NTE1678
Integrated Circuit
Switching Regulator for TV
Description:
The NTE1687 is a switching regulator integrated circuit in a 14–Lead DIP type package especially
designed for TV sets. This device can be used for both types of TV sets, insulated type and non–insulated types.
The NTE1687 operates in synchronizing with the horizontal retrace pulse, so it does not generate any
visual noise in the picture on the CRT. The output transistor in the powersupply circuit is protected
doubly by the internal protection circuit for over load.
The ON/OFF operation of the power supply is able to operate easily without any mechanical relay
using the provided terminal, so timer operation, remote control, etc. are very easy.
Features:
D Wide range of regulating input line voltage: AC 80V to 280V
D The output power transistor is doubly protected by the current limitter and the shut down circuit
D No visual noise due to horizontal synchronous operation
D A terminal for remote control, timer operation and etc. of the power supply is provided
D Shut down circuit is easily resetable using ON/OFF terminal
D Low stand–by and starting current
Absolute Maximum Ratings:
Supply Current, I
8
Sink of Output Terminal, I
Input Voltages of Current Limitter, V
Input Voltage ON/OFF Circuit, V
Sink of ON/OFF Circuit, I
Input Voltages of Duty Limit Circuit, V
External Oscillation Resistor, R
External Oscillation Capacitor, C
Input Voltage of Error Amplifier, V
Reference Voltage, V
Drain of Error Amplifier, I
14
13
Input Voltage of Shut Down Circuit, V
(TA = +25°C unless otherwise specified)
7
5
4
3
2
O
O
I
12
Integration Voltage of Shut Down Circuit, V
Power Dissipation (T
Operating Temperature Range, T
Storage Temperature Range, T
= +75°C), P
A
D
opr
stg
30mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.0V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V8V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V
V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
5kΩ to ∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0µF to 1µF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V
V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
V
V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
–2mA to 0mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V
V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
V
6
V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
150mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
–20° to +75°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
–40° to +125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics: (TA = +25°C unless otherwise specified)
Parameter Symbol Test Conditions Min Typ Max Unit
Supply Terminal Voltage V
Thermal Drift of V
8
dV8(TA) Difference of Min. and Max.of V
Starting Supply Current I
Starting Pulse Height P
Starting Supply Terminal Voltage V
Starting Oscillation Frequency f
Output Pulse Height P
Drain of Output Pin I
Saturation Voltage of Output Pin V
Integration Pin Current I
Leak of Integration Pin I
Trigger Voltage of Shut Down Circuit V
Drain of Duty Limit Terminal I
Pulse Width set by Pin 2 Voltage P
Thermal Drift of P
L
ON Voltage of Pin 4 V
ON Current of Pin 4 I
Output Saturation of ON/OFF Circuit V
dPL(TA) V2 = 2.33V, Difference of Min & Max.
4(ON)I3
4(ON)
3(Sat)I3
Leak of ON/OFF Output I
Offset Voltage of Error Amplifier V
Opened Gain of Error Amplifier A
Current of Pin1 I
Current of Pin14 I
Maximum Voltage of Error
V
13(Max)V1
Amplifier Output
Minimum Voltage of Error
V
13(Min)
Amplifier Output
Sink of Error Amplifier Output I
Free Running Oscillation Amplitude V
Starting Oscillation Amplitude V
Free Running Oscillation Frequency f
Thermal Drift of f
o
dfo (TA) Pin10: Open, Difference of Min & Max
Synchronous Oscillation Amplitude V
Thermal Drift of V
SO
dVso(TA) Difference of Min & Max of V
8
8
7(S)
8(S)
o(S)
7
7
7(sat)I7
6(1)
6L
6T
2
L
3L
(OS)
VO
1
14
13
fo
fo(S)
o
so
I8 = 12mA 6.1 6.6 7.1 V
8
– – 200 mV
in TA from –20° to +75°C
V8 = 3V, Pin7: Open – 1.0 1.5 mA
V8 = 3V, Pin7: GND – 3.0 4.2 mA
V8 = 3V, Pin7: Open, Pin6: GND 1.5 2.3 3.0 V
Pin7: Open, Pulse of Pin7 = 1.5V
p–p
2.0 2.6 3.0 V
pp
V8 = 3V, Pin10: Open 10 13 20 kHz
Pin7: Open, Pin6: GND 5.0 6.0 7.1 V
Pin7: GND, V2 = V
8
–6.3 –5.0 –3.7 mA
p–p
= 5mA – – 0.3 V
I5 = 100µA –700 –500 –300 µA
V5 = 0.8V –700 –500 –300 µA
V5 = 0.3V –10 – 0 µA
P7 < 100mV
p–p
2.5 – 3.5 V
V2 = 3V –20 – 0 µA
V = 2.33V, Frequency: 15.75kHz,
25 30 35 µs
Low Level Period
– – 2 µs
in TA from –20° to +75°C
of P
L
= 3mA, V3 = 0.3V 1.5 2.5 3.5 V
I3 = 3mA, V3 = 0.3V – – 200 µA
= 3mA, V4 = 3.5V – – 300 mV
V4 = 1.5V, V3 = V
8
– – 1 µA
Absolute Value – 8 20 mV
f: 1kHz, Signal of Pin13: 1V
p–p
45 53 80 dB
Pin1: GND – – –10 µA
Pin14: GND – – –10 µA
= 3.5V, V14 = 3.0V 5.0 5.7 – V
V1 = 2.5V, V14 = 3.0V – 50 300 mV
V1 = 2.5V, V14 = 3.0V, V13 = 3.0V 50 100 250 µA
Pin10: Open V
V8 = 3.0V 0.5 1.5 – V
3.3 4.0 V
so
p–p
p–p
Pin10: Open 12.3 13.3 14.3 kHz
– – 500 Hz
of f in T
Synchronous Frequency: 15.75kHz 2.7 3.0 3.3 V
from –20° to +75°C
A
p–p
so
– – 150 V
in TA from –20° to +75°C