NTE312
N–Channel Silicon Junction
Field Effect Transistor
Description:
The NTE312 is a field effect transistor designed for VHF amplifier and mixer applications. The
NTE312 comes in a TO–92 package.
Features:
D High Power Gain: 10dB Min at 400MHz
D High Transconductance: 4000 µmho Min at 400MHz
D Low C
D High (Y
: 1pF Max
rss
) / C
fs
iss
Ratio (High–Frequency Figure–of–Merit)
D Drain and Gate Leads Separated for High Maximum Stable Gain
D Cross–Modulation Minimized by Square–Law Transfer Characteristic
D For Use in VHF Amplifiers in FM, TV, and Mobile Communications Equipment
Absolute Maximum Ratings
Drain–Gate Voltage, V
DG
Gate–Source Voltage, V
Gate Current, I
G
Total Device Dissipation (T
: (TA = +25°C unless otherwise specified)
GS
= +25°C ), P
A
D
Derate Above +25°C 2.88mW/°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total Device Dissipation (T
= +25°C), P
C
D
Derate Above +25°C 4.0mW/°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage Temperature Range, T
Lead Temperature, During Soldering (1/16 Inch from Case for 10sec), T
stg
L
30V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
–30V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
360mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
500mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
–65° to +150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+260°C. . . . . . . . . . . . . . .
Electrical Characteristics: (TA = +25°C unless otherwise specified)
Parameter Symbol Test Conditions Min Typ Max Unit
OFF Characteristics
Gate–Source Breakdown Voltage V
Gate Reverse Current I
Gate 1 Leakage Current I
Gate–Source Cutoff Voltage V
(BR)GSSIG
GSS
G1SS
GS(off)
= –1.0µA, VDS = 0 –30 – – V
VGS = –20V, VDS = 0 – – –1.0 nA
V
= –20V, VDS = 0, TA = +100°C – – –0.5 µA
G1S
VDS = 15V, ID = 10mA –1.0 – –6.0 V
ON Characteristics
Zero–Gate Voltage Drain Current I
DSS
VDS = 15V, VGS = 0, Note 1 5.0 – 15 mA
Small–Signal Characteristics
Forward Transfer Admittance |yfs| VDS = 15V, VGS = 0, f = 1kHz 4500 – 7500 µmhos
Input Admittance Re(yis) 100MHz VDS = 15V, VGS = 0 – – 100 µmhos
400MHz – – 1000 µmhos
Output Admittance |yos| VDS = 15V, VGS = 0, f = 1kHz – – 50 µmhos
Output Conductance Re(yos) 100MHz VDS = 15V, VGS = 0 – – 75 µmhos
400MHz – – 100 µmhos
Forward Transconductance Re(yfs) VDS = 15V, VGS = 0, f = 400MHz 4000 – – µmhos
Input Capacitance C
Reverse Transfer Capacitance C
iss
rss
VDS = 15V, VGS = 0, f = 1.0MHz – – 4.5 pF
VDS = 15V, VGS = 0, f = 1.0MHz – – 1.0 pF
Input Susceptance IM(Yis) 100MHz VDS = 15V, VGS = 0 – – 3.0 mmho
400MHz – – 12.0 mmho
Functional Characteristics
Noise Figure NF 100MHz
400MHz
Common Source Power Gain G
ps
100MHz
400MHz
VDS = 15V, ID = 5mA,
i
R
= 1k
G
VDS = 15V, ID = 5mA,
i
R
= 1k
G
– – 2.0 dB
– – 4.0 dB
18 – – dB
10 – – dB
Output Susceptance IM(Yos) 100MHz VDS = 15V, VGS = 0 – – 1000 µmhos
400MHz – – 4000 µmhos
Note 1. tp = 100ms, Duty Cycle = 10%.