NTE NTE904 Datasheet

NTE904
Integrated Circuit
General Purpose Transistor Array
(Two Isolated Transistors and a Darlington
Connected Transistor Pair)
Description:
The NTE904 consists of four general purpose silicon NPN transistors on a common monolithic sub­strate in a 12–Lead TO5 type metal can. Two of the four transistors are connected in the Darlington configuration. The substrate is connected to a separate terminal for maximum flexibility.
The transistors of the NTE904 are well suited to a wide variety of applications in low power systems in the DC through VHF range. They may be used as discrete transistors in conventional circuits but in addition they provide the advantages of close electrical and thermal matching inherent in integrated circuit construction.
Features:
D Matched Monolithic General Purpose Transistors D Current Gain Matched to ±10% D Base–Emitter Voltage Matched to ±2mV D Operation from DC to 120MHz D Wide Operating Current Range D Low Noise Figure
Applications:
D General use in Signal Processing Systems in DC through VHF Range D Custom Designed Differential Amplifiers D Temperature Compenstaed Amplifiers
Absolute Maximum Ratings:
Collector–Emitter Voltage (Each Transistor), V Collector–Base Voltage (Each Transistor), V Collector–Substrate Voltage (Each Transistor, Note 1), V Emitter–Base Voltage (Each Transistor), V Collector Current (Each Transistor), I Power Dissipation, P
Any One Transistor 300mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total package 450mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Derate Above 85°C 5mW/°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Temperature Range, T Storage Temperature Range, T
Note 1. The collector of each transistor is isolated from the substrate by an integral diode. The sub-
strate (Pin10) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.
D
(TA = +25°C unless otherwise specified)
CEO
CBO
CIO
EBO
C
opr
stg
15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40V. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
–55° to +125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
–65° to +150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics: (TA = +25°C unless otherwise specified)
Parameter Symbol Test Conditions Min Typ Max Unit
Static Characteristics
Collector Cutoff Current I
Collector Cutoff Current (Darlington Pair) I Collector–Emitter Breakdown Voltage V Collector–Base Breakdown Voltage V Emitter–Base Breakdown Voltage V Collector–Substrate Breakdown Voltage V Collector–Emitter Saturation Voltage V Static Forward Current Transfer Ratio h
CBO
I
CEO
CEOD (BR)CEOIC (BR)CBOIC (BR)EBOIE
(BR)CIOIC
CE(sat)IC
FE
Magnitude of Static–Beta Ratio
(Isolated Transistors Q
Static Forward Current Transfer Ratio
and Q2)
1
h
FED
(Darlington Pair Q3 and Q4)
Base–Emitter Voltage V
BE
Input Offset Voltage VCE = 3V, IE = 1mA 0.48 2.0 mV Temperature Coefficient of Base–Emitter
Voltage (Q
Base (Q3)–Emitter (Q4) Voltage
– Q2)
1
V
BED
Darlington Pair
Temperature Coefficient of Base–Emitter
Voltage (Darlington Pair Q
3–Q4
)
Temperature Coefficient of Magnitude of
Input Offset Voltage
Low Frequency Noise Figure NF VCE = 3V, IC = 100µA,
Low Frequency, Small–Signal Equivalent Circuit Characteristics
Forward Current Transfer Ratio h Short–Circuit Input Impedance h Open–Circuit Output Impedance h
oe
Open–Circuit Reverse Voltage Transfer Ratio h
Admittance Characteristics
Forward Transfer Admittance Y Input Admittance Y Output Admittance Y Gain–Bandwidth Product f Emitter–Base Capacitance C Collector–Base Capacitance C
oe
T EB CB
Collector–Substrate Capacitance C
VCB = 10V, IE = 0 0.002 nA VCE = 10V, IB = 0 0.5 µA VCE = 10V, IB = 0 5 µA
= 1mA, IB = 0 15 24 V = 10µA, IE = 0 30 60 V = 10µA, IC = 0 5 7 V = 10µA, IC1 = 0 40 60 V
= 10mA, IB = 1mA 0.23 0.5 V VCE = 3V, IC = 10mA 50 100 – VCE = 3V, IC = 1mA 60 100 200 VCE = 3V, IC = 10µA 54 VCE = 3V, IC1 = IC2 = 1mA 0.9 0.97
VCE = 3V, IC = 1mA 2000 5400 – VCE = 3V, IC = 10µA 1000 2800 VCE = 3V, IE = 1mA 0.600 0.715 0.800 V VCE = 3V, IE = 10mA 0.800 0.900 V
VCE = 3V, IE = 1mA 1.9 mV/°C
VCE = 3V, IE = 10mA 1.46 1.60 V VCE = 3V, IE = 1mA 1.10 1.32 1.50 V VCE = 3V, IE = 1mA 4.4 mV/°C
VCC = 6V, VEE = –6V, I
= IC2 = 1mA
C1
10 µV/°C
3.25 dB
f = 1kHz, R
VCE = 3V, IC = 1mA, f = 1kHz 110
fe ie
= 1k
S
3.5 k 15.6 µmhos
re
VCE = 3V, IC = 1mA, f = 1kHz 31–j1.5 (Typ) mmho
fe ie
1.8 x 104 (Typ)
0.3+j0.04 (Typ) mmho
0.001+j0.03 (Typ) mmho VCE = 3V, IC = 3mA 300 500 MHz VEB = 3V, IE =0 0.6 pF VCB = 3V, IC = 0 0.58 pF VCI = 3V, IC = 0 2.8 pF
CI
Loading...
+ 1 hidden pages