Nokia NSE–3 Service Manual

Technical Documentation
Programs After Market Services (PAMS)
Last Update 11/97
SERVICE
MANUAL
[NMP Part No.0275341]
NSE–3 SERIES
PHONES
Technical Documentation
Programs After Market Services (PAMS)
Last Update 11/97
NSE–3 SERIES DIGITAL CELLULAR PHONES
SERVICE MANUAL
OVERALL CONTENTS
NSE–3 Series Core Transceiver booklet comprising
Chapter 1: Foreword
Chapter 2: General Information
Chapter 3: System Module
Chapter 4: UI Module
Appendices to Transceiver booklet covering a specific variant
Appendix 1: Transceiver NSE–3NX
Booklets comprising
Service Software Instructions
Tuning Instructions
Service Tools
Disassembly/Troubleshooting Instructions
Handsfree Unit HFU–2
Non–serviceable Accessories
Installation Instructions CARK–64
Installation Instructions CARK–91
NSE–3 SeriesTransceivers
PAMS Technical Documentation
Original 11/97
Chapter 1
Foreword
PAMS
Technical Documentation
NSE–3 Foreword
Page 1 – 2
Original 11/97
IMPORTANT
This document is intended for use by qualified service personnel only .
Company Policy
Our policy is of continuous development; details of all technical modifications will be included with service bulletins.
While every endeavour has been made to ensure the accuracy of this document, some errors may exist. If any errors are found by the reader, NOKIA MOBILE PHONES Ltd should be notified in writing.
Please state:
Title of the Document + Issue Number/Date of publication Latest Amendment Number (if applicable) Page(s) and/or Figure(s) in error
Please send to: Nokia Mobile Phones Ltd
PAMS Technical Documentation PO Box 86 FIN–24101 SALO Finland
PAMS Technical Documentation
NSE–3
Foreword
Page 1 – 3
Original 11/97
Warnings and Cautions
Please refer to the phone’s user guide for instructions relating to operation, care and maintenance including important safety information. Note also the following:
Warnings:
1. CARE MUST BE TAKEN ON INSTALLATION IN VEHICLES FITTED WITH ELECTRONIC ENGINE MANAGEMENT SYSTEMS AND ANTI–SKID BRAKING SYSTEMS. UNDER CERTAIN FAULT CONDITIONS, EMITTED RF ENERGY CAN AFFECT THEIR OPERATION. IF NECESSARY, CONSULT THE VEHICLE DEALER/MANUFACTURER TO DETERMINE THE IMMUNITY OF VEHICLE ELECTRONIC SYSTEMS TO RF ENERGY.
2. THE HANDPORTABLE TELEPHONE MUST NOT BE OPERATED IN AREAS LIKELY TO CONTAIN POTENTIALLY EXPLOSIVE ATMOSPHERES EG PETROL STATIONS (SERVICE STATIONS), BLASTING AREAS ETC.
3. OPERATION OF ANY RADIO TRANSMITTING EQUIPMENT, INCLUDING CELLULAR TELEPHONES, MAY INTERFERE WITH THE FUNCTIONALITY OF INADEQUATELY PROTECTED MEDICAL DEVICES. CONSULT A PHYSICIAN OR THE MANUFACTURER OF THE MEDICAL DEVICE IF YOU HAVE ANY QUESTIONS. OTHER ELECTRONIC EQUIPMENT MAY ALSO BE SUBJECT TO INTERFERENCE.
Cautions:
1. Servicing and alignment must be undertaken by qualified personnel only.
2. Ensure all work is carried out at an anti–static workstation and that an anti–static wrist strap is worn.
3. Ensure solder, wire, or foreign matter does not enter the telephone as damage may result.
4. Use only approved components as specified in the parts list.
5. Ensure all components, modules screws and insulators are correctly re–fitted after servicing and alignment. Ensure all cables and wires are repositioned correctly.
PAMS
Technical Documentation
NSE–3 Foreword
Page 1 – 4
Original 11/97
[This page intentionally left blank]
NSE–3 Series Transceivers
PAMS Technical Documentation
Original 11/97
Chapter 3
System Module
PAMS
Technical Documentation
NSE–3 System Module
Original 11/97
Page 3 – 2
CONTENTS
Transceiver NSE–3 3 – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction 3 – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Description 3 – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interconnection Diagram 3 – 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Module 3 – 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External and Internal Connectors 3 – 7. . . . . . . . . . . . . . . . . . . . .
System Connector Contacts 3 – 8. . . . . . . . . . . . . . . . . . . . . . .
RF Connector Contacts 3 – 9. . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply Voltages and Power Consumtion 3 – 9. . . . . . . . . . . .
Functional Description 3 – 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Baseband Module 3 – 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram 3 – 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technical Summary 3 – 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bottom Connector External Contacts 3 – 12. . . . . . . . . . . . . . .
Bottom Connector Signals 3 – 12. . . . . . . . . . . . . . . . . . . . . . . .
Battery Connector 3 – 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SIM Card Connector 3 – 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Microphone 3 – 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Infrared Module Connections 3 – 15. . . . . . . . . . . . . . . . . . . . . .
RTC Backup Battery 3 – 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Buzzer 3 – 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Description 3 – 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Distribution 3 – 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Battery charging 3 – 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Startup Charging 3 – 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Battery Overvoltage Protection 3 – 19. . . . . . . . . . . . . . . . . . . .
Battery Removal During Charging 3 – 20. . . . . . . . . . . . . . . . . .
Different PWM Frequencies ( 1Hz and 32 Hz) 3 – 21. . . . . . .
Battery Identification 3 – 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Battery Temperature 3 – 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply Voltage Regulators 3 – 23. . . . . . . . . . . . . . . . . . . . . . . .
Switched Mode Supply VSIM 3 – 25. . . . . . . . . . . . . . . . . . . . . .
Power Up 3 – 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power up with a charger 3 – 26. . . . . . . . . . . . . . . . . . . . . . . . . .
Power Up With The Power Switch (PWRONX) 3 – 26. . . . . . .
Power Up by RTC 3 – 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Up by IBI 3 – 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Acting Dead 3 – 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Mode 3 – 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sleep Mode 3 – 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Charging 3 – 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Off 3 – 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog 3 – 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PAMS Technical Documentation
NSE–3
System Module
Page 3 – 3
Original 11/97
Audio control 3 – 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Audio Connections 3 – 30. . . . . . . . . . . . . . . . . . . . . . .
Analog Audio Accessory Detection 3 – 31. . . . . . . . . . . . . . . . .
Headset Detection 3 – 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Audio Connections 3 – 32. . . . . . . . . . . . . . . . . . . . . . . .
4–wire PCM Serial Interface 3 – 32. . . . . . . . . . . . . . . . . . . . . . .
Alert Signal Generation 3 – 33. . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Control 3 – 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAD2 3 – 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Memories 3 – 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Program Memory 3 – 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SRAM Memory 3 – 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EEPROM Memory 3 – 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MCU Memory Map 3 – 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Programming 3 – 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
COBBA–GJ 3 – 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Infrared Transceiver Module 3 – 45. . . . . . . . . . . . . . . . . . . . . . .
Real Time Clock 3 – 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RTC backup battery charging 3 – 46. . . . . . . . . . . . . . . . . . . . . .
Vibra Alerting Device 3 – 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IBI Accessories 3 – 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phone Power–on by IBI 3 – 47. . . . . . . . . . . . . . . . . . . . . . . . . . .
IBI power–on by phone 3 – 47. . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Module 3 – 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Ratings 3 – 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Frequency Plan 3 – 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Distribution Diagram 3 – 49. . . . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics 3 – 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Regulators 3 – 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control Signals 3 – 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Description 3 – 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frequency synthesizers 3 – 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver 3 – 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmitter 3 – 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AGC strategy 3 – 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AFC function 3 – 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver blocks 3 – 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RX interstage filter 3 – 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1st mixer in CRFU_1a 3 – 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1st IF–filter 3 – 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PAMS
Technical Documentation
NSE–3 System Module
Original 11/97
Page 3 – 4
Transmitter Blocks 3 – 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TX interstage filter 3 – 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power amplifier MMIC 3 – 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Synthesizer blocks 3 – 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VHF VCO and low pass filter 3 – 57. . . . . . . . . . . . . . . . . . . . . . . .
UHF PLL 3 – 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UHF PLL block in PLUSSA 3 – 57. . . . . . . . . . . . . . . . . . . . . . . . . .
UHF VCO module 3 – 58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UHF local signal input in CRFU_1a 3 – 58. . . . . . . . . . . . . . . . . . .
Connections 3 – 58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF connector and antenna switch 3 – 58. . . . . . . . . . . . . . . . . . . .
Timings 3 – 61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Synthesizer control timing 3 – 61. . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmitter power switching timing diagram 3 – 63. . . . . . . . . . .
Synthesizer clocking 3 – 63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram of Baseband Blocks 3 – 64. . . . . . . . . . . . . . . . . . .
Parts list of UP8T (EDMS Issue 11.10) 3 – 65
Schematic Diagrams:
Block Diagram of System/RF Blocks 3/A3–1. . . . . . . . . . . . . . . . . . . . . .
Circuit Diagram of Baseband (Version 12 Edit 8) 3/A3–2. . . . . . . . . .
Circuit Diagram of Power Supply (Version 14 Edit 41) 3/A3–3. . . . . .
Circuit Diagram of SIM Connectors (Version 14 Edit 9) 3/A3–4. . . . . .
Circuit Diagram of CPU Block (Version 14 Edit 23) 3/A3–5. . . . . . . . .
Circuit Diagram of Audio (Version 14 Edit 27) 3/A3–6. . . . . . . . . . . . .
Circuit Diagram of IR Module (Version 14 Edit 21) 3/A3–7. . . . . . . . . .
Circuit Diagram of RF Block (Version 14 Edit 26) 3/A3–8. . . . . . . . . . .
Layout Diagram of UPT8T (Version 14) 3/A3–9. . . . . . . . . . . . . . . . . . .
PAMS Technical Documentation
NSE–3
System Module
Page 3 – 5
Original 11/97
Transceiver NSE–3
Introduction
The NSE–3 is a radio transceiver unit designed for the GSM network. It is a GSM phase 2 power class 4 transceiver providing 15 power levels with a maximum output power of 2 W. The transceiver is a true 3 V transceiver.
The transceiver consists of System/RF module (UP8T), User interface module (UE4) and assembly parts.
The transceiver has full graphic display and two soft key based user inter­face.
The antenna is a fixed helix. External antenna connection is provided by rear RF connector
Functional Description
There are five different operation modes: – power off mode – idle mode – active mode – charge mode – local mode
In the power off mode only the circuits needed for power up are supplied. In the idle mode circuits are powered down and only sleep clock is run-
ning. In the active mode all the circuits are supplied with power although some
parts might be in the idle state part of the time. The charge mode is effective in parallel with all previous modes. The
charge mode itself consists of two different states, i.e. the charge and the maintenance mode.
The local mode is used for alignment and testing.
PAMS
Technical Documentation
NSE–3 System Module
Original 11/97
Page 3 – 6
Interconnection Diagram
Module
User Interface
UE4
Module
System/RF
UP8
Keypad Display
SIM Battery
System
RF
Connector
Connector
Charger
Antenna
2
3 + 36
Earpiece
IR Link
2
1
6
10 9
2
4
28
2
Mic
PAMS Technical Documentation
NSE–3
System Module
Page 3 – 7
Original 11/97
System Module
External and Internal Connectors
Rubber boot
Microphone
Solderable element,
2 pcs
Cable/Cradle connector, guiding/fixing hole, 3 pcs
Contact 1
DC–jack
Contact 2
Contact 9
Contacts
3...8
Microphone port
PAMS
Technical Documentation
NSE–3 System Module
Original 11/97
Page 3 – 8
System Connector Contacts
Con-
tact
Line
Sym-
bol
Parameter Mini-
mum
Typical / Nomi-
nal
Maxi-
mum
Unit / Notes
1 VIN Charger input volt-
age Charger input cur-
rent
7.1 720
7.24 320
8.4 800
7.6 370
9.3 850
16.0 420
V/ Unloaded ACP–9 Charger mA/ Supply current V/ Unloaded ACP–7 Charger mA/ Supply current
DC– JACK
L_GND Charger ground
input
0 0 0 V/ Supply ground
DC– JACK
VIN Charger input volt-
age Charger input cur-
rent
7.1 720
7.24 320
8.4 800
7.6 370
9.3 850
16.0 420
V/ Unloaded ACP–9 Charger mA/ Supply current V/ Unloaded ACP–7 Charger mA/ Supply current
DC– JACK
CHRG CTRL
Output high volt­age
PWM frequency output low voltage
2.0
0
32
2.8
0.5
V/ Charger control (PWM) high
Hz /PWM frequency for charger V
2 CHRG
CTRL
Output high volt­age
PWM frequency
2.0 32
2.8 V/ Charger control (PWM) high
Hz /PWM frequency for charger
Mic ports
Acoustic signal N/A N/A N/A Microphone sound ports
3 XMIC Input signal volt-
age
60 1 Vpp mVrms
4 SGND Signal ground 0 0 mVrms 5 XEAR Output signal volt-
age
80 1 Vpp mVrms
6 MBUS I/O low voltage
I/O high voltage
0
2.0
0.8
2.8
Serial bidirectional control bus. Baud rate 9600 Bit/s
7 FBUS_RXInput low voltage
Input high voltage02.0
0.8
2.8
V/ Fbus receive. V/ Serial Data, Baud rate
9.6k–230.4kBit/s
8 FBUS_TXOutput low voltage
Output high volt­age
0
2.0
0.8
2.8
V/ Fbus transmit. V/ Serial Data, Baud rate
9.6k–230.4kBit/s
9 L_GND Charger ground
input
0 0 0 V/ Supply ground
PAMS Technical Documentation
NSE–3
System Module
Page 3 – 9
Original 11/97
RF Connector Contacts
Con-
tact
Line
Symbol
Parameter Mini-
mum
Typical / Nomi-
nal
Maxi-
mum
Unit / Notes
1 EXT_ANT
p
External antenna connec-
2 GND
Im edance 50ohm tor,
0 V DC
Supply Voltages and Power Consumtion
Connector Line Symbol Minimum Typical /
Nominal
Maximum/
Peak
Unit / Notes
Charging VIN 7.1 8.4 9.3 V/ Travel charger,
ACP–9
Charging VIN 7.25 7.6 16.0 V/ T ravel charger.
ACP–7
Charging I / VIN 720 800 850 mA/ Travel char-
ger, ACP–9
Charging I / VIN 320 370 420 mA/ Travel char-
ger, ACP–7
Functional Description
The transceiver electronics consist of the Radio Module ie. RF + System blocks, the UI PCB, the display module and audio components. The key­pad and the display module are connected to the Radio Module with a connectors. System blocks and RF blocks are interconnected with PCB wiring. The Transceiver is connected to accessories via a bottom system connector with charging and accessory control.
The System blocks provide the MCU, DSP and Logic control functions in MAD ASIC, external memories, audio processing and RF control hard­ware in COBBA ASIC. Power supply circuitry CCONT ASIC delivers oper­ating voltages both for the System and the RF blocks.
The RF block is designed for a handportable phone which operates in the GSM system. The purpose of the RF block is to receive and demodulate the radio frequency signal from the base station and to transmit a modu­lated RF signal to the base station. The PLUSSA ASIC is used for VHF and PLL functions. The CRFU ASIC is used at the front end.
PAMS
Technical Documentation
NSE–3 System Module
Original 11/97
Page 3 – 10
Baseband Module
Block Diagram
CCONT
UI
SIM
MAD
SYSCON
CHAPS
COBBA
BATTERY
PA SUPPLY
RF SUPPLIES
BB SUPPLY
TX/RX SIGNALS
BASEBAND
VBAT
+
MEMORIES
COBBA SUPPLY
AUDIOLINES
IR
32kHz CLK
13MHz CLK
SLEEP CLOCK
SYSTEM CLOCK
Technical Summary
The baseband module consists of four asics, CHAPS, CCONT, COBBA– GJ and MAD2, which take care of the baseband functions of NSE–3.
The baseband is running from a 2.8V power rail, which is supplied by a power controlling asic. In the CCONT asic there are 6 individually con­trolled regulator outputs for RF–section and two outputs for the base­band. In addition there is one +5V power supply output (V5V) for flash programming voltage and other purposes where a higher voltage is need­ed. The CCONT contains also a SIM interface, which supports both 3V and 5V SIM–cards. A real time clock function is integrated into the CCONT, which utilizes the same 32kHz clock supply as the sleep clock. A backup power supply is provided for the RTC, which keeps the real time clock running when the main battery is removed. The backup power sup­ply is a rechargable polyacene battery. The backup time with this battery is minimum of ten minutes.
PAMS Technical Documentation
NSE–3
System Module
Page 3 – 11
Original 11/97
The interface between the baseband and the RF section is handled by a specific asic. The COBBA asic provides A/D and D/A conversion of the in–phase and quadrature receive and transmit signal paths and also A/D and D/A conversions of received and transmitted audio signals to and from the UI section. The COBBA supplies the analog TXC and AFC sig­nals to rf section according to the MAD DSP digital control and converts analog AGC into digital signal for the DSP. Data transmission between the COBBA and the MAD is implemented using a parallel connection for high speed signalling and a serial connection for PCM coded audio signals. Digital speech processing is handled by the MAD asic. The COBBA asic is a dual voltage circuit, the digital parts are running from the baseband supply VBB and the analog parts are running from the analog supply VCOBBA.
The baseband supports three external microphone inputs and two exter­nal earphone outputs. The inputs can be taken from an internal micro­phone, a headset microphone or from an external microphone signal source. The microphone signals from different sources are connected to separate inputs at the COBBA asic.
The output for the internal earphone is a dual ended type output capable of driving a dynamic type speaker. Input and output signal source selec­tion and gain control is performed inside the COBBA asic according to control messages from the MAD. Keypad tones, DTMF, and other audio tones are generated and encoded by the MAD and transmitted to the COBBA for decoding. A buzzer and an external vibra alert control signals are generated by the MAD with separate PWM outputs.
EMC shieding is implemented using a metallized plastic B–cover with a conductive rubber seal on the ribs. On the other side the engine is shielded with a frame having a conductive rubber on the inner walls, which makes a contact to a ground ring of the engine board and a ground plane of the UI–board. Heat generated by the circuitry will be con­ducted out via the PCB ground planes.
PAMS
Technical Documentation
NSE–3 System Module
Original 11/97
Page 3 – 12
Bottom Connector External Contacts
Contact Line Symbol Function
1 VIN Charger input voltage DC–jack
side contact (DC–plug ring)
L_GND Charger ground
DC–jack center pin
VIN Charger input voltage
DC–jack side contact (DC–plug jacket)
CHRG_CTRL Charger control output (from phone)
2 CHRG_CTRL Charger control output (from phone) Microphone
acoustic ports
Acoustic signal (to phone)
3 XMIC Accessory microphone signal input (to phone) 4 SGND Accessory signal ground 5 XEAR Accessory earphone signal output (from phone) 6 MBUS MBUS, bidirectional serial data i/o 7 FBUS_RX FBUS, unidirectional serial data input (to phone) 8 FBUS_TX FBUS, unidirectional serial data output (from phone) 9 L_GND Charger ground
Bottom Connector Signals
Pin Name Min Typ Max Unit Notes
1,3 VIN
7.25
3.25 320
7.6
3.6
370
7.95
16.9
3.95 420
V V V
mA
Unloaded ACP–7 Charger (5kohms load)
Peak output voltage (5kohms load) Loaded output voltage (10ohms load) Supply current
7.1
3.25 720
8.4
3.6
800
9.3
3.95 850
V V
mA
Unloaded ACP–9 Charger Loaded output voltage (10ohms load) Supply current
2 L_GND 0 0 V Supply ground
4,5 CHRG_
0 0.5 V Charger control PWM low
CTRL
2.0 2.85 V Charger control PWM high 32 Hz PWM frequency for a fast charger
1 99 % PWM duty cycle 6 MICP N/A see section Internal microphone 7 MICN N/A see section Internal microphone
PAMS Technical Documentation
NSE–3
System Module
Page 3 – 13
Original 11/97
NotesUnitMaxTypMinNamePin
8 XMIC
2.0 2.2 k Input AC impedance 1 Vpp Maximum signal level
1.47 1.55 V Mute (output DC level)
2.5 2.85 V Unmute (output DC level)
100 600 µA Bias current
58 490 mV Maximum signal level
HMIC 0 3.2 29.3 mV Microphone signal
Connected to COBBA MIC3P input
9 SGND
47 Output AC impedance (ref. GND) 10 µF Series output capacitance
380 Resistance to phone ground
10 XEAR
47 Output AC impedance (ref. GND) 10 µF Series output capacitance
16 300 Load AC impedance to SGND (Head-
set)
4.7 10 k Load AC impedance to SGND (Acces-
sory)
1.0 Vpp Maximum output level (no load) 22 626 mV Output signal level 10 k Load DC resistance to SGND (Acces-
sory)
16 1500 Load DC resistance to SGND (Head-
set)
2.8 V DC voltage (47k pull–up to VBB)
HEAR 28 626 mV Earphone signal (HF– HFCM)
Connected to COBBA HF output
11 MBUS 0 logic low 0.8 V Serial bidirectional control bus.
2.0 logic high 2.85
Baud rate 9600 Bit/s Phone has a 4k7 pullup resistor
12 FBUS_RX 0 logic low 0.8 V Fbus receive. Serial Data
2.0 logic high 2.85
Baud rate 9.6k–230.4kBit/s Phone has a 220k pulldown resistor
13 FBUS_TX 0 logic low 0.5 V Fbus transmit. Serial Data
2.0 logic high 2.85
Baud rate 9.6k–230.4kBit/s Phone has a 47k pullup resistor
14 GND 0 0.3 V Supply ground
PAMS
Technical Documentation
NSE–3 System Module
Original 11/97
Page 3 – 14
Battery Connector
Pin Name Min Typ Max Unit Notes
1 BVOLT 3.0 3.6 4.5 V Battery voltage
5.0
5.3
Maximum voltage in call state with charger Maximum voltage in idle state with charger
2 BSI
0 2.85 V Battery size indication
Phone has 100kohm pull up resistor.
SIM Card removal detection
(Treshold is 2.4V@VBB=2.8V)
2.2 18 kohm Battery indication resistor (Ni battery) 20 22 24 kohm Battery indication resistor (service battery) 27 51 kohm Battery indication resistor (4.1V Lithium
battery)
68 91 kohm Battery indication resistor (4.2V Lithium bat-
tery)
3 BTEMP
0 1.4 V Battery temperature indication
Phone has a 100k (+–5%) pullup resistor,
Battery package has a NTC pulldown resis-
tor:
47k+–5%@+25C , B=4050+–3%
2.1
5
10
3
20
V
ms
Phone power up by battery (input)
Power up pulse width
1.9 90
100
2.85 200
V
ms
Battery power up by phone (output)
Power up pulse width
0 1 kohm Local mode initialization (in production)
20 22 25 kHz PWM control to VIBRA BATTERY
4 BGND 0 0 V Battery ground
PAMS Technical Documentation
NSE–3
System Module
Page 3 – 15
Original 11/97
SIM Card Connector
Pin Name Parameter Min Typ Max Unit Notes
4 GND GND 0 0 V Ground
3, 5 VSIM 5V SIM Card
3V SIM Card
4.8
2.8
5.0
3.0
5.2
3.2
V Supply voltage
6 DATA 5V V in/Vout
3V Vin/Vout
4.0 0
2.8 0
”1” ”0” ”1” ”0”
VSIM
0.5
VSIM
0.5
V SIM data
Trise/Tfall max 1us
2 SIMRST 5V SIM Card
3V SIM Card
4.0
2.8
”1” ”1”
VSIM VSIM
V SIM reset
1 SIMCLK Frequency
Trise/Tfall
3.25 25
MHz
ns
SIM clock
Internal Microphone
Pin Name Min Typ Max Unit Notes
6 MICP 0.55 4.1 mV Connected to COBBA MIC2N input. The
maximum value corresponds to1 kHz, 0 dBmO network level with input amplifier gain set to 32 dB. typical value is maxi­mum value – 16 dB.
7 MICN 0.55 4.1 mV Connected to COBBA MIC2P input. The
maximum value corresponds to1 kHz, 0 dBmO network level with input amplifier gain set to 32 dB. typical value is maxi­mum value – 16 dB.
Infrared Module Connections
An infrared transceiver module is designed to substitute an electrical cable between the phone and a PC. The infrared transceiver module is a stand alone component capable to perform infrared transmitting and re­ceiving functions by transforming signals transmitted in infrared light from and to electrical data pulses running in two wire asyncronous databus. In DCT3 the module is placed inside the phone at the top of the phone.
Signal Parameter Min Typ Max Unit Notes
IRON IR–module on/off 2.0 2.85 V Iout@2mA FBUS_RX
IR receive pulse 0 0.8 V IR receive no pulse 2.0 2.85 V
FBUS_TX
IR transmit pulse 2.0 2.85 V Iout@2mA IR transmit no pulse 0 0.5 V
PAMS
Technical Documentation
NSE–3 System Module
Original 11/97
Page 3 – 16
RTC Backup Battery
The RTC block in CCONT needs a power backup to keep the clock run­ning when the phone battery is disconnected. The backup power is sup­plied from a rechargable polyacene battery that can keep the clock run­ning minimum of 10 minutes. The backup battery is charged from the main battery through CHAPS.
Signal Parameter Min Typ Max Unit Notes
VBACK
Backup battery charg­ing from CHAPS
3.02 3.15 3.28 V
Backup battery charg­ing from CHAPS
100 200 500 uA Vout@VBAT–0.2V
VBACK
Backup battery supply to CCONT
2 3.28 V Battery capacity
65uAh
Backup battery supply to CCONT
80 uA
Buzzer
Signal Maximum
output cur-
rent
Input
high level
Input
low level
Level (PWM)
range, %
Frequency
range, Hz
BuzzPWM /
BUZZER
2mA 2.5V 0.2V 0...50 (128 lin-
ear steps)
440...4700
PAMS Technical Documentation
NSE–3
System Module
Page 3 – 17
Original 11/97
Functional Description
Power Distribution
In normal operation the baseband is powered from the phone‘s battery. The battery consists of one Lithium–Ion cell. There is also a possibility to use batteries consisting of three Nickel Metal Hydride cells. An external charger can be used for recharging the battery and supplying power to the phone. The charger can be either a standard charger that can deliver around 400 mA or so called performance charger, which can deliver sup­ply current up to 850 mA.
The baseband contains components that control power distribution to whole phone excluding those parts that use continuous battery supply. The battery feeds power directly to three parts of the system: CCONT, power amplifier, and UI (buzzer and display and keyboard lights). Figure 4 shows a block diagram of the power distribution.
The power management circuit CHAPS provides protection agains over­voltages, charger failures and pirate chargers etc. that would otherwise cause damage to the phone.
CCONT
SIM
+
BOTTOM CONNECTOR
CHAPS
COBBA
BATTERY
PA SUPPLY
RF SUPPLIES
VBB
BASEBAND
VBAT
VCOBBA
VSIM
VBB
CNTVR
PWM
VBAT
PWRONX
PURX
VIN
UI
BACKUP
RTC
MEMORIES
MAD
LIM
VBB
PAMS
Technical Documentation
NSE–3 System Module
Original 11/97
Page 3 – 18
Battery charging
The electrical specifications give the idle voltages produced by the ac­ceptable chargers at the DC connector input. The absolute maximum in­put voltage is 30V due to the transient suppressor that is protecting the charger input. At phone end there is no difference between a plug–in charger or a desktop charger. The DC–jack pins and bottom connector charging pads are connected together inside the phone.
VIN
CHAPS
10k
1n
PWM
VBAT
GND
CCONT
CHRG_CTRL
L_GND
CHARGER
PWM_OUT
TRANSCEIVER
0R22
VCHAR
ICHAR
100k
22k
1u
2A
30V
VCH
VOUT
RSENSE
GND
NOT IN ACP–7
CCONTINT
MAD
LIM
MAD
Startup Charging
When a charger is connected, the CHAPS is supplying a startup current minimum of 130mA to the phone. The startup current provides initial charging to a phone with an empty battery. Startup circuit charges the battery until the battery voltage level is reaches 3.0V (+/– 0.1V) and the CCONT releases the PURX reset signal and program execution starts. Charging mode is changed from startup charging to PWM charging that is controlled by the MCU software. If the battery voltage reaches 3.55V (3.75V maximum) before the program has taken control over the charg­ing, the startup current is switched off. The startup current is switched on again when the battery voltage is sunken 100mV (nominal).
Parameter Symbol Min Typ Max Unit
VOUT Start– up mode cutoff limit Vstart 3.45 3.55 3.75 V
VOUT Start– up mode hysteresis
NOTE: Cout = 4.7 uF
Vstarthys 80 100 200 mV
Start–up regulator output current
VOUT = 0V ... Vstart
Istart 130 165 200 mA
PAMS Technical Documentation
NSE–3
System Module
Page 3 – 19
Original 11/97
Battery Overvoltage Protection
Output overvoltage protection is used to protect phone from damage. This function is also used to define the protection cutoff voltage for differ­ent battery types (Li or Ni). The power switch is immediately turned OFF if the voltage in VOUT rises above the selected limit VLIM1 or VLIM2.
Parameter Symbol LIM input Min Typ Max Unit
Output voltage cutoff limit
(during transmission or Li–
battery)
VLIM1 LOW 4.4 4.6 4.8 V
Output voltage cutoff limit
(no transmission or Ni–bat-
tery)
VLIM2 HIGH 4.8 5.0 5.2 V
The voltage limit (VLIM1 or VLIM2) is selected by logic LOW or logic HIGH on the CHAPS (N101) LIM– input pin. Default value is lower limit VLIM1.
When the switch in output overvoltage situation has once turned OFF, it stays OFF until the the battery voltage falls below VLIM1 (or VLIM2) and PWM = LOW is detected. The switch can be turned on again by setting PWM = HIGH.
PWM (32Hz)
VOUT
VLIM1 or VLIM2
t
SWITCH
ON OFF
VCH
t
VCH<VOUT
ON
PAMS
Technical Documentation
NSE–3 System Module
Original 11/97
Page 3 – 20
Battery Removal During Charging
Output overvoltage protection is also needed in case the main battery is removed when charger connected or charger is connected before the bat­tery is connected to the phone.
With a charger connected, if VOUT exceeds VLIM1 (or VLIM2), CHAPS turns switch OFF until the charger input has sunken below Vpor (nominal
3.0V, maximum 3.4V). MCU software will stop the charging (turn off PWM) when it detects that battery has been removed. The CHAPS re­mains in protection state as long as PWM stays HIGH after the output overvoltage situation has occured.
PWM
t
VOUT
t
4V
VLIM
”1”
”0”
SWITCH
t
ON
OFF
2
1.1Battery removed, (standard) charger connected, VOUT rises (follows charger voltage)
2. VOUT exceeds limit VLIM(X), switch is turned immediately OFF
3.3VOUT falls (because no battery) , also VCH<Vpor (standard chargers full–rectified output). When VCH > Vpor and VOUT < VLIM(X) –> switch turned on again (also PWM is still HIGH) and VOUT again exceeds VLIM(X).
4
4. Software sets PWM = LOW –> CHAPS does not enter PWM mode
Vstart
5
5. PWM low –> Startup mode, startup current flows until Vstart limit reached
VCH (Standard Charger)
Vpor
Vstarthys
Droop depends on load
Istart off due to VCH<Vpor
& C in phone
6
6. VOUT exceeds limit Vstart, Istart is turned off
7. VCH falls below Vpor
7
PAMS Technical Documentation
NSE–3
System Module
Page 3 – 21
Original 11/97
Different PWM Frequencies ( 1Hz and 32 Hz)
When a travel charger (2– wire charger) is used, the power switch is turned ON and OFF by the PWM input when the PWM rate is 1Hz. When PWM is HIGH, the switch is ON and the output current Iout = charger cur­rent – CHAPS supply current. When PWM is LOW, the switch is OFF and the output current Iout = 0. To prevent the switching transients inducing noise in audio circuitry of the phone soft switching is used.
The performance travel charger (3– wire charger) is controlled with PWM at a frequency of 32Hz. When the PWM rate is 32Hz CHAPS keeps the power switch continuously in the ON state.
SWITCH
PWM (1Hz)
SWITCH
PWM (32Hz)
ON
ON ONON OFF OFF
PAMS
Technical Documentation
NSE–3 System Module
Original 11/97
Page 3 – 22
Battery Identification
Different battery types are identified by a pulldown resistor inside the bat­tery pack. The BSI line inside transceiver has a 100k pullup to VBB. The MCU can identify the battery by reading the BSI line DC–voltage level with a CCONT (N100) A/D–converter.
SIMCardDetX
MAD
BSI
CCONT
2.8V
TRANSCEIVER
R
s
BATTERY
BSI
BGND
BTEMP
BVOLT
10k
10n
100k
The battery identification line is used also for battery removal detection. The BSI line is connected to a SIMCardDetX line of MAD2 (D200). SIM­CardDetX is a threshold detector with a nominal input switching level
0.85xVcc for a rising edge and 0.55xVcc for a falling edge. The battery removal detection is used as a trigger to power down the SIM card before the power is lost. The BSI contact in the battery pack is made 0.7mm shorter than the supply voltage contacts so that there is a delay between battery removal detection and supply power off,
0.550.05 Vcc
0.850.05 Vcc
Vcc
GND
S
IGOUT
SIMCARDDETX
PAMS Technical Documentation
NSE–3
System Module
Page 3 – 23
Original 11/97
Battery Temperature
The battery temperature is measured with a NTC inside the battery pack. The BTEMP line inside transceiver has a 100k pullup to VREF. The MCU can calculate the battery temperature by reading the BTEMP line DC– voltage level with a CCONT (N100) A/D–converter.
100k
VREF
TRANSCEIVER
R
T
BATTERY
BTEMP
BGND
BSI
BVOLT
10n
NTC
1k
MAD
BTEMP
CCONT
VibraPWM
10k
1k
MCUGenIO4
Supply Voltage Regulators
The heart of the power distrubution is the CCONT. It includes all the volt­age regulators and feeds the power to the whole system. The baseband digital parts are powered from the VBB regulator which provides 2.8V baseband supply. The baseband regulator is active always when the phone is powered on. The VBB baseband regulator feeds MAD and me­mories, COBBA digital parts and the LCD driver in the UI section. There is a separate regulator for a SIM card. The regulator is selectable between 3V and 5V and controlled by the SIMPwr line from MAD to CCONT. The COBBA analog parts are powered from a dedicated 2.8V supply VCOB­BA. The CCONT supplies also 5V for RF and for flash VPP. The CCONT contains a real time clock function, which is powered from a RTC backup when the main battery is disconnected.
PAMS
Technical Documentation
NSE–3 System Module
Original 11/97
Page 3 – 24
The RTC backup is rechargable polyacene battery, which has a capacity of 50uAh (@3V/2V) The battery is charged from the main battery voltage by the CHAPS when the main battery voltage is over 3.2V. The charging current is 200uA (nominal).
Operating mode Vref RF REG VCOB-
BA
VBB VSIM SIMIF
Power off Off Off Off Off Off Pull
down Power on On On/Off On On On On/Off Reset On Off
VR1 On
On On Off Pull
down Sleep On Off On On On On/Off
NOTE:
CCONT includes also five additional 2.8V regulators providing power to the RF section. These regulators can be controlled either by the direct control signals from MAD or by the RF regulator control register in CCONT which MAD can update. Below are the listed the MAD control lines and the regulators they are controlling.
– TxPwr controls VTX regulator (VR5) – RxPwr controls VRX regulator (VR2) – SynthPwr controls VSYN_1 and VSYN_2 regulators (VR4 and VR3) – VCXOPwr controls VXO regulator (VR1) CCONT generates also a 1.5 V reference voltage VREF to COBBA,
PLUSSA and CRFU. The VREF voltage is also used as a reference to some of the CCONT A/D converters.
In additon to the above mentioned signals MAD includes also TXP control signal which goes to PLUSSA power control block and to the power am­plifier. The transmitter power control TXC is led from COBBA to PLUSSA.
Loading...
+ 187 hidden pages