NXP 74HC 132D NXP Datasheet

INTEGRATED CIRCUITS
DATA SH EET
For a complete data sheet, please also download:
The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines
74HC/HCT132
Quad 2-input NAND Schmitt trigger
Product specification File under Integrated Circuits, IC06
September 1993
Philips Semiconductors Product specification
Quad 2-input NAND Schmitt trigger 74HC/HCT132

FEATURES

Output capability: standard
ICC category: SSI

GENERAL DESCRIPTION

The 74HC/HCT132 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.
The 74HC/HCT132 contain four 2-input NAND gates which accept standard input signals. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.
The gate switches at different points for positive and negative-going signals. The difference between the positive voltage
and the negative voltage VT is defined as the hysteresis voltage VH.
V
T+

QUICK REFERENCE DATA

GND = 0 V; T
=25°C; tr=tf= 6 ns
amb
SYMBOL PARAMETER CONDITIONS
t
PHL
C C
I PD
/ t
PLH
propagation delay nA, nB to nY CL= 15 pF; VCC=5 V 11 17 ns input capacitance 3.5 3.5 pF power dissipation capacitance per gate notes 1 and 2 24 20 pF
Notes
1. C
is used to determine the dynamic power dissipation (PD in µW):
PD
PD=CPD× V
2
× fi+∑(CV
CC
2
× fo) where:
CC
fi= input frequency in MHz fo= output frequency in MHz (CV
2
× fo) = sum of outputs
CC
CL= output load capacitance in pF VCC= supply voltage in V
2. For HC the condition is VI= GND to V
CC
For HCT the condition is VI= GND to VCC− 1.5 V

ORDERING INFORMATION

“74HC/HCT/HCU/HCMOS Logic Package Information”
See
.
TYPICAL
UNIT
HC HCT
September 1993 2
Philips Semiconductors Product specification
Quad 2-input NAND Schmitt trigger 74HC/HCT132

PIN DESCRIPTION

PIN NO. SYMBOL NAME AND FUNCTION
1, 4, 9, 12 1A to 4A data inputs 2, 5, 10, 13 1B to 4B data inputs 3, 6, 8, 11 1Y to 4Y data outputs 7 GND ground (0 V) 14 V
CC
positive supply voltage
Fig.1 Pin configuration. Fig.2 Logic symbol. Fig.3 IEC logic symbol.

FUNCTION TABLE

INPUTS OUTPUT
nA nB nY
LL H
LH H HL H HH L
Notes
1. H = HIGH voltage level L = LOW voltage level
Fig.5 Logic diagram
Fig.4 Functional diagram.
(one Schmitt trigger).

APPLICATIONS

Wave and pulse shapers
Astable multivibrators
Monostable multivibrators
September 1993 3
Philips Semiconductors Product specification
Quad 2-input NAND Schmitt trigger 74HC/HCT132
DC CHARACTERISTICS FOR 74HC
For the DC characteristics see
“74HC/HCT/HCU/HCMOS Logic Family Specifications”
given below. Output capability: standard
ICC category: SSI
Transfer characteristics for 74HC
Voltages are referenced to GND (ground = 0 V)
SYMBOL PARAMETER
min. typ. max. min. max. min. max.
V
T+
positive-going threshold 0.7 1.18 1.5 0.7 1.5 0.7 1.5 V 2.0 Figs 6 and 7
1.7 2.38 3.15 1.7 3.15 1.7 3.15 4.5
2.1 3.14 4.2 2.1 4.2 2.1 4.2 6.0
V
T
negative-going threshold 0.3 0.63 1.0 0.3 1.0 0.3 1.0 V 2.0 Figs 6 and 7
0.9 1.67 2.2 0.9 2.2 0.9 2.2 4.5
1.2 2.26 3.0 1.2 3.0 1.2 3.0 6.0
V
H
hysteresis (VT+− VT) 0.2 0.55 1.0 0.2 1.0 0.2 1.0 V 2.0 Figs 6 and 7
0.4 0.71 1.4 0.4 1.4 0.4 1.4 4.5
0.6 0.88 1.6 0.6 1.6 0.6 1.6 6.0
(°C)
T
amb
74HC
+25 40 to +85 40 to +125
. Transfer characteristics are
TEST CONDITIONS
UNIT
WAVEFORMS
V
CC
(V)
AC CHARACTERISTICS FOR 74HC
GND = 0 V; t
= 6 ns; CL= 50 pF
r=tf
SYMBOL PARAMETER
t
PHL
/ t
propagation delay
PLH
nA, nB to nY
t
THL
/ t
output transition time 19 75 95 110 ns 2.0 Fig.13
TLH
T
(°C)
amb
74HC
UNIT
+25 40 TO +85 40 TO +125
min. typ. max. min. max. min. max.
36 125 155 190 ns 2.0 Fig.13 13 25 31 38 4.5 10 21 26 32 6.0
7 15 19 22 4.5 6 13 16 19 6.0
TEST CONDITIONS
WAVEFORMS
V
CC
(V)
September 1993 4
Philips Semiconductors Product specification
Quad 2-input NAND Schmitt trigger 74HC/HCT132
DC CHARACTERISTICS FOR 74HCT
For the DC characteristics see
“74HC/HCT/HCU/HCMOS Logic Family Specifications”
. Transfer characteristics are
given below. Output capability: standard
ICC category: SSI
Notes to HCT types
The value of additional quiescent supply current (I
) for a unit load of 1 is given in the family specifications.
CC
To determine ICC per input, multiply this value by the unit load coefficient shown in the table below.
INPUT UNIT LOAD COEFFICIENT
nA, nB 0.3
Transfer characteristics for 74HCT
Voltages are referenced to GND (ground = 0 V)
T
amb
(°C)
TEST CONDITIONS
74HCT
SYMBOL PARAMETER
+25 40 to +85 40 to +125
UNIT
V
(V)
min. typ. max. min. max. min. max.
V
T+
positive-going threshold 1.2 1.41 1.9 1.2 1.9 1.2 1.9 V 4.5 Figs 6 and 7
1.4 1.59 2.1 1.4 2.1 1.4 2.1 5.5
V
T
negative-going threshold 0.5 0.85 1.2 0.5 1.2 0.5 1.2 V 4.5 Figs 6 and 7
0.6 0.99 1.4 0.6 1.4 0.6 1.4 5.5
V
H
hysteresis (VT+− VT) 0.4 0.56 0.4 0.4 V 4.5 Figs 6 and 7
0.4 0.60 0.4 0.4 5.5
WAVEFORMS
CC
AC CHARACTERISTICS FOR 74HCT
GND = 0 V; t
= 6 ns; CL= 50 pF
r=tf
T
amb
74HCT
SYMBOL PARAMETER
+25 40 to +85 40 to +125
min. typ. max. min. max. min. max.
t
PHL
t
THL
/ t
/ t
propagation delay
PLH
nA, nB to nY
output transition time 7 15 19 22 ns 4.5 Fig.13
TLH
20 33 41 50 ns 4.5 Fig.13
September 1993 5
(°C)
UNIT
TEST CONDITIONS
WAVEFORMS
V
CC
(V)
Philips Semiconductors Product specification
Quad 2-input NAND Schmitt trigger 74HC/HCT132

TRANSFER CHARACTERISTIC WAVEFORMS

Fig.7 Waveforms showing the definition of VT+,
VT and VH; where VT+ and VT are between
Fig.6 Transfer characteristic.
limits of 20% and 70%.
Fig.8 Typical HC transfer characteristics;
VCC= 2 V.
Fig.10 Typical HC transfer characteristics;
VCC= 6 V.
September 1993 6
Fig.9 Typical HC transfer characteristics;
VCC= 4.5 V.
Fig.11 Typical HCT transfer characteristics;
VCC= 4.5 V.
Philips Semiconductors Product specification
Quad 2-input NAND Schmitt trigger 74HC/HCT132
Fig.12 Typical HCT transfer characteristics; VCC= 5.5 V.

AC WAVEFORMS

(1) HC : VM= 50%; VI= GND to VCC.
HCT: V
= 1.3 V; VI= GND to 3 V.
M
Fig.13 Waveforms showing the input (nA, nB) to output (nY) propagation delays and the output transition times.
September 1993 7
Philips Semiconductors Product specification
Quad 2-input NAND Schmitt trigger 74HC/HCT132
Application information
The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula: Pad=fi×(tr× I
Where:
P f
i
t
r
t
f
I
CCa
Average I
= additional power dissipation (µW)
ad
= input frequency (MHz) = input rise time (ns); 10% 90% = input fall time (ns); 10% 90% = average additional supply current (µA)
CCa
CCa
+ t I
CCa
) × VCC.
differs with positive or negative input transitions, as shown in Figs 14 and 15.
Fig.14 Average ICC for HC Schmitt trigger devices;
linear change of Vi between 0.1 VCC to
0.9 VCC.
HC/HCT132 used in a relaxation oscillator circuit, see Fig.16.
1
1
HC:
HCT:
=
f
-----------------
---
0.8RC
T
1
=
--­T
1
--------------------- -
0.67 RC
f
Fig.16 Relaxation oscillator using HC/HCT132.
Note to Application information
All values given are typical unless otherwise specified.

PACKAGE OUTLINES

“74HC/HCT/HCU/HCMOS Logic Package Outlines”
See
.
Fig.15 Average ICC for HCT Schmitt trigger
devices; linear change of Vi between
0.1 VCC to 0.9 VCC.
September 1993 8
This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.
Loading...