPrinting
Timing Chart for Paper Feed (Tray Feed)
2 - 19
Loading...
+ 85 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.