Nordic ID NUR21W User Manual

2017-09-07
NUR2-1W HW Implementation Guide v1.0
NUR2-1W HW IMPLEMENTATION GUIDE
1
2017-09-07
Change history:
1.0 12.6.2017 Toni Heijari First released version
1.1 15.06.2017 Rauno Nikkilä EU standards updated
1.2 09.08.2017 Rauno Nikkilä Output power values updated in page 7.
Modulation info added into page 16.
1.3 07.09.2017 Rauno Nikkilä Modifications to chapters 11.2, 11.3 and 11.4
NUR2-1W HW Implementation Guide v1.0
2
Table of contents
2017-09-07
NUR2-1W HW Implementation Guide v1.0
1 GENERAL DESCRIPTION ......................................................................................................................... 5
1.1 Block diagram .................................................................................................................................... 5
1.2 Key features ...................................................................................................................................... 5
1.3 Typical application schematics .......................................................................................................... 6
2 ELECTRICAL CHARACTERISTICS ........................................................................................................................ 7
2.1 Absolute maximum ratings ................................................................................................................ 7
2.2 DC characteristics ............................................................................................................................. 7
2.3 RF characteristics .............................................................................................................................. 7
2.4 Performance characteristics .............................................................................................................. 8
3 PIN ASSIGNMENTS ......................................................................................................................................... 9
3.1 Pin designation .................................................................................................................................. 9
3.2 Pin mapping ....................................................................................................................................... 9
3.3 Signal description ............................................................................................................................ 11
4 OEM DESIGN CONSIDERATIONS .................................................................................................................... 13
4.1 RF output and antenna requirements ............................................................................................. 13
4.1.1 Layout recommendations .................................................................................................. 13
4.1.2 Transmission line .............................................................................................................. 14
4.2 Power supply ................................................................................................................................... 14
4.3 USB device port............................................................................................................................... 15
5 RF PARAMETERS .......................................................................................................................................... 16
5.1 TX level ............................................................................................................................................ 16
5.2 Receiver sensitivity .......................................................................................................................... 16
5.3 Modulation ....................................................................................................................................... 16
5.4 LINK pROFILES (TBD) ................................................................................................................... 16
5.5 Region ............................................................................................................................................. 17
6 READING PARAMETERS ................................................................................................................................ 19
6.1 Q-value ............................................................................................................................................ 19
6.2 Session ............................................................................................................................................ 19
6.3 Rounds ............................................................................................................................................ 20
6.4 Selecting the right reading parameters ........................................................................................... 20
6.5 RSSI FILTERS ................................................................................................................................ 21
6.6 Dynamic Power save modes (TBD) ................................................................................................ 22
7 GPIO CONFIGURATIONS ............................................................................................................................... 23
7.1 Input / output.................................................................................................................................... 23
7.2 Predefined functions ........................................................................................................................ 23
3
2017-09-07
NUR2-1W HW Implementation Guide v1.0
8 DIAGNOSTIC FUNCTIONS .............................................................................................................................. 24
8.1 Reflected power measurements...................................................................................................... 24
8.2 Channel scanner (TBD) ................................................................................................................... 24
8.3 Received signal strength (RSSI) ..................................................................................................... 25
9 DIMENSIONS ............................................................................................................................................... 25
9.1 Mechanical dimensions ................................................................................................................... 25
9.2 Land pattern .................................................................................................................................... 27
9.3 Paste stencil .................................................................................................................................... 29
9.4 Packing tray dimensions ................................................................................................................. 31
10 SMT ASSEMBLY PROCESS AND THERMAL PROCESSING ................................................................................... 32
10.1 Storage conditions ........................................................................................................................... 32
10.2 Soldering process ............................................................................................................................ 33
11 REGULATORY AGENCIES INFORMATION ........................................................................................................ 35
11.1 European Union and EFTA countries ............................................................................................. 35
User’s Guide Requirements ................................................................................................................ 35
Labeling Requirements ....................................................................................................................... 38
Approved Antennas ........................................................................................................................... 38
11.2 FCC ................................................................................................................................................. 39
User’s Guide Requirements ................................................................................................................ 41
Labeling Requirements ....................................................................................................................... 42
Approved Antennas ........................................................................................................................... 42
11.3 Industry Canada .............................................................................................................................. 43
Labelling Requirements for the Host device ......................................................................................... 44
certified Antennas ............................................................................................................................. 44
11.4 Industrie Canada ............................................................................................................................. 45
Exigences applicables aux appareils hôtes ............................................................................................ 46
TYPES D'ANTENNES ACCEPTABLES ....................................................................................................... 46
4
1 GENERAL DESCRIPTION
NUR2-1W is a next generation compact UHF RFID module. It is compatible with ISO18000-63 (EPC
C1G2) standard. Module fulfills ETSI, FCC and IC radio regulations. It is also compatible with DRM
(dense reader mode) requirements. Maximum output power is +30dBm and it can be adjusted via SW
API with 1 dB steps. Maximum sensitivity is -81 dBm.
1.1 BLOCK DIAGRAM
Figure 1. Block diagram of the module
2017-09-07
NUR2-1W HW Implementation Guide v1.0
1.2 KEY FEATURES
SMT compatible module with small footprint
ISO 18000-63 (EPC C1G2) full protocol support + custom commands
Low power consumption with high noise rejection
DRM compatible
High performance with +30dBm output power, adjustable by 1dB steps
Approved by ETSI, FCC and IC telecommunication organizations
UART and USB 2.0 communication
6 programmable GPIO with event trigger
Increased sensitivity with automatic leakage cancelation
5
1.3 TYPICAL APPLICATION SCHEMATICS
Typical application schematic including: USB connection with ESD protection circuitry,
NUR2-1W module and SMA RF-connector.
Figure 2. A simple application schematic.
2017-09-07
NUR2-1W HW Implementation Guide v1.0
6
2 ELECTRICAL CHARACTERISTICS
2.1 ABSOLUTE MAXIMUM RATINGS
Violating these values may cause damage to the module. Also, correct operation is not guaranteed if
operating outside these values. NUR2-1W is ESD sensitive component so it must be handled with care.
Table 1. Absolute maximum ratings of the module.
Absolute maximum ratings Value
Operating temperature -20°C to +55°C
Storage temperature (package unopened) -30°C to +85°C
Supply voltage and enable +6.0V
GPIO pins +4.0V
2017-09-07
NUR2-1W HW Implementation Guide v1.0
Other pins +4.0V
2.2 DC CHARACTERISTICS
Table 2. DC characteristics (VCC_4V0_IN = 4.0V @ +25°C).
Symbol Parameter Min Typ Max Units
V
ext
I
ext
I
source
I
sink
V
low
V
high
V
en
Supply voltage 3.8 4.0 5.5 V
Supply current - 1.5 2 A
GPIO source current - - 4 mA
GPIO sink current - - 4 mA
GPIO input low-level voltage - - 0.8 V
GPIO input high-level voltage 2.0 - - V
Module enable voltage 1.2 - Supply V
2.3 RF CHARACTERISTICS
7
Table 3. RF characteristics (VCC_4V0_IN = 4.0V @ +25°C).
Symbol Parameter Min Typ Max Units
S
ens
P
out
P
adj
S
11
D
rt
D
tr
Receiver sensitivity* - - -81 dBm
Output power 1 - 30 dBm
Power adjustment step - 1 - dB
VSWR requirement - - 1,5:1 @50Ω
Reader to tag data rates - 40 / 80 - kbps
Tag to reader data rates 62 150 400 kbps
*Sensitivity is measured at the RF-port of the module.
2.4 PERFORMANCE CHARACTERISTICS
The performance of the reader module is highly dependent on the test environment, reader antenna and
tag performance. Interferences from other radio sources operating in the same frequency may decrease the
performance. Also, the tag antenna and the tag IC may have significant effect on the values presented
below. Selected radio and inventory parameters do have a big influence to reading performance as well.
Table 4. Performance characteristics (VCC_4V0_IN = 4.0V @ +25°C).
Symbol Parameter Min Typ Max Units
2017-09-07
NUR2-1W HW Implementation Guide v1.0
R
R
O
H
dist
rate
temp
rel
Typical reading distance with 5 dBi antenna* - 10 - m
Typical reading rate (Tari25 / Tari6.25) - 300 800 tags/s
Operation temperature -20 - +55 °C
Relative humidity 10 - 95 %
*Measured with Smartrac Belt R6 tag.
8
3 PIN ASSIGNMENTS
3.1 PIN DESIGNATION
Figure 3. Through top view.
2017-09-07
NUR2-1W HW Implementation Guide v1.0
3.2 PIN MAPPING
Table 5. Pin mapping of the module.
Pin number Signal name Pin type Description
1 GPIO_6 Bidirectional 3.3V GPIO
2 GPIO_5 Bidirectional 3.3V GPIO
3 GPIO_4 Bidirectional 3.3V GPIO
4 GPIO_3 Bidirectional 3.3V GPIO
5 GPIO_2 Bidirectional 3.3V GPIO
6 GPIO_1 Bidirectional 3.3V GPIO
7 ERASE/DNU Input DNU (do not use)
8 DRXD Input Data from Host to Module
9
2017-09-07
9 DTXD Output Data from module to Host
10 USB_DN Bidirectional USB – (device port)
11 USB_DP Bidirectional USB + (device port)
12 USB_5V Input Used only for USB detection
13 VCC_3V3_OUT Supply output DNU (only for testing purposes)
14 MODULE_EN Input Driving high will enable the module
15 GND Supply input Ground
16 RFU Not connected RFU (do not connect)
17 VCC_4V0_IN Supply input Supply voltage input
18 RFU/NC Bidirectional RFU (do not connect)
19 RFU/NC Bidirectional RFU (do not connect)
20 GND Supply input Ground
21 GND Supply input Ground
NUR2-1W HW Implementation Guide v1.0
22 GND Supply input Ground
23 GND Supply input Ground
24 GND Supply input Ground
25 GND Supply input Ground
26 GND Supply input Ground
27 RF_OUT1_INNER Bidirectional RFU (do not connect)
28 GND Supply input Ground
29 DNU/RF_OUT2_INNER Bidirectional RFU (do not connect)
30 GND Supply input Ground
31 NC Not connected internally not connected
32 NC Not connected internally not connected
33-46 GND Supply input Ground
47 RF_OUT1 Bidirectional 50Ω RF output/input
48 GND Supply input Ground
49 DNU/RF_OUT2 Bidirectional RFU (do not connect)
50 GND Bidirectional Ground
10
3.3 SIGNAL DESCRIPTION
Table 6. Signal description.
Signal name: GND Pin number(s): 15, 20-26, 28, 30, 33-46, 48, 50
These pins are used for grounding and to improve the thermal performance. They should be
connected to Host board GND net.
Signal name: GPIO_X Pin number(s): 1-6
These pins are used as general purpose IO. They can be configured via SW API as input or output
ports. IO voltage level is 3.3V. GPIOs have source current capability of 4mA and sink current capability
of 4mA.
Signal name: ERASE Pin number(s): 7
This pin is used for production testing purposes only. Should not be connected.
2017-09-07
NUR2-1W HW Implementation Guide v1.0
Signal name: DRXD Pin number(s): 8
This pin is used for module UART input signal. Logic level is 3.3V. If UART is used for communication
the pin should be connected to the Host MCU serial TX port.
Signal name: DTXD Pin number(s): 9
This pin is used for module UART output signal. Logic level is 3.3V. If UART is used for communication
the pin should be connected to the Host MCU serial RX port.
Signal name: USB_DN Pin number(s): 10
This pin is used as USB_D- device port. It is advised to use external ESD protection component if
connected to user accessible USB connector.
Signal name: USB_DP Pin number(s): 11
This pin is used as USB_D+ device port. It is advised to use external ESD protection component if
connected to user accessible USB connector.
Signal name: USB_5V Pin number(s): 12
This pin is only used for USB connection detection. It is advised to use external ESD protection
component if connected to user accessible USB connector. Current is not drawn from this input pin.
Signal name: VCC_3V3_OUT Pin number(s): 13
11
This pin is connected to internal power regulator output. The pin is used for production testing and it
should not be used.
Signal name: MODULE_EN Pin number(s): 14
Driving this pin to high will enable the NUR-10W module. It is internally connected to onboard voltage
regulator’s enable input. The trigger level is 1.2V and the reader module will wake up in 50ms. If the
external power switch is used to toggle ON and OFF, this pin can be connected directly to
VCC_3V6_IN.
2017-09-07
Signal name: NC Pin number(s): 16, 31, 32
These pins are internally not connected.
Signal name: VCC_4V0_IN Pin number(s): 17
This pin is used for power supply input for NUR-10W module. It is recommended to use 200µF (low
ESR) 100nF and 100pF capacitor near the VCC_4V0_IN input pin to maintain stable operating voltage
for the reader module.
Signal name: RFU / DNU pins Pin number(s): 18, 19, 27, 29, 49
These pins are reserved for future use. Do not connect these pins.
Signal name: RF Pin number(s): 47
50Ω impedance RF output / input pin. Trace to this pin should be also matched to 50 Ω. See more
details from the design considerations section.
NUR2-1W HW Implementation Guide v1.0
12
4 OEM DESIGN CONSIDERATIONS
4.1 RF OUTPUT AND ANTENNA REQUIREMENTS
The RF output / input impedance is 50Ω so the trace leaving from the RF pin shall be kept in that same
impedance level to avoid reflections and mismatch of the RF signal. From the RFID reader module’s point of
view it is important that the used antenna has a low VSWR value. The VSWR shall be better than 1.5:1 in
order to avoid decrease in the sensitivity performance of the receiver because of the TX power reflecting
back from the antenna. In the NUR2-1W module, there is also an automatic leakage cancellation system
that decreases the effect of the reflected signal, and it also improves the isolation of the RX signal from the
TX signal. The automatic leakage cancellation is automatically on when module is operating in normal
mode.
2017-09-07
NUR2-1W HW Implementation Guide v1.0
4.1.1 LAYOUT RECOMMENDATIONS
Figure 4. RF output layout of the reference design.
13
Because NUR2-1W is a wireless device, the RF section must be the top priority in terms of layout. It is very
important that layout is made by following the proper RF design guidelines to get to optimal performance
from the device. Poor layout can decrease the output power, sensitivity and cause mask violations.
Component places; R2, R3 and R12 are for additional output matching. Additional matching is not used in a
reference design. Thus values are as follow: R3 = No assembly, R12 = No assembly and R2 = 100pF 0402
capacitor.
4.1.2 TRANSMISSION LINE
The RF signal from the module is routed to antenna connector using a grounded CPW structure. This is to
achieve the maximum isolation and RF shielding to RF lines. Also GND vias should be added along the line to
give additional shielding.
Figure 5. Grounded CPW with via stitching.
2017-09-07
NUR2-1W HW Implementation Guide v1.0
Table 7. Recommended PCB values for 4-layer board (L2 is the GND plane for transmission line)
Parameter Value Unit
W 0.35 mm
S 0.2 mm
H 0.18 mm
Er 4
General recommendations:
1. RF traces must have 50 Ohm impedance because module is only rated to operate in 50 Ohm systems.
2. RF trace bends must be gradual and not have any sharp corners.
3. Grounded CPW structure must have GND via stitching.
4. Only connect antennas which are approved.
4.2 POWER SUPPLY
The NUR2-1W has internal linear power regulators for getting better power supply noise rejection.
14
However, it is still important to supply low noise and stable power to the NUR2-1W module. The voltage
ripple should be kept under 200mVpp and it is recommended to add a minimum of 200µF low ESR, 100nF
and 100pF capacitors next to the VCC_4V0_IN pin.
VCC_3V3_OUT is internal regulator output and it is used for production testing purposes. This pin should
not be used to power external circuits.
4.3 USB DEVICE PORT
USB_DP, USB_DN and USB_5V pins are used to provide 2.0 compliant USB device port. It is advised to use
external ESD protection component if connected to user accessible USB connector. Below is the typical
schematics used with NUR2-1W module.
Figure 6. Typical schematics for USB connection with ESD protection.
2017-09-07
NUR2-1W HW Implementation Guide v1.0
Table 8. Used components.
Ref Description Manufacturer Part code
U1 ESD protection ST Microelectronics USBLC6-2SC6
L1 Common mode choke Murata DLW21SN371SQ2L
15
5 RF PARAMETERS
5.1 TX LEVEL
The maximum output power is +30dBm (1000mW). The power can be adjusted by 1dB steps. In total, there
are 30 steps meaning the minimum output power value is +1dBm that equals to 1mW of power. When
using higher output power levels the antennas VSWR value becomes more and more important factor. High
output power combined with antenna with poor VSWR leads to a situation where significant portion of the
power is reflected back to the receiver.
5.2 RECEIVER SENSITIVITY
2017-09-07
NUR2-1W HW Implementation Guide v1.0
The maximum sensitivity of the module is -81dBm. The receiver can handle +15dBm of power reflecting
back to RF_OUT1 pin without having a big impact on the performance. The receiver architecture uses direct
conversion and it has an integrated AGC (automatic gain controller). Baseband is made using a DSP.
5.3 MODULATION
It is possible to use ASK (amplitude shift keying) or PR-ASK (phase reversed amplitude shift keying)
modulation. Tags that are compliant with ISO18000-6C (EPC C1G2) must support both of these
modulations. The PR-ASK modulation can transfer energy more efficiently to the tag because RF envelope is
high more than it is using ASK modulation. By default the modulation is set to PR-ASK.
5.4 LINK PROFILES (TBD)
TBD
Table 9. Available link profiles.
Link profile TBD TBD
16
1 x x
2 x x
3 x x
5.5 REGION
The NUR2-1W has predefined region settings defining frequency and channel sets for operating under
different radio regulations. Globally the regulations vary depending on the country or part of the world. The
below table shows the available options for the region and the respective frequency band they use. Note
that the antenna also needs to be working on that same frequency.
Table 10. Pre-programmed countries / regions.
Number Country / region Frequency / channel BW
0 ETSI / Europe 865.6 – 867.6 MHz / 200kHz
1 FCC / North-America 902 – 928 MHz / 500 kHz
2017-09-07
NUR2-1W HW Implementation Guide v1.0
17
2017-09-07
If you want to use custom frequencies or hop tables you need to feed parameter described below.
Table 11. Custom hop table parameters.
Parameter Value Description
Frequency entry 840 000 – 960 000 [kHz] Defines the center frequency of
NUR2-1W HW Implementation Guide v1.0
the first transmit channel.
Channel count 1 - 100 Defines the number of transmit
channels
Channel spacing 25 * n [kHz] Defines the frequency between
transmit channels.
Channel time minimum 100 ms Defines the time that reading is
ON at the same channel
Wait time maximum 1000 ms Defines the time that transmitter
is silent between frequency hops
Tari 1=12.5us 2=25us Defines the Tari value
LF 160 000, 256 000 or
320 000
Defines the maximum link
frequency that is used
18
6 READING PARAMETERS
6.1 Q-VALUE
The Q-value defines the amount of open response slots that tags can use per one inventory round. Number
of slots can be calculated by formula 2Q. It is advised to use twice as much slots compared to amount of tags
that you have in your readers reading field simultaneously. Selectable values are 0 – 15 and value 0 means
automatic Q-value adjustment. When Q=0 is used reader will automatically increase the Q-value when lots
of collisions are noticed and decreased the value when there are only few collisions. By default, the Q-value
is set to 0.
Table 12. Relation between the Q-value and the number of open slots per round.
2017-09-07
NUR2-1W HW Implementation Guide v1.0
Q-value slots Q-value slots
0 automatic 8 256
1 2 9 512
2 4 10 1024
3 8 11 2048
4 16 12 4096
5 32 13 8192
6 64 14 16384
7 128 15 32768
6.2 SESSION
There are four session options which you can use when initializing inventory round. Every session has two
target states A and B. By default, Gen2 tags are at state A if tag has not been read recently. When tag is
read it flips to state B and doesn’t reply to readers query. The table below describes the persistence of tag’s
19
state machine when using different session values. For example, when using session 0 the tag will come
back to state A immediately when tag power is lost. Usually tag loses the power when reader stops the
inventory round or chances the channel. Persistence when tag power is ON is not defined by the ISO18000-
6C when using session settings S0, S2 and S3. With session 1 the tag will keep it state over 500ms but less
than 5s. With session values 2 and 3 tags will keep it states over 2s when tag power is lost. Time can vary
depending what tag IC is used.
2017-09-07
Table 13. Persistence characteristics of gen2 tags.
Flag Persistence: tag power ON Persistence: tag power OFF
S0 indefinite none
S1 500ms < t < 5s 500ms < t < 5s
S2 indefinite t > 2s
S3 indefinite t > 2s
By changing the target setting from A target to B target reader is able to read also tags that has flipped its
state to B state. This would happen if tags would have been read recently using Session 1 2 or 3. NUR2-1W
module also supports dual target mode. In that mode reader will change the target mode between inventory
NUR2-1W HW Implementation Guide v1.0
rounds. By default, target mode A is used.
6.3 ROUNDS
The rounds setting defines how many query rounds is done inside one inventory round. After every
inventory round the reader will send data to the Host. Selectable values are 0 – 10. Zero meaning automatic
rounds adjustment. The automatic adjustment decides after every query round whether another round is
necessary based on the number of data collisions. By default, rounds setting is set to 0. This setting can help
the reader to find all the tags that are in the readers reading field when using session 0. Because tags that
are found in query round 1 doesn’t replay in the following query rounds. When using session 1/2/3 this
does not make any significant difference because tags that are read are quiet anyway.
Table 14. Relation between inventory round and query round.
Round 1 Round 2 round 3 Round 10
Inventory round
6.4 SELECTING THE RIGHT READING PARAMETERS
One approach is to test how many tags are in the readers reading field simultaneously. Keep the reader still
at the position that is as close to real reading environment as possible and see how many tags are found.
Based on that amount choose your open slot number to be 1.5 – 2 times larger (refer to the section 6.1). If
reader will face many different tag populations auto-Q setting will be a good choice.
20
2017-09-07
Besides Q-value one important parameter is session. In general, it could be stated that if the size of tag
population is measured in thousands rather than in hundreds it is wise to use sessions 2 or 3. Because then
every tag will be read only once and that makes large tag population much faster and easier to read.
Rounds 1 setting is also advised to be used with session 1 or 2 or 3. With session 0 it might be useful to use
higher rounds value than 1 to be able to find all the individual tags. By default, automatic (0) rounds setting
is used.
The selected link profile will have also an effect the read speed.
Table 15. Guideline settings to be used with different tag populations.
Settings Tag population Simultaneously in the field
Session 0, auto Q, auto Rounds 1 – 100 1 – 100
Session 1, auto Q, Rounds 1 100 – 1 000 under 500
NUR2-1W HW Implementation Guide v1.0
Session 2/3, auto Q, Rounds 1 100 – 1 000 over 500
Session 2/3, auto Q, Rounds 1 over 1 000 over 500
6.5 RSSI FILTERS
NUR2-1W module has internal RSSI filters which can be used to limit the read area. By applying the filters,
you can set the limits which tag replay must met in order to be registered. MIN RSSI –value means that tag
replay signal needs to be equal or stronger then the defined value. Otherwise tag is not read. MAX RSSI
value in other hand means that signal strength must be lower than the filter value.
21
2017-09-07
Figure 8. Read range limited by RSSI filter (100mW TX power and 0dBi antenna gain)
NUR2-1W HW Implementation Guide v1.0
6.6 DYNAMIC POWER SAVE MODES (TBD)
TBD
22
7 GPIO CONFIGURATIONS
NUR2-1W has 5 programmable GPIOs. All of them can be used as an input or output. They can be also
configured to have different predefined functions.
7.1 INPUT / OUTPUT
All GPIOs can be configured via SW API to be inputs or outputs. IO voltage level is 3.3V and maximum
source current is 4mA and sink current 4mA. When configured as input SW API can check what the state
(high / low) of the GPIO pin is. When GPIO is configured as an output the SW API can drive the GPIO pin to
high or low.
2017-09-07
NUR2-1W HW Implementation Guide v1.0
7.2 PREDEFINED FUNCTIONS
Table 16. NUR2-1W module GPIOs options.
RFON (GPIO type: OUTPUT)
When GPIO is configured as “RFON” it drives high state always when power amplifier is turned on. This
function can be used for example driving LED indicator.
I/O Function Action Trigger
Output - - ­Output RFON - ­Output Antenna control 1 - ­Output Antenna control 2 - -
Input - - -
23
Antenna control 1 (GPIO type: OUTPUT)
When GPIO is configured as “antenna control 1” it can be used for controlling external multiplexer on the
Host board to switch between two antennas. Via the SW API it’s possible to select which antennas are
enabled and used or let the module automatically switch between them.
2017-09-07
Table 17. 2 Port antenna control truth table.
Case (selected antenna) antenna control 1
0 (antenna 1) low
1 (antenna 2) high
Antenna control 1 & 2 (GPIO type: OUTPUT)
If you want to connect up to 4 antennas and multiplex those using NUR2-1W module you need to configure
2 GPIOs to control the antenna switch. In this case you define one GPIO to be “antenna control 1” and
second one to be “antenna control 2”. Via the SW API it’s possible to select which of the connected
antennas are enabled and used or let the module automatically switch between them.
Table 18. 4 Port antenna control truth table.
NUR2-1W HW Implementation Guide v1.0
Case (selected antenna) antenna control 1 antenna control 2
0 (antenna 1) low low
1 (antenna 2) high low
2 (antenna 3) low high
3 (antenna 4) high high
8 DIAGNOSTIC FUNCTIONS
8.1 REFLECTED POWER MEASUREMENTS
This measurement can be used to check what is the matching of the antenna(s) and feed line(s). When this
function is triggered will NUR2-1W module put carrier wave ON at full power and then measure the
absolute power level that is coming to receiver port. There is a fixed difference in actual reflected power
level and the level reported by the module. You can calculate the real reflected power level using below
formula:
Reflected power level = (Reported reflected power level by the module) +(25)
8.2 CHANNEL SCANNER (TBD)
TBD
.
24
8.3 RECEIVED SIGNAL STRENGTH (RSSI)
When reading a tag NUR2-1W module also returns received signal strength indication values if wanted. Two
values are returned per one tag. One is the absolute power level (dBm) and second is the scaled power level
value of the tags backscatter signal. Scaled RSSI value is 0 – 100.
9 DIMENSIONS
9.1 MECHANICAL DIMENSIONS
2017-09-07
NUR2-1W HW Implementation Guide v1.0
25
2017-09-07
NUR2-1W HW Implementation Guide v1.0
26
9.2 LAND PATTERN
2017-09-07
NUR2-1W HW Implementation Guide v1.0
27
2017-09-07
NUR2-1W HW Implementation Guide v1.0
28
9.3 PASTE STENCIL
2017-09-07
NUR2-1W HW Implementation Guide v1.0
29
2017-09-07
NUR2-1W HW Implementation Guide v1.0
30
9.4 PACKING TRAY DIMENSIONS
2017-09-07
NUR2-1W HW Implementation Guide v1.0
All measures are in mm.
31
NUR2-1W HW Implementation Guide v1.0
10 SMT ASSEMBLY PROCESS AND THERMAL PROCESSING
NUR2-1W module contains single sided assembly of SMT components reflow-soldered on multilayer HDI
(high density interconnections) glass-fiber re-enforced epoxy printed board. The bottom side terminations
are ENIG (NiP/Au) plated. Soldering alloy used for attaching module components is eutectic SnAgCu.
Module internal components soldering has been optimized for minimal thermal stress.
NUR2-1W modules shall be delivered in a special tray packing to protect modules against mechanical, ESD
and moisture related stresses. Due to high density interconnections technology, module total water content
has to be below 0.1%-w prior to any thermal processing above water boiling point.
2017-09-07
The board assembly process of NUR module on motherboard will introduce re-flow of module components.
Thus, to avoid degradation of solder joint interfaces, the module has to be stored and soldered according to
the guidelines given below.
10.1 STORAGE CONDITIONS
Long-term storage
Store modules in unopened vacuum packs in a dry cabinet under following environmental conditions
Temperature +15…+27°C (optimal)
Temperature gradient max. 2°C/hour
Relative humidity <15% within specified temperature range
Opened and broken packages have to be re-sealed. If open time (floor life out of pack) has been
exceeded, or moisture content detected, modules have to be baked prior to re-sealing vacuum pack.
32
Short-term storage (typically same as production environment)
Temperature +20…+27°C
Temperature gradient max. 2°C/hour
Relative humidity <15% within specified temperature range
Modules may be stored in a dry cabinet without protective packing according to IPC/JEDEC J-STD-
033B.1, table 7-1.
2017-09-07
MSL level and open time
MSL level 5
NUR2-1W HW Implementation Guide v1.0
Open time (floor life out of the
bag)
10.2 SOLDERING PROCESS
Boundary conditions
Acceptable soldering methods Convection reflow in air or nitrogen atmosphere
Recommended stencil thickness 125um ±10um
Pad design on motherboard See recommended pad pattern
Stencil openings See recommended stencil pattern
Recommended solder alloy SnAg3.8±0.2Cu0.7±0.2
48h
Condensation reflow soldering (vapor phase)
Note! If using under-eutectic solder alloys, such as
SAC305, it may be necessary to increase reflow
peak temperature by 5-10°C, due to higher mp.
Convection reflow oven heater
configuration
Maximum absorbed moisture
content prior to thermal
processing
Recommended moisture
reduction condition
Moisture and solvent
contamination
Recommended reflow conditions
Preheating phase -max. duration 180s
and lower fluidity of non-eutectic SnAgCu alloys.
This will increase thermal stress to module and
motherboard greatly.
Double sided heating required in reflow,
recommended in preheating zones.
0.1%-w (Test method IPC-TM-650, 2.6.28)
Moisture content and/or moisture absorption
rate, Printed Board
+60°C/12h vacuum pack removed during drying,
re-seal after drying, unless modules will be used
within allowed open time after drying
No moisture or solvent contamination allowed in
solder paste or on solderable surfaces
33
-end temperature 190-200°C
2017-09-07
-delta T on assembly max. 10°C at end of
preheating
Soldering phase -total duration 190s
-max. time above 217°C (mp.) 30s
-Tpeak max. 235°C, measured at module bottom
-Tpeak max. 225°C, measured at motherboard
surface, under module
Cooling Two-stage, double sided cooling recommended
1st stage: 2-5°C/s cooling until melting point
2nd stage: 1-3°C/s after melting point
NUR2-1W HW Implementation Guide v1.0
34
11 REGULATORY AGENCIES INFORMATION
When OEM prefers to leverage Nordic ID’s grants and certifications of the NUR2-1W UHF RFID module, the
host device documentation shall include regulatory compliance information on the NUR2-1W module.
Corresponding to the applicable regulatory agencies the following sections outline regulatory compliance
information needed in the user documentation and external labels for the host devices into which the
NUR2-1W is integrated.
When leveraging Nordic ID’s grants and certifications, antenna shall be taken into account in view of the
fact that the NUR2-1W module has met the essential regulatory requirements with the antennas listed in
the context of particular regulatory compliance information (Approved Antennas). Using the antenna that is
2017-09-07
NUR2-1W HW Implementation Guide v1.0
an approved one, OEM integrator may demonstrate with less effort that the device with the integrated
NUR2-1W module is in compliance with the requirements.
11.1 EUROPEAN UNION AND EFTA COUNTRIES
USER’S GUIDE REQUIREMENTS
This apparatus is in compliance with the essential requirements of the Radio Equipment Directive (RED)
2014/53/EU. In order to prove presumption of conformity with the essential requirements of the the Radio
Equipment Directive (RED) 2014/53/EU, following requirements and test methods have been applied to the
apparatus:
article 3.2: ETSI EN 302 208 v3.1.1
- Radio spectrum matters for Radio Frequency Identification (RFID) equipment operating in the
band 865 MHz to 868 MHz with power levels up to 2W
article 3.1b: ETSI EN 301 489-1 v2.2.0
35
- Common ElectroMagnetic Compatibility (EMC) requirements
article 3.1b: ETSI EN 301 489-3 v2.1.1
- Specific ElectroMagnetic Compatibility (EMC) conditions for Short-Range Devices (SRD) operating
on frequencies between 9 kHz and 246 GHz
article 3.1a: EN 60950-1:2006 + A1:2010 + A11:2009+A12:2011+ A2:2013
- General requirements for Safety of Information Technology Equipment
EN 62479: 2010
- Human exposure
Česky
[Czech]
Dansk
[Danish]
2017-09-07
NUR2-1W HW Implementation Guide v1.0
EN 62311: 2008
- Human exposure limits
This apparatus is in compliance with EU Directive 2011/65/EU, Reduction of Hazardous Substances (RoHS).
[Nordic ID] tímto prohlašuje, že tento [RFID Radio module NUR2-1W] je ve shodě sezákladními požadavky a
dalšími příslušnými ustanoveními směrnice 2014/53/ES.
Undertegnede [Nordic ID] erklærer herved, at følgende udstyr [RFID Radio module NUR2-1W] overholder
Deutsch
[German]
Eesti
[Estonian]
English
Español
[Spanish]
de væsentlige krav og øvrige relevante krav i direktiv 2014/53/EF.
Hiermit erklärt [Nordic ID], dass sich das Gerät [RFID Radio module NUR2-1W] in Übereinstimmung mit den
grundlegenden Anforderungen und den übrigen einschlägigen Bestimmungen der Richtlinie 2014/53/EG
befindet.
Käesolevaga kinnitab [Nordic ID] seadme [RFID Radio module NUR2-1W] vastavust direktiivi 2014/53/EÜ
põhinõuetele ja nimetatud direktiivist tulenevatele teistele asjakohastele sätetele.
Hereby, [Nordic ID], declares that this [RFID Radio module NUR2-1W] is in compliance with the essential
requirements and other relevant provisions of Directive 2014/53/EU.
Ελληνική
[Greek]
36
Por medio de la presente [Nordic ID] declara que el [RFID Radio module NUR2-1W] cumple con los
requisitos esenciales y cualesquiera otras disposiciones aplicables o exigibles de la Directiva 2014/53/EU.
ΜΕ ΤΗΝ ΠΑΡΟΥΣΑ [Nordic ID] ΔΗΛΩΝΕΙ ΟΤΙ [RFID Radio module NUR2-1W] ΣΥΜΜΟΡΦΩΝΕΤΑΙ ΠΡΟΣ ΤΙΣ
ΟΥΣΙΩΔΕΙΣ ΑΠΑΙΤΗΣΕΙΣ ΚΑΙ ΤΙΣ ΛΟΙΠΕΣ ΣΧΕΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΤΗΣ ΟΔΗΓΙΑΣ 2014/53/ΕΚ.
Français
[French]
Italiano
[Italian]
Latviski
[Latvian]
2017-09-07
NUR2-1W HW Implementation Guide v1.0
Par la présente [Nordic ID] déclare que l'appareil [RFID Radio module NUR2-1W] est conforme aux
exigences essentielles et aux autres dispositions pertinentes de la directive 2014/53/EU.
Con la presente [Nordic ID] dichiara che questo [RFID Radio module NUR2-1W] è conforme ai requisiti
essenziali ed alle altre disposizioni pertinenti stabilite dalla direttiva 2014/53/EU.
Ar šo [Nordic ID] deklarē, ka [RFID Radio module NUR2-1W] atbilst Direktīvas 2014/53/EK būtiskajām
prasībām un citiem ar to saistītajiem noteikumiem.
Lietuvių
[Lithuanian]
Nederlands
[Dutch]
Malti
[Maltese]
Magyar
[Hungarian]
Šiuo [Nordic ID] deklaruoja, kad šis [RFID Radio module NUR2-1W] atitinka esminius reikalavimus ir kitas
2014/53/EB Direktyvos nuostatas.
Hierbij verklaart [Nordic ID] dat het toestel [RFID Radio module NUR2-1W] in overeenstemming is met de
essentiële eisen en de andere relevante bepalingen van richtlijn 2014/53/EG.
Hawnhekk, [Nordic ID], jiddikjara li dan [RFID Radio module NUR2-1W] jikkonforma mal-ħtiġijiet essenzjali u
ma provvedimenti oħrajn relevanti li hemm fid-Dirrettiva 2014/53/EU.
Polski
[Polish]
37
Alulírott, [Nordic ID] nyilatkozom, hogy a [RFID Radio module NUR2-1W] megfelel a vonatkozó alapvetõ
követelményeknek és az 2014/53/EU irányelv egyéb elõírásainak.
Niniejszym [Nordic ID] oświadcza, że [RFID Radio module NUR2-1W] jest zgodny z zasadniczymi wymogami
oraz pozostałymi stosownymi postanowieniami Dyrektywy 2014/53/EU.
Português
[Portuguese]
Slovensko
[Slovenian]
Slovensky
[Slovak]
2017-09-07
NUR2-1W HW Implementation Guide v1.0
[Nordic ID] declara que este [RFID Radio module NUR2-1W] está conforme com os requisitos essenciais e
outras disposições da Directiva 2014/53/EU.
[Nordic ID] izjavlja, da je ta [RFID Radio module NUR2-1W] v skladu z bistvenimi zahtevami in ostalimi
relevantnimi določili direktive 2014/53/ES.
[Nordic ID] týmto vyhlasuje, že [RFID Radio module NUR2-1W] spĺňa základné požiadavky a všetky príslušné
ustanovenia Smernice 2014/53/ES.
Suomi
[Finnish]
[Nordic ID] vakuuttaa täten että [RFID Radio module NUR2-1W] tyyppinen laite on direktiivin 2014/53/EY
oleellisten vaatimusten ja sitä koskevien direktiivin muiden ehtojen mukainen.
Svenska
[Swedish]
Härmed intygar [Nordic ID] att denna [RFID Radio module NUR2-1W] står i överensstämmelse med de
väsentliga egenskapskrav och övriga relevanta bestämmelser som framgår av direktiv 2014/53/EG.
LABELING REQUIREMENTS
The 'CE' marking must be in a visible area on the OEM product.
APPROVED ANTENNAS
38
Maximum allowed ERP power is 33dBm. NUR2-1W has maximum output power of 30dBm. Meaning that
5dBi is the maximum allowed antenna gain without cable losses.
Formula how to calculate maximum allowed antenna gain:
30 dBm – 2.15 (dipole gain) + [antenna gain dBi] – [cable attenuation dB] < 33dBm
Beamwidth restrictions:
For transmissions ≤500 mW e.r.p. there shall be no restriction on beam width.
For transmissions of > 500 mW e.r.p. to ≤ 1 000 mW e.r.p. beam widths shall be ≤ 180º
For transmissions of > 1 000 mW e.r.p. to 2 000 mW e.r.p. beam widths shall be ≤ 90º
11.2 FCC
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to
Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful
interference in a residential installation. This equipment generates uses and can radiate radio frequency
energy and, if not installed and used in accordance with the instructions, may cause harmful interference to
radio communications. However, there is no guarantee that interference will not occur in a particular
installation. If this equipment does cause harmful interference to radio or television reception, which can
be determined by turning the equipment off and on, the user is encouraged to try to correct the
2017-09-07
NUR2-1W HW Implementation Guide v1.0
interference by one of the following measures:
Reorient or relocate the receiving antenna.
Increase the separation between the equipment and receiver.
Connect the equipment into an outlet on a circuit different from that to which the receiver is
connected.
Consult the dealer or an experienced radio/TV technician for help.
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1)
This device may not cause harmful interference, and (2) this device must accept any interference received,
including interference that may cause undesired operation.
Note
User of the module cannot change the region setting of the module. When FCC region is set, the
module operates in frequency band of 902 – 928Mhz.
FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance
39
could void the user's authority to operate this equipment.
This NUR2-1W transmitter module is authorized to be used in other devices only by OEM Integrators under
the following conditions:
1. The module can be used only with the approved antenna types (see the section of Approved antennas
below) having the antenna gains of 5dBi and 6dBi at the maximum. The approved antennas need the
following minimum separation distances when installed:
2017-09-07
NUR2-1W HW Implementation Guide v1.0
Product Uncontrolled/general population Occupational / controlled environments
NUR2-1W + antenna with
5dBi max. gain
NUR2-1W + antenna with
6dBi max. gain
RF exposure evaluation is not required at
20.4cm separation distance @915MHZ
RF exposure evaluation is not required at
22.8cm separation distance @915MHZ
RF exposure evaluation is not required at
20cm separation distance @915MHZ
RF exposure evaluation is not required at
20cm separation distance @915MHZ
Table 11.2.1
Note. The antenna must be installed such that the minimum separation distance can be maintained between the
antenna (radiator) and user’s/nearby people’s body at all times.
If the antenna being one of the approved antenna types has lower antenna gain than the type’s maximum
one, the minimum separation distance (d in cm) can be calculated by giving the EIRP (in mW) of the
configuration and the maximum permissible exposure (S = 0.61 mWcm-2) to the following formula: d =
√(EIRP/(4πS)). However, despite the fact that the result of the calculation can be below 20 cm, the
separation distance of 20 cm is always the minimum.
The EIRP (EIRP
= Po - Ll + G ) needed for the calculation of minimum separation distance consists of the
dBm
following factors:
Po = (Maximum peak output of NUR2-1W transmitter + measurement uncertainty) = + (dBm) Ll = (Line losses) = known value (dB) G = (Antenna gain) = known value (dBi)
2. The transmitter module must not be co-located with any other transmitter, except with those that are
within the limits shown in the NUR2-1W filing.
3. The transmitter module can only be used with a host antenna circuit trace layout design in strict
compliance with the OEM instructions provided.
When the conditions above are met, typically no radio transmitter testing of NUR2-1W is required.
However, the OEM integrators have responsibility for testing their end-product for other compliance
requirements, for example digital device emissions, PC peripheral requirements.
The antenna used with the NUR2-1W transmitter module shall comply with the gain limit of 6 dBi. The
antennas having higher gain may be used, if cable loss compensates the exceeded antenna gain. For
example, 2dB antenna cable loss reduces the EIRP of the configuration so that 8dBi antenna may be used. If
40
the cable loss does not cancel out the exceeded gain then the transmitter’s conducted output power shall
be reduced so that the EIRP of the configuration is kept inside the limits of 4W.
Note.
In the event that these conditions can’t be met (for certain configurations or co-location with another
transmitter), then the FCC authorization is no longer considered valid and the FCC ID can’t be used on the
final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end
product (including the transmitter) and obtaining a separate FCC authorization.
The OEM integrator must be aware not to provide information to the end user regarding how to install or
remove this RF module in the user manual of the end product.
For the User’s Guide the required FCC statements outlined in the User’s Guide Requirements section must
be in a prominent location.
USER’S GUIDE REQUIREMENTS
2017-09-07
NUR2-1W HW Implementation Guide v1.0
The texts in quotation marks below are the required FCC statements in the user’s guide. The note given in
brackets is not an FCC statement but it gives the required information on the first required FCC statement.
“To comply with FCC’s RF radiation exposure requirements in general population environment, the
antenna(s) used for this transmitter must be installed such that a minimum separation distances of ‘d’ cm
(shown in table 11.2.1) is maintained between the radiator (antenna) & user’s/nearby people’s body at all
times and must not be co-located or operating in conjunction with any other antenna or transmitter.”
(Note: Use the following formula to find the ‘d’ in cm: d = √(EIRP/(4πS)); let ‘EIRP’ have the maximum EIRP
(in mW) of your transmitter configuration, and let ‘S’ have the 0.61 (in mW/cm2) value. In addition, the ‘d’
value cannot be below separation distances shown in table 11.2.1, although the formula would yield
smaller minimum separation distance d. See also the EIRP factors mentioned above.)
“To comply with FCC’s RF radiation exposure requirements in controlled environment, the antenna(s) used
for this transmitter must be installed such that a minimum separation distances of ‘d’ cm (shown in table
41
11.2.1) is maintained between the radiator (antenna) & user’s/nearby people’s body at all times and must
not be co-located or operating in conjunction with any other antenna or transmitter.”
(Note: Use the following formula to find the ‘d’ in cm: d = √(EIRP/(4πS)); let ‘EIRP’ have the maximum EIRP
(in mW) of your transmitter configuration, and let ‘S’ have the 3.050 (in mW/cm2) value. In addition, the ‘d’
value cannot be below separation distances shown in table 11.2.1, although the formula would yield
smaller minimum separation distance d. See also the EIRP factors mentioned above.)
“This device complies with Part 15 of the FCC Rules”
“Any changes or modifications to the transmitting module not expressly approved by
Nordic ID Oy could void the user’s authority to operate this equipment”
LABELING REQUIREMENTS
The end product must be labeled with the following identification information in a visible area:
“Contains Transmitter Module FCC ID: SCCNUR21W”
or
“Contains FCC ID: SCCNUR21W”
APPROVED ANTENNAS
2017-09-07
NUR2-1W HW Implementation Guide v1.0
Option 1:
Manufacturer: Nordic ID
Antenna Description: 4 Patch antenna-array
Frequency range: 902 – 928 MHz
Manufacturer Part Number: ARx5_antenna
Gain: 6dBi
Option 2:
Manufacturer: Nordic ID
Antenna Description: Cross Dipole antenna with reflector
Frequency range: 902 – 928 MHz
Manufacturer Product Name: Medea_ACD_antenna
Gain: 5dBi
42
Option 3:
Manufacturer: TBD
Antenna Description: TBD
Frequency range: TBD
Manufacturer Product Name: TBD
Gain: TBD
11.3 INDUSTRY CANADA
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions: (1) this device may not cause interference, and (2)
this device must accept any interference, including interference that may cause
undesired operation of the device.
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a
type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce
potential radio interference to other users, the antenna type and its gain should be so chosen that
the equivalent isotropic radiated power (e.i.r.p.) is not more than that necessary for successful
communication.
2017-09-07
NUR2-1W HW Implementation Guide v1.0
To leverage the Nordic ID’s IC grant, the device with the integrated NUR2-1W module shall be met the
following conditions:
1. The antennas being the approved types with the maximum gain of 5dBi and of 6dBi shall be installed so
that the device’s user or nearby people or passing people cannot compromise the minimum separation
distances shown in table 11.3.1, respectively, in any situation.
If the antenna being one of the approved antenna types has lower antenna gain than the type’s
maximum one, the minimum separation distance in general public environment (d in cm) can be
calculated by giving the EIRP of the configuration and the exposure limit (S = 0.276 mWcm2) to the
following formula: d = √(EIRP/(4πS)).
For controlled environment (d in cm) can be calculated by giving the EIRP of the configuration and the
exposure limit (S = 0.629 mWcm-2) to the following formula: d = √(EIRP/(4πS)).
Product Uncontrolled/general population Occupational / controlled environments
NUR2-1W + antenna with
5dBi max. gain
NUR2-1W + antenna with
RF exposure evaluation is not required at
30.2 cm separation distance @915MHZ
RF exposure evaluation is not required at
RF exposure evaluation is not required at
20cm separation distance @915MHZ
RF exposure evaluation is not required at
6dBi max. gain
Table 11.3.1
The EIRP (EIRPdBm = Po - Ll + G ) needed for the calculation of minimum separation distance consists of the
following factors:
43
33.9cm separation distance @915MHZ
Po = (Maximum peak output of NUR2-1W transmitter + measurement uncertainty) = + (dBm) Ll = (Line losses) = known value (dB) G = (Antenna gain) = known value (dBi)
20cm separation distance @915MHZ
2017-09-07
2. The antenna(s) used with the NUR2-1W module must not be co located in conjunction with any other
transmitter or its antenna that is capable of transmitting at the same time, except the transmitter-antenna
configurations that are within the limits of the NUR2-1Ws IC grant.
3. The design of an antenna circuit trace layout in a host shall comply with the OEM design instructions
provided.
When the conditions above are met, typically no transmitter testing is required, although the OEM
integrator shall demonstrate that the end-product is in compliance with the other regulatory requirements.
There is no user’s documentation requirements other than that the required FCC statements outlined in the
FCC section are in a prominent place in the user’s guide.
NUR2-1W HW Implementation Guide v1.0
Note
User of the module cannot change the region setting of the module. When FCC region is set, the
module operates in frequency band of 902 – 928Mhz.
LABELLING REQUIREMENTS FOR THE HOST DEVICE
The end product must be labeled with the following identification information in a visible area:
“Contains IC: 5137A-NUR21W”
CERTIFIED ANTENNAS
This radio transmitter 5137A-NUR21W has been approved by Industry Canada to operate with the antenna
types listed below with the maximum permissible gain and required antenna impedance for each antenna
type indicated. Antenna types not included in this list, having a gain greater than the maximum gain
indicated for that type, are strictly prohibited for use with this device.
Option 1:
Manufacturer: Nordic ID
44
Antenna Description: 4 Patch antenna-array
Frequency range: 902 – 928 MHz
Manufacturer Part Number: ARx5_antenna
Gain: 6dBi
Option 2:
Manufacturer: Nordic ID
Antenna Description: Cross Dipole antenna with reflector
Frequency range: 902 – 928 MHz
Manufacturer Product Name: Medea_ACD_antenna
Gain: 5dBi
11.4 INDUSTRIE CANADA
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio
exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne
2017-09-07
NUR2-1W HW Implementation Guide v1.0
doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage
radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.
Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut
fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour
l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique
à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la
puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à
l'établissement d'une communication satisfaisante..
Le module émetteur NUR2-1W estautorisé à êtreutilisé avec d’autresappareilsuniquement par des
intégrateurs OEM sous les conditions suivantes :
1. Les antennes étant les types approuvés avec le gain maximal de 5dBi et de 6dBi doivent être installés de
sorte que l'utilisateur du périphérique ou les personnes proches ou les personnes passantes ne puissent
pas compromettre les distances minimales de séparation indiquées dans le tableau 11.3.1,
respectivement, dans n'importe quelle situation.
45
Si l'antenne étant l'un des types d'antennes approuvés a un gain d'antenne inférieur à celui du maximum
du type, la distance minimale de séparation dans l'environnement public général (d en cm) peut être
calculée en donnant le PIRE de la configuration et la limite d'exposition (S = 0,276 mWcm2) à la formule
suivante: d = √ (PIRE / (4πS)).
Pour l'environnement contrôlé (d en cm), on peut calculer en donnant le PIRE de la configuration et la
limite d'exposition (S = 0,629 mWcm-2) à la formule suivante: d = √ (EIRP / (4πS)).
2017-09-07
NUR2-1W HW Implementation Guide v1.0
La PIRE (PIRE
des facteurs suivants :
Po (Puissance de crête maximale de l’émetteur NUR2-1W + incertitude de mesure) = + (dBm) Ll (Pertes en lignes) = valeur connue (dB) G (Gain d’antenne) = valeur connue (dBi)
2. Le module émetteur ne doit pas êtrecolocalisé avec d´autre(s) transmetteur(s), saufsice(s) dernier(s)
répond(ent) avec ceux qui sontdans les limitesindiquéesdansl´application de NUR2-1W.
3. Le module émetteurpeutêtreuniquementutilisé avec unschéma du design de configuration de la piste du
circuit de l’antennehôteenrespectantstrictement les instructions OEM fournies.
Lorsque les conditions ci-dessus sont remplies, aucun test radio de l’émetteur NUR2-1W ne sera
généralement nécessaire, même si l’intégrateur OEM devra démontrer que le produit final est en conformité
avec les autres exigences réglementaires.
Il n’existe aucune exigence de documentation de l’utilisateur autre que le fait que les déclarations
= Po - Ll + G) nécessaire pour le calcul de la distance minimale de séparation se compose
dBm
obligatoires FCC dans la section FCC soient bien en vue dans le guide de l’utilisateur.
Observation:
L’utilisateur du module ne pourra pas changer les paramètres région du module. Quand le
paramètre région FCC est sélectionné, le module fonctionne sur la bande de fréquence 902-
928Mhz.
EXIGENCES APPLICABLES AUX APPAREILS HÔTES
Le produit fini doit disposer d´étiquette mentionnant les information suivantes d´identification sur une
surface visible:
“Contains IC: 5137A-NUR21W”
TYPES D'ANTENNES ACCEPTABLES
Le présent émetteur radio (IC: 5137A-NUR21W) a été approuvé par Industrie Canada pour fonctionner avec
les types d'antenne énumérés ci-dessous et ayant un gain admissible maximal et l'impédance requise pour
chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au
Option 1:
46
gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.
Manufacturer: Nordic ID
Antenna Description: 4 Patch antenna-array
Option 2:
2017-09-07
NUR2-1W HW Implementation Guide v1.0
Frequency range: 902 – 928 MHz
Manufacturer Part Number: ARx5_antenna
Gain: 6dBi
Manufacturer: Nordic ID
Antenna Description: Cross Dipole antenna with reflector
Frequency range: 902 – 928 MHz
Manufacturer Product Name: Medea_ACD_antenna
Gain: 5dBi
47
Loading...