NEC RD100EB, RD11EB, RD11EB1, RD11EB3, RD120EB Datasheet

...
DATA SHEET
RD2.0E to RD200E
500 mW DHD ZENER DIODE
(DO-35)
ZENER DIODES
DESCRIPTION
NEC Type RD2.0E to RD200E Series are planar type zener diode in the popular DO-35 package with DHD (Double Heatsink Diode) construction having allowable power dissipation of 500 mW. To meet various application at customers, V the specific suffix (B, B1 to B7).
z (zener voltage) is classified into the tight tolerance under
• DHD (Double Heatsink Diode) Construction
•Vz: Applied E24 standard (RD130E to RD200E: 10 volts step)
• DO-35 Glass sealed package
PACKAGE DIMENSIONS
Cathode indication
φ
2.0 MAX.
ORDER INFORMATION
RD2.0 E to RD39E with suffix “B1”, “B2”, “B3”, “B4”, “B5”, “B6” or “B7” should be applied for orders for suffix “B”.
APPLICATIONS
Circuits for Constant Voltage, Constant Current, Waveform Clipper, Surge absorber, etc.
ABSOLUTE MAXIMUM RATINGS (TA = 25 ˚C)
Forward Current IF 200 mA
Power Dissipation P 500 mW
Surge Reverse Power PRSM 100 W (t = 10 µs) to see Fig. 17
Junction Temperature T
Storage Temperature Tstg –65 to +175 ˚C
j 175 ˚C
(in millimeters)
φ
0.5
25 MIN.4.2 MIN.25 MIN.
Document No. D10213EJ5V0DS00 (5th edition) Date Published December 1998 N CP(K) Printed in Japan
©
1981
ELECTRICAL CHARACTERISTICS (TA = 25 ˚C)
RD2.0E to RD200E
Type Number ZZ ()
RD2.0E B1 1.88 2.10 20 140 20 2 000 1 120 0.5
RD2.2E B1 2.12 2.30 20 120 20 2 000 1 120 0.7
RD2.4E B1 2.33 2.52 20 100 20 2 000 1 120 1.0
RD2.7E B1 2.54 2.75 20 100 20 1 000 1 100 1.0
RD3.0E B1 2.85 3.07 20 80 20 1 000 1 50 1.0
RD3.3E B1 3.16 3.38 20 70 20 1 000 1 20 1.0
RD3.6E B1 3.47 3.68 20 60 20 1 000 1 10 1.0
RD3.9E B1 3.77 3.98 20 50 20 1 000 1 5 1.0
RD4.3E
RD4.7E
RD5.1E
RD5.6E
RD6.2E
RD6.8E
Suffix
B 1.88 2.20
B2 2.02 2.20
B 2.12 2.41
B2 2.22 2.41
B 2.33 2.63
B2 2.43 2.63
B 2.54 2.91
B2 2.69 2.91
B 2.85 3.22
B2 3.01 3.22
B 3.16 3.53
B2 3.32 3.53
B 3.47 3.83
B2 3.62 3.83
B 3.77 4.14
B2 3.92 4.14
B 4.05 4.53 B1 4.05 4.26 B2 4.20 4.40 B3 4.34 4.53
B 4.47 4.91 B1 4.47 4.65 B2 4.59 4.77 B3 4.71 4.91
B 4.85 5.35 B1 4.85 5.03 B2 4.97 5.18 B3 5.12 5.35
B 5.29 5.88 B1 5.29 5.52 B2 5.46 5.70 B3 5.64 5.88
B 5.81 6.40 B1 5.81 6.06 B2 5.99 6.24 B3 6.16 6.40
B 6.32 6.97 B1 6.32 6.59 B2 6.52 6.79 B3 6.70 6.97
Zener Voltage
Note 1
VZ (V)
MIN. MAX. IZ (mA) MAX. IZ (mA) MAX. IZ (mA) MAX. VR(V)
20 40 20 1 000 1 5 1.0
20 25 20 900 1 5 1.0
20 20 20 800 1 5 1.5
20 13 20 500 1 5 2.5
20 10 20 300 1 5 3.0
20 8 20 150 0.5 2 3.5
Dynamic Knee Dynamic Impedance Impedance
Note 2
ZZK (Ω)
Note 2
Reverse Current
IR (µA)
2
RD2.0E to RD200E
Type Number ZZ ()
Suffix
Zener Voltage
Note 1
VZ (V)
Dynamic Knee Dynamic Impedance Impedance
Note 2
ZZK (Ω)
Note 2
Reverse Current
IR (µA)
MIN. MAX. IZ (mA) MAX. IZ (mA) MAX. IZ (mA) MAX. VR(V)
B 6.88 7.64
RD7.5E
B1 6.88 7.19 B2 7.11 7.41
20 8 20 120 0.5 0.5 4.0
B3 7.33 7.64
B 7.56 8.41
RD8.2E
B1 7.56 7.90 B2 7.82 8.15
20 8 20 120 0.5 0.5 5.0
B3 8.07 8.41
B 8.33 9.29
RD9.1E
B1 8.33 8.70 B2 8.61 8.99
20 8 20 120 0.5 0.5 6.0
B3 8.89 9.29
B 9.19 10.30
RD10E
B1 9.19 9.59 B2 9.48 9.90
20 8 20 120 0.5 0.2 7.0
B3 9.82 10.30
B 10.18 11.26
RD11E
B1 10.18 10.63 B2 10.50 10.95
10 10 10 120 0.5 0.2 8.0
B3 10.82 11.16
B 11.13 12.30
RD12E
B1 11.13 11.63 B2 11.50 11.92
10 12 10 110 0.5 0.2 9.0
B3 11.80 12.30
B 12.18 13.62
RD13E
B1 12.18 12.71 B2 12.59 13.16
10 14 10 110 0.5 0.2 10
B3 13.03 13.62
B 13.48 15.02
RD15E
B1 13.48 14.09 B2 13.95 14.56
10 16 10 110 0.5 0.2 11
B3 14.42 15.02
B 14.87 16.50
RD16E
B1 14.87 15.50 B2 15.33 15.96
10 18 10 150 0.5 0.2 12
B3 15.79 16.50
B 16.34 18.30
RD18E
B1 16.34 17.06 B2 16.90 17.67
10 23 10 150 0.5 0.2 13
B3 17.51 18.30
B 18.11 20.72
B1 18.11 18.92
RD20E B2 18.73 19.57 10 28 10 200 0.5 0.2 15
B3 19.38 20.22 B4 19.88 20.72
B 20.23 22.61
B1 20.23 21.08
RD22E B2 20.76 21.65 5 30 5 200 0.5 0.2 17
B3 21.22 22.09 B4 21.68 22.61
3
RD2.0E to RD200E
Type Number ZZ ()
Suffix
Zener Voltage
Note 1
VZ (V)
Dynamic Knee Dynamic Impedance Impedance
Note 2
ZZK (Ω)
Note 2
Reverse Current
IR (µA)
MIN. MAX. IZ (mA) MAX. IZ (mA) MAX. IZ (mA) MAX. VR(V)
B 22.26 24.81 B1 22.26 23.12
RD24E B2 23.75 23.73 5 35 5 200 0.5 0.2 19
B3 23.29 24.27 B4 23.81 24.81
B 24.26 27.64 B1 24.26 25.52
RD27E B2 24.97 26.26 5 45 5 250 0.5 0.2 21
B3 25.63 26.95 B4 26.29 27.64
B 26.99 30.51 B1 26.99 28.39
RD30E B2 27.70 29.13 5 55 5 250 0.5 0.2 23
B3 28.36 29.82 B4 29.02 30.51
B 29.68 33.11 B1 29.68 31.22
RD33E B2 30.32 31.88 5 65 5 250 0.5 0.2 25
B3 30.90 32.50 B4 31.49 33.11
B 32.14 35.77 B1 32.14 33.79
RD36E B2 32.79 34.49 5 75 5 250 0.5 0.2 27
B3 33.40 35.13 B4 34.01 35.77
B 34.68 40.80 B1 34.68 36.47 B2 35.36 37.19
RD39E
B3 36.00 37.85 B4 36.63 38.52
5 85 5 250 0.5 0.2 30
B5 37.36 39.29 B6 38.14 40.11 B7 38.94 40.80
RD43E B 40 45 5 90 5 0.2 33 RD47E B 44 49 5 90 5 0.2 36 RD51E B 48 54 5 110 5 0.2 39 RD56E B 53 60 5 110 5 0.2 43 RD62E B 58 66 2 200 2 0.2 47 RD68E B 64 72 2 200 2 0.2 52 RD75E B 70 79 2 300 2 0.2 57 RD82E B 77 87 2 300 2 0.2 63 RD91E B 85 96 2 400 2 0.2 69 RD100E B 94 106 2 400 2 0.2 76 RD110E B 104 116 1 750 1 0.2 84 RD120E B 114 126 1 900 1 0.2 91 RD130E B 120 140 1 1100 1 0.2 100 RD140E B 130 150 1 1300 1 0.2 110 RD150E B 140 160 1 1500 1 0.2 120 RD160E B 150 170 1 1700 1 0.2 130 RD170E B 160 180 1 1900 1 0.2 140 RD180E B 170 190 1 2200 1 0.2 140 RD190E B 180 200 1 2400 1 0.2 150 RD200E B 190 210 1 2500 1 0.2 160
Note 1. tested with pulse (40 ms)
2. ZZ and ZZK are measured at IZ by given a very small A.C. current signal.
3. Suffix B is Suffix B1, B2, B3, B4, B5, B6 or B7.
4
TYPICAL CHARACTERISTICS (TA = 25 ˚C)
RD2.0E to RD200E
Fig. 1 ZENER CURRENT vs. ZENER VOLTAGE
RD2.0E RD2.2E RD2.4E
100 m
RD2.7E RD3.0E RD3.3E RD3.3E
RD3.6E
10 m
RD4.3E
RD4.7E
1 m
µ
100
µ
10
– Zener Current – A
z
I
µ
1
100 n
10 n
P = 500 mW
RD5.1E
TA = 25 ˚C TYP.
RD5.6E RD6.8E
RD7.5E
RD6.2E
RD8.2E
RD9.1E
Fig. 2 ZENER CURRENT vs. ZENER VOLTAGE
100 m
10 m
1 m
µ
100
µ
10
– Zener Current – A
z
I
µ
1
100 n
10 n
P = 500 mW
RD10E
RD11E
TA = 25 ˚C TYP.
RD12E
RD13E
1 n
0123456789
V
z
– Zener Voltage – V
Fig. 3 ZENER CURRENT vs. ZENER VOLTAGE
100 m
P = 500 mW
RD15E
10 m
RD16E
1 m
µ
100
µ
10
– Zener Current – A
z
I
µ
1
100 n
TA = 25 ˚C TYP.
RD18E
RD20E
1 n
0 7 8 9 10 11 12 13 14 15
V
z
– Zener Voltage – V
Fig. 4 ZENER CURRENT vs. ZENER VOLTAGE
100 m
P = 500 mW
RD22E
RD27E
RD24E
10 m
1 m
µ
100
µ
10
– Zener Current – A
z
I
µ
1
100 n
TA = 25 ˚C TYP.
RD30E
10 n
1 n
0 121314151617181920
V
z
– Zener Voltage – V
10 n
1 n
0 161820222426283032
V
z
– Zener Voltage – V
5
RD2.0E to RD200E
Fig. 5 ZENER CURRENT vs. ZENER VOLTAGE
100 m
10 m
1 m
µ
100
µ
10
Iz – Zener Current – A
µ
1
100 n
10 n
RD33E
TA = 25 ˚C TYP.
RD36E
RD39E
Fig. 6 ZENER CURRENT vs. ZENER VOLTAGE
100 m
Iz – Zener Current – A
10 m
1 m
100
10
1
100 n
10 n
µ
µ
µ
RD56E
RD47E
RD43E
RD62E
RD68E
RD75E
RD82E
TA = 25 ˚C TYP.
RD91E
RD100E
RD110E
RD120E
1 n
025 30 35 40
100 m
10 m
1 m
µ
100
10
µ
Iz – Zener Current – A
µ
1
100 n
z – Zener Voltage – V
V
P = 500 mW
Fig. 7 ZENER CURRENT vs. ZENER VOLTAGE
RD170E
RD140E
RD130E
RD160E
RD150E
RD180E
TA = 25 ˚C TYP.
RD190E
RD200E
1 n
0 30 60 90 120
Vz – Zener Voltage – V
10 n
1 n
0 120 150 180 210
z – Zener Voltage – V
V
6
RD2.0E to RD200E
Fig. 8 POWER DISSIPATION vs. AMBIENT TEMPERATURE
RD2.0E to RD120E
10 mm
P.C Board 3 mm t = 0.035 mm
φ
P.C Board 7 mm t = 0.035 mm
= 5 mm
= 10 mm
0 20 40 60 80 100 120 140 160 180 200
100
200
300
400
500
600
T
A – Ambient Temperature – ˚C
P – Power Dissipation – mV
Fig. 9 POWER DISSIPATION vs. AMBIENT TEMPERATURE
RD130E to RD200E
P.C Board 7 mm t = 0.035 mm
= 5 mm
0 20 40 60 80 100 120 140 160 180 200
100
200
300
400
500
600
T
A – Ambient Temperature – ˚C
P – Power Dissipation – mV
Fig. 10 THERMAL RESISTANCE vs. SIZE OF P.C BOARD
0 20 40 60 80 100
100
200
300
400
500
600
S – Size of P.C Board – mm
2
Rth – Thermal Resistance – ˚C/W
= 5 mm
= 10 mm
Junction to ambient
RD2.0E to RD120E
Fig. 11 THERMAL RESISTANCE vs. SIZE OF P.C BOARD
0 20 40 60 80 100
100
200
300
400
500
600
S – Size of P.C Board – mm
2
Rth – Thermal Resistance – ˚C/W
= 5 mm
Junction to ambient
RD130E to RD200E
RD2.0E to RD120E T
A = 25 ˚C
TYP.
RD2.0E
RD3.3E
RD4.7E
RD5.1E
RD39E
RD20E
RD5.6E
RD7.5E
RD51E
RD15E
RD91E
RD100E
0.01 0.1 1 10 100 I
Z – Zener Current – mA
1
10
100
1 000
ZZ – Dynamic Impedance –
RD3.9E
RD10E
ZZ – Dynamic Impedance –
10 000
1 000
100
10
0.01 0.1 1 10 I
Z – Zener Current – mA
Fig. 12 DYNAMIC IMPEDANCE vs. ZENER CURRENT
Fig. 13 DYNAMIC IMPEDANCE vs. ZENER CURRENT
RD130E to RD200E T
A = 25 ˚C
TYP.
RD200E
RD190E
RD180E
RD170E RD160E RD150E
RD140E
RD130E
S
S
7
RD2.0E to RD200E
Fig. 14 ZENER VOLTAGE TEMPERATURE
COEFFICIENT vs. ZENER VOLTAGE
0.1 TYP.
0.08
0.06
0.04
%/˚C
mV/˚C
0.02
0 – 0.02 – 0.04 – 0.06 – 0.08
RD2.0E to RD39E
0 4 8 121620242832364044
– Zener Voltage Temperature Coefficient – %/˚C
Z
γ
Z
– Zener Voltage – V
V
Fig. 16 ZENER VOLTAGE TEMPERATURE
COEFFICIENT vs. ZENER VOLTAGE
TYP.
0.12
0.11
0.10
%/˚C
mV/˚C
Fig. 15 ZENER VOLTAGE TEMPERATURE
COEFFICIENT vs. ZENER VOLTAGE
40 32 24 16 8 0 – 8 – 16 – 24 – 32 – 40
– Zener Voltage Temperature Coefficient – m/˚C
Z
γ
220 200 180
0.1 TYP.
0.09
%/˚C
0.08
0.07
0.06
0.05
0
– Zener Voltage Temperature Coefficient – %/˚C
Z
γ
40 50 60 70 80 90 100 110 120
Z
– Zener Voltage – V
V
mV/˚C
RD34E to RD120E
120
100
80
60
40
20
0
– Zener Voltage Temperature Coefficient – m/˚C
Z
γ
0.09
0.08
0.07 RD130E to RD200E
0.06
0 120 130
– Zener Voltage Temperature Coefficient – %/˚C
Z
γ
140 150 160 170 180 190 200
V
Z
– Zener Voltage – V
160 140 120 100 0
– Zener Voltage Temperature Coefficient – m/˚C
Z
γ
8
1 000
100
10
– Surge Reverse Power – W
ASM
P
1
1
µ
Fig. 17 SURGE REVERSE POWER RATINGS
10
µ
100
µ
T
– Pulse Width – s
t
1 m 10 m 100 m
RD2.0E to RD200E
TA = 25 ˚C Repetitive
RSM
P
t
T
GENERAL PURPOSE INFORMATION
• Power Dissipation Total power dissipation P can be calculated by the maximum junction temperature, ambient temperature and thermal resistance.
jMAX. – TA TjMAX. : Maximum Junction Temperature
T P = R
th TA : Ambient Temperature
Rth : Thermal Resistance (to see Fig. 10, 11)
9
[MEMO]
RD2.0E to RD200E
10
[MEMO]
RD2.0E to RD200E
11
RD2.0E to RD200E
No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product.
12
M4 96.5
Loading...