NEC mPD75512 Datasheet

Page 1
DATA SHEET
MOS INTEGRATED CIRCUIT
µ
PD75512
4-BIT SINGLE-CHIP MICROCOMPUTER
DESCRIPTION
The µPD75512 is a 4-bit single-chip microcomputer which employs 75X series architecture, and its perform-
ance is comparable to that of an 8-bit microcomputer.
µ
In addition to its high-speed processing capabilities, the of 1, 4, or in 8-bits. With its internally provided A/D converter and serial interface, the highest performance in its class.
Detailed functions are described in the following user‘s manual. Be sure to read it for designing.
µ
PD75516 User‘s Maual: IEM-5049
PD75512 is also capable of processing data in units
µ
FEATURES
• Adequate I/O lines: 64
(can be provided pull-up/pull-down resistors: 47)
• Built-in 8-bit serial interface: 2-ch
NEC standard serial bus interface (SBI) internally provided
• Built-in 8-bit A/D converter: 8-ch
• Variable instruction execution time function which is convenient for high-speed operation and power saving
µ
· 0.95
· 122
• Program memory (ROM) size: 12,160 × 8 bits
• Data memory (RAM) size: 512 × 4 bits
• High-performance timer function: 4-ch
· 8-bit timer/event counter
· Clock timer
· 8-bit basic interval timer
· Timer/pulse generator: Capable of outputting 14-bit PWM
• Clock operation for reduced power consumption possible
(5
• PROM version (
APPLICATIONS
VCRs, CD players, telephones, cameras, etc.
s/1.95 µs/15.3 µs (at 4.19 MHz operation),
µ
s (at 32.768 kHz operation)
µ
A TYP. at 3 V operation)
µ
PD75P516) available
The information in this document is subject to change without notice.
Document No. IC-2569D
(O. D. No. IC-7833E) Date Published November 1993 P Printed in Japan
The mark shows major revised points.
NEC Corporation 1990
Page 2
µ
PD75512
ORDERING INFORMATION
Part Number Package Quality Grade
µ
PD75512GF-xxx-3B9 80-pin plastic QFP Standard
(14 × 20mm)
Remarks: xxx is ROM code number.
Please refer to “Quality Grade on NEC Semiconductor Devices” (Document number IEI-1209) published by NEC
Corporation to know the specification of quality grade on the devices and its recommended applications.
µ
PD75512 FUNCTIONS
Item Function
Internal ROM 12160 × 8 bits Memory Size RAM 512 × 4 bits
Genearl-Purpose Register (4 bits × 8 or 8 bits × 4) × 4 banks
Instruction Cycle • 0.95 µs/1.91 µs/15.3 µs (Main system clock: at 4.19 MHz)
Total 64 lines
CMOS Inputs 16 lines (also serve as INT, SIO, PPO, analog input; can be pulled up by software: 7
Input/ Output CMOS 28 lines (capable of driving LED: 4 lines) Ports Input/Outputs • Can be pulled up by software: 16 lines
N-ch Open-Drain 20 lines (capable of driving LED: 8 lines; 10 V withstand voltage; pins that can be Input/Outputs pulled up by mask option: 20)
A/D Converter 8-bit resolution × 8 channels (successive approxmation type)
Timer/Counter 4 channels
Serial Interface 2 channels
Vector Interrupt External: 3, Internal: 4
Test Input External: 1, Internal: 1
Instruction Set • 4-bit data transfer/operation/increment/decrement /compare instructions
• 122 µs (Subsystem clock: at 32.768 kHz)
lines)
• Can be pulled down by mask option: 4 lines
• Operation voltage: VDD = 3.5 to 6.0 V
• Timer/event counter
• Basic interval timer
• Timer/pulse generator (capable of outputting 14-bit PWM)
• Watch timer
• NEC standard serial bus interface (SBI)/3-line SIO: 1 channel
 
• Normal clock synchronized serial interface (3-line SIO): 1 channel
• Bit data set/reset/test/boolean operation instruction
• 8-bit data transfer/operation/increment/decrement /compare instructions
System Clock Generator
Operation Voltage VDD = 2.7 V to 6.0 V Package 80-pin plastic QFP (14 × 20mm)
• Ceramic/crystal oscillator for main system clock: 4.19 MHz
• Crystal oscillator for subsystem clock: 32.768 kHz
2
Page 3
µ
PD75512
CONTENTS
1. PIN CONFIGURATION ..................................................................................................................... 5
2. TYPICAL SYSTEM CONFIGURATION ............................................................................................ 6
3. INTERNAL BLOCKDIAGRAM .......................................................................................................... 7
4. PIN FUNCTIONS .............................................................................................................................. 8
4.1 PORT PINS ............................................................................................................................................. 8
4.2 NON-PORT PINS ................................................................................................................................... 10
4.3 PIN INPUT/OUTPUT CIRCUITS ............................................................................................................ 11
4.4 RECOMMENDED CONDITIONS FOR UNUSED PINS.......................................................................... 14
4.5 MASK OPTION SELECTION ................................................................................................................. 15
5. MEMORY CONFIGURATION .......................................................................................................... 16
6. PERIPHERAL HARDWARE FUNCTIONS ........................................................................................ 19
6.1 PORT ...................................................................................................................................................... 19
6.2 CLOCK GENERATOR CIRCUIT ............................................................................................................. 20
6.3 CLOCK OUTPUT CIRCUIT..................................................................................................................... 21
6.4 BASIC INTERVAL TIMER ...................................................................................................................... 22
6.5 WATCH TIMER ...................................................................................................................................... 23
6.6 TIMER/EVENT COUNTER ..................................................................................................................... 23
6.7 TIMER/PULSE GENERATOR................................................................................................................. 25
6.8 SERIAL INTERFACE............................................................................................................................... 26
6.9 A/D CONVERTER ................................................................................................................................... 30
6.10 BIT SEQUENTIAL BUFFER ................................................................................................................... 31
7. INTERRUPT FUNCTIONS ................................................................................................................ 31
8. STANDBY FUNCTIONS ................................................................................................................... 33
9. RESET FUNCTION ........................................................................................................................... 34
10. INSTRUCTION SET .......................................................................................................................... 36
11. ELECTRICAL SPECIFICATIONS....................................................................................................... 44
12. PERFORMANCE CURVES ............................................................................................................... 57
3
Page 4
µ
PD75512
13. PACKAGE DRAWINGS .................................................................................................................... 63
14. RECOMMENDED SOLDERING CONDITIONS ................................................................................ 64
APPENDIX A. DEVELOPMENT TOOLS ................................................................................................ 65
APPENDIX B. RELATED DOCUMENTS ................................................................................................ 66
4
Page 5
1. PIN CONFIGURATION
AN0
AV
REF
V
DD
*
V
DD
P113 P112 P111 P110 P103 P102 P101 P100
P93 P92 P91 P90
SI1/P83
SO1/P82
SCK1/P81
PPO/P80
KR7/P73 KR6/P72
KR5/P71 KR4/P70
1 2
3
4 5
6 7 8
9 10 11
12 13 14 15 16 17 18
19
20
21 22
23
24
80
25 26
SS
AN2
AN4/P150
AN3
AN5/P151
AN6/P152
AN7/P153
AV
P120
P121
P122
P123
P130
P131
AN1
79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
µ
PD75512GF– –3B9×××
27 28 29 30 31 32 33 34 35 36 37 38 39
P132
40
P133
64 63 62 61 60 59 58 57 56 55 54 53 52
51 50 49
48 47 46
45 44 43 42 41
µ
P140 P141 P142 P143 RESET
X2 X1
IC XT2 XT1
SS
V
P00/INT4 P01/SCK0
P02/SO0/SB0
P03/SI0/SB1 P10/INT0
P11/INT1 P12/INT2 P13/TI0
P20/PTO0 P21 P22/PCL
P23/BUZ
P30
PD75512
KR3/P63
*: Power must be supplied to both VDD pins.
P52
P51
P50
P53
KR1/P61
KR2/P62
KR0/P60
IC: Internally Connected (Connect directly to VSS)
P43
P42
P41
P40
P33
SS
V
P32
P31
5
Page 6
2. TYPICAL SYSTEM CONFIGURATION
VTR (Voltage synthesizer tuner)
µ
PD75512
µ
PD75512
Mechanism
Remote control
IC
Servo IC
Key matrix
Mechanism
control
INT0
Input port
Mechanical
Output
port
Port4, 5
KR0-KR7
System clock
controller/
Timer
Clock for clock
SIO
Analog
input
PPO
SIO
OSD
LPF
FIP driver
Tuner
FIP
6
Page 7
µ
PD75512
7
3. INTERNAL BLOCKDIAGRAM
PORT 0
PORT 1
PORT 2
PORT 3
PORT 4
PORT 5
PORT 6
PORT 7
PORT 8
PORT 9
PORT10
PORT11
PORT12
PORT13
PORT14
PORT15
44P10-P13
P00-P03
4 P20-P23
4
4 P30-P33
4 P40-P43*
4 P50-P53*
4 P60-P63
4 P70-P73
P80-P83
4 P90-P93
4 P100-P103
4 P110-P113
4 P120-P123*
4 P130-P133*
4 P140-P143*
P150-P153
4
SP (8)
BANK
GENERAL REG.
CY
ALU
PROGRAM COUNTER (14)
ROM
PROGRAM
MEMORY
12160 × 8 BITS
DECODE
AND
CONTROL
RAM
DATA MEMORY
512 x 4 BITS
TI0/P13
TIMER/EVENT
COUNTER
#0
INTT0
PTO0/P20
BUZ/P23
WATCH TIMER
INTW
INTCSI
SERIAL
INTERFACE0
SI0/SB1/P03
SO0/SB0/P02
SCK0/P01
INT0/P10 INT1/P11 INT2/P12 INT4/P00
KR0/P60 –KR7/P73
8
INTERRUPT CONTROL
BIT SEQ.
BUFFER (16)
BASIC INTERVAL TIMER
INTBT
PPO/P80
TIMER/PULSE GENERATOR
INTTPG
SERIAL
INTERFACE1
SI1/P83
SO1/P82
SCK1/P81
A/D
CONVERTER
AV
REF
AV
SS
AN0-AN3
AN4
/P150-AN7/P15
f /2
X
N
VDDV
SS
RESET
PCL/P22 XT1 XT2 X1 X2
SUB MAIN
CLOCK OUTPUT CONTROL
CLOCK DIVIDER
CLOCK GENERATOR
STAND BY CONTROL
CPU CLOCK
4
Φ
*: PORTs 4, 5, and 12 to 14 are 10 V middle voltage, N-ch open-drain input/output ports.
Page 8
4. PIN FUNCTIONS
4.1 PORT PINS (1/2)
µ
PD75512
Pin Input/ Shared Function 8-bit When Reset Output
Input/
Name Output Pin I/O Circuit
Type*
P00 INT4 4-bit input port (PORT0). B
For P01 to P03, built-in pull-up
P01 SCK0 resistors can be specified in 3-bit F -A
Input units by software. x Input
P02 SO0/SB0 F -B
P03 SI0/SB1 M -C
P10 INT0 With noise
elimination function
P11 INT1
Input 4-bit input port (PORT1). x Input B -C
P12 INT2 Built-in pull-up resistors can be
specified by software in 4-bit units.
P13 TI0
P20 PTO0
4-bit input/output port (PORT2).
P21 Input/ Built-in pull-up resistors can be
output specified by software in 4-bit units. x Input E-B
P22 PCL
P23 BUZ
2
P30*
P31*
P32*
P33*
2
Input/ Input/output can be specified in output bit units. x Input E-C
2
2
Programmable 4-bit input/output
port (PORT3).
Built-in pull-up resistors can be
specified by software in 4-bit unit.
1
N-ch open-drain 4-bit input/output High level port (PORT4). (when pull-up
P40 to Input/ A pull-up resistor can be provided resistor is M
2
P43*
output in bit units (mask option). provided) or
10V withstanding voltage in the high impedance open-drain mode.
O N-ch open-drain 4-bit input/output High level port (PORT5). (when pull-up
P50 to Input/ A pull-up resistor can be provided resistor is M
2
P53*
output in bit units (mask option). provided) or
10V withstanding voltage in the high impedance open-drain mode.
P60 KR0 Programmable 4-bit input/ output
port (PORT6).
P61 Input/ KR1 Input/output can be specified in
output bit units. O Input F -C
P62 KR2 Built-in pull-up resistors can be
specified by software in 4-bit units.
P63 KR3
*1: The number enclosed with a circle indicates Schmitt trigger input. *2: Capable of direct driving on LED.
8
Page 9
4.1 PORT PINS (2/2)
µ
PD75512
Pin Input/ Shared Function 8-bit When Reset Output
Input/
Name Output Pin I/O Circuit
Type*
P70 KR4
4-bit input/output port (PORT7).
P71 Input/ KR5 Built-in pull-up resistor can be
output specified in 4-bit units by software. O Input F-A
P72 KR6
P73 KR7
P80 PPO E
P81 SCK1 F
Input 4-bit input port (PORT8). x Input
P82 SO1 E
P83 SI1 B
Low level
4-bit input/output port (PORT9). (when pull­P90 to Input/ Built-in pull-up resistors can be x down resistor V P93 output specified in bit units by mask is provided)
option. or high
impedance
P100 to Input/ 4-bit input/output port (PORT10). Input E P103 output
x P110 to Input/ 4-bit input/output port (PORT11). Input E P113 output
1
N-ch open-drain 4-bit input/output High level
P120 to Input/ A pull-up resistor can be provided resistor is M P123 output in bit units (mask option). x provided) or
P130 to Input/ A pull-up resistor can be provided x resistor is M P133 output in bit units (mask option). provided) or
P140 to Input/ A pull-up resistor can be provided x resistor is M P143 output in bit units (mask option). provided) or
P150 to Input AN4 to AN7 4-bit input port (PORT15). x Input Y-A P153
port (PORT12). (when pull-up
10V withstanding voltage in the high impedance open-drain mode.
N-ch open-drain 4-bit input/output High level port (PORT13). (when pull-up
10V withstanding voltage in the high impedance open-drain mode.
N-ch open-drain 4-bit input/output High level port (PORT14). (when pull-up
10V withstanding voltage in the high impedance open-drain mode.
*1: The number enclosed with a circle indicates Schmitt trigger input.
9
Page 10
4.2 NON-PORT PINS
µ
PD75512
Pin Input/ Shared Function When Reset Output Name Output Pin Circuit
TI0 Input P13 The external event pulse input pin for the timer/ B -C
event counter.
PTO0 Output P20 Timer/event counter output pin Input E-B
PCL Output P22 Clock output pin Input E-B
BUZ Output P23 Fixed frequency output pin (for buzzer output or Input E-B
system clock trimming)
SCK0 Input/ P01 Serial clock input/output pin output Input F -A
output
SO0/SB0 Input/ P02 Serial data output pin Input F -B
output Serial bus input/output pin
SI0/SB1 Input/ P03 Serial data input pin Input M -C
output Serial bus input/output pin
INT4 Input P00 Edge detection vector interrupt input pin (both B
rising edge and falling edge detection)
INT0 P10 Edge detection vector Synchronized
interrupt input pin with clock
Input (detection edge selectable) B -C
INT1 P11 Asynchronous
INT2 Input P12 Edge detection testable input Asynchronous B -C
pin(rising edge detection)
Input/
Type*
KR0-KR3 Input P60-P63 Parallel falling edge detection testable input pin Input F -C
KR4-KR7 Input P70-P73 Parallel falling edge detection testable input pin Input F -A
SCK1 Input/ P81 Serial clock input/output pin Input F
SO1 Output P82 Serial data output pin Input E
SI1 Input P83 Serial data input pin Input B
AN0-AN3 Y
AN4-AN7 P150-P153 Y-A
AVREF Input A/C converter reference voltage input pin Z
AVSS A/D converter reference ground pin
X1, X2 Input inputting the external clock, input the external
XT1 Input Pins for connecting the crystal oscillator to the
XT2
RESET Input System reset input pin B
PPO Output P80 Timer/pulse generator pulse output pin Input E
output
Input A/D converter analog input pin
Pins for connecting the crystal ceramic oscillator to the main system clock generator. When
clock to pin X1, and the reverse phase of the external clock to pin X2.
subsystem clock generator. When the external
clock is used, inputs the external clock to pin XT1. In this case, pin XT2 must be left open.
IC Internally Connected. Connect directly to VSS.——
VDD Positive power supply pin
VSS GND
*: The number enclosed with a circle indicates Schmidt trigger input.
10
Page 11
4.3 PIN INPUT/OUTPUT CIRCUITS
The following shows a simplified input/output circuit diagram for each pin of the
µ
PD75512.
µ
PD75512
TYPE A
DD
V
P–ch
IN
N–ch
Input buffer of CMOS standard
TYPE B
IN
TYPE D
VDD
data
output disable
Push-pull output that can be set in a output high-impedance state (both P-ch and N-ch are off)
P–ch
N–ch
TYPE E
data
Type D
output disable
IN/OUT
OUT
Schmitt trigger input with hysteresis characteristics
TYPE B–C
DD
V
P.U.R.
P–ch
IN
P.U.R. : Pull-Up Resistor
Schmitt trigger input with hysteresis characteristics
P.U.R. enable
Type A
This input/output circuit consists of D-type push-pull outputs and Type A input buffers.
TYPE E
B
P.U.R. enable
data
Type D
output disable
Type A
P.U.R. : Pull-Up Resistor
V
DD
P.U.R.
P–ch
IN/OUT
Fig. 4-1 Pin Input/Output Circuits (1/3)
11
Page 12
µ
PD75512
Type E-C
V
DD
Type F-B
P.U.R.
P.U.R. enable
P–ch
output disable
(P-ch)
data
Type D
output disable
IN/OUT
data
output disable output
Type A
disable
(N-ch)
P.U.R. : Pull-Up Resistor P.U.R. : Pull-Up Resistor
Type F Type F-C
data
Type D
output disable
Type B
IN/OUT
P.U.R. enable
data
output disable
P.U.R. enable
Type D
V
Type B
DD
P-ch
N-ch
V
DD
V
DD
P.U.R.
P–ch
IN/OUT
P.U.R.
P–ch
IN/OUT
This input/output circuit consists of D-type push-pull outputs and Type B Schmitt trigger inputs.
V
Type F-A Type M
DD
P.U.R.
P.U.R. enable
data
Type D
output disable
Type A
P–ch
IN/OUT
data
output disable
P.U.R. : Pull-Up Resistor
Fig. 4-1 Pin Input/Output Circuits (2/3)
Type B
P.U.R. : Pull-Up Resistor
V
DD
P.U.R.
(Mask Option)
N-ch
(can withstand up to +10 V)
Middle-voltage input buffer (can withstand up to +10 V)
P.U.R. : Pull-Up Resistor
IN/OUT
12
Page 13
µ
PD75512
Type M-C
data
output disable
P.U.R. enable
N-ch
P.U.R. : Pull-Up Resistor
V
DD
P.U.R.
P–ch
IN/OUT
Type Y-A
IN
V DD
Type V Type Z
AV
data
output disable
Type D
IN/OUT
REF
P–ch N–ch
AV
SS
input enable
Sampling
C
Reference voltage (from a voltage tap of series resistor string)
IN instruction
V DD
+
AVSS
IN
Type Y
V DD
P.U.R. : Pull-Up Resistor
P–ch N–ch
Sampling
AV
SS
Input enable
Type A
P.D.R (Mask Option)
V DD
+
C
AVSS Reference voltage (from a voltage tap of series resistor string)
AV
Reference voltage
SS
Fig. 4-1 Pin Input/Output Circuits (3/3)
13
Page 14
4.4 RECOMMENDED CONDITIONS FOR UNUSED PINS
Table 4-1 Recommended Conditions for Unused Pins
Pin Recommended Conditions
P00/INT4 Connect to VSS
SCK0
P01/
P02/SO0/SB0 Connect to VSS or VDD
P03/SI1/SB1
µ
PD75512
P10/INT0-P12/INT2
P13/TI0
P20/PTO0
P21
P22/PCL
P23/BUZ
P30-P33
P40-P43
P50-P53
P60/KR0-P63/KR3
P70/KR4-P73/KR7
P80/PPO
SCK1
P81/
P82/SO1
P83/SI1
P90-P93
Connect to VSS
Input state: Connect to VSS or VDD
Output state: Open
Connect to VSS or VDD
P100-P103
P110-P113 Input state: Connect to VSS or VDD
P120-P123 Output state: Open
P130-P133
P140-P143
P150/AN4-P153/AN7
AN0-AN3
XT1 Connect to VSS or VDD
XT2 Open
AVREF
AVSS Connect to VSS
IC
14
Connect to VSS
Page 15
4.5 MASK OPTION SELECTION
The following mask options are provided with the pins.
(1) Pull-up/pull-down resistor selection
Table 4-2 Pull-up/Pull-down Resistor Selection
Pins Mask Option
P40-P43 (1) With pull-up resistor (2) Without pull-up resistor P50-P53 (Can be specified in bit units) (Can be specified in bit units) P120-P123 P130-P133 P140-P143
P90-P93 (1) With pull-down resistor (2) Without pull-down resistor
(Can be specified in bit units) (Can be specified in bit units)
µ
PD75512
(2) Feedback resistor selection for the subsystem clock oscillation
Table 4-3 Feedback Resistor Selection
Pins Mask Option
XT1, XT2 (1) With feedback resistor (2) Without feedback resistor
Note: The operation is not affected if the feedback resistor is selected when the subsystem
clock is not used. However, the supply current I
(When the subsystem clock (When the subsystem clock is used) is not used)
DD is increased.
15
Page 16
µ
5. MEMORY CONFIGURATION
Program memory (ROM) ... 12160 words × 8 bits (0000H-2F7FH)
• 0000H, 0001H : Vector table to which address from which program is started is written after reset
• 0002H-000DH : Vector table to which address from which program is started is written after interrupt
• 0020H-007FH : Table area referenced by GETI instruction
Data memory
• Data area .... 512 words × 4 bits (000H–1FFH)
• Peripheral hardware area .... 128 words × 4 bits (F80H–FFFH)
PD75512
16
Page 17
Address
0000H
0002H
76
MBE
RBE
MBE
RBE
Internal reset start address (upper 6 bits)
Internal reset start address (lower 8 bits)
INTBT/INT4 start address (upper 6 bits)
INTBT/INT4 start address (lower 8 bits)
µ
PD75512
0
0004H
0006H
0008H
000AH
0020H
007FH 0080H
007FH 0800H
MBE
MBE
MBE
MBE
MBE
RBE
RBE
RBE
RBE
RBE
INT0 start address (upper 6 bits)
INT0 start address (lower 8 bits)
INT1 start address (upper 6 bits)
INT1 start address (lower 8 bits)
INTCSIO0 start address (upper 6 bits)
INTCSIO0 start address (lower 8 bits)
INTT0 start address (upper 6 bits)
INTT0 start address (lower 8 bits)
INTTPG start address (upper 6 bits)000CH
INTTPG start address (lower 8 bits)
GETI instruction reference table
CALLF
!faddr
instruction
entry
address
instruction
BRCB
!caddr
branch
address
CALL !addr
instruction subroutine
entry address
BR !addr
instruction
branch address
BR $addr
instruction
relational
branch address
(–15 to –1, +2 to +16)
Branch destination
subroutine entry
GETI instruction
address and
address for
0FFFH 1000H
1FFFH 2000H
2F7FH
Remarks: In addition to the above, branching to an address, for which only the lower 8 bits of the PC are
modified, is possible by the BR PCDE and BR PCXA instructions.
BRCB !caddr
instruction
branch
address
BRCB
!caddr
instruction
branch
address
Fig. 5-1 Program Memory Map
17
Page 18
µ
PD75512
Data area Static RAM (512× 4)
Stack area
General purpose register area
000H
01FH 008H
0FFH 100H
1FFH
Data memory
(32 × 4)
256× 4
256× 4
Memory bank
0
1
Peripheral hardware area
Unmapped
F80H
128× 4
FFFH
Fig. 5-2 Data Memory Map
15
18
Page 19
6. PERIPHERAL HARDWARE FUNCTIONS
6.1 PORT
I/O ports are classified into following kinds:
• CMOS input (PORTS 0, 1, 8, 15) : 16
• CMOS input/output (PORTS 2, 3, 6, 7, 9, 10, 11) : 28
• N-ch open-drain input/output (PORTS 4, 5, 12, 13, 14) : 20 Total : 64
Table 6-1 Port Functions
µ
PD75512
Port
(Pin Name)
PORT0
PORT1
PORT2
PORT3*
PORT4*
PORT5*
PORT6
PORT7
PORT8
PORT9 4-bit I/O Can be specified for I/O in 4-bit units.
Function Operation/Feature Remarks
4-bit input mode of the shared pin.
4-bit I/O BUZ pins.
4-bit I/O Whether or not the internal (N-ch Can be specifiedfor pull-up resistor is provided open-drain, I/O in 4-bit units can be specified for each bit can sustain by mask option with 10V)
4-bit I/O be paired to I/O
4-bit Can be read or tested regardless of the operation Also serves as PPO, input mode of the shared pin. SO1, and SI1 pins.
Can be read or tested regardless of the operation SO0/SB0, and SI0/SB1 pins
Can be specified for I/O in 4-bit units Also serves as PTO0, PCL and
Can be specified for I/O in 1/4-bit units.
Ports 4 and 5 can be paired to I/O data in 8-bit units
Can be specified for I/O in 1/4-bit units Ports 6 and 7 can Also serves as KR0-3.
Can be specified data in 8-bit units I/O in 4-bit Also serves as KR4-7. units
SCK1
SCK0
,
Also serves as the INT4,
Also serves as INT0 to 2, and TIO pins
Whether or not the internal pull-up resistor is provided can be specified for each bit by mask option.
,
PORT10
4-bit I/O Can be specified for I/O in 4-bit units.
PORT11
PORT12 4-bit I/O Whether or not the internal
(N-ch pull-up resistor is provided
PORT13 open-drain, Can be specified for I/O in 4-bit units. can be specified for each
can sustain bit by mask option.
PORT14 with 10V)
PORT15 4-bit Can be read or tested regardless of the operation Also serves as AN4-7 pins.
Input mode of the shared pins
*: Can directly drive LED
19
Page 20
µ
PD75512
6.2 CLOCK GENERATOR CIRCUIT
The operation of the clock generator circuit is determined by the processor clock control regiser (PPC) and
system clock control register (SCC).
This circuit can generate two types of clocks: main system clock and subsystem clock.
In addition, it can also change the instruction execution time.
µ
0.95
122
s, 1.91 µs, 15.3 µs (main system clock: 4.19 MHz)
µ
s (subsystem clock: 32.768 kHz)
VDD
VDD
XT1
XT2
X1
X2
Subsystem
clock
oscillator
Main system
clock
oscillator
XT
f
fX
Watch timer
Timer/pulse generator
1/2 1/16
· Basic interval timer (BT)
· Timer/event counter
· Serial interface
· Watch timer
· Clock output circuit
· A/D converter
· INT0 noise rejecter circuit
1/8 to 1/4096
Frequency divider
WM.3
SCC
SCC3
SCC0
PCC
4
HALT*
STOP*
PCC0
PCC1
PCC2
PCC3
PCC2, PCC3
clear signal
Internal bus
Oscillator
disable
signal
STOP F/F
QS
R
Selector
HALT F/F
S
R
Frequency
Selector
Q
Wait release signal from BT
RESET signal Standby release
signal from interrupt control circuit
divider
1/4
Φ
· CPU
· INT0 noise rejecter circuit
· Clock output circuit
*: instruction execution.
Remarks 1: f
X = Main system clock frequency XT = Subsystem clock frequency
2: f 3: Φ= CPU clock 4: PCC: Processor clock control register 5: SCC: System clock control register
6: One clock cycle (tCY) of Φ is one machine cycle of an instruction. For tCY, refer to AC
characteristics in 11. ELECTRICAL SPECIFICATIONS.
20
Fig. 6-1 Clock Generator Block Diagram
Page 21
µ
PD75512
6.3 CLOCK OUTPUT CIRCUIT
The clock output circuit outputs clock pulse from the P22/PCL pin. This clock pulse is used for the remote control
output, peripheral LSIs, etc.
• Clock output (PCL): Φ, 524, 262, 65.5 kHz (operating at 4.19 MHz)
• Buzzer output (BUZ): 2 kHz, (operating at 4.19 MHz, or 32.768 kHz)
From the
clock
generator
Φ
3
f
X
/2
4
fX/2
6
fX/2
CLOM3 CLOM2 CLOM1 CLOM0 CLOM
Selector
P22 output latch
Output buffer
Port 2 input/ output mode specification bit
PCL/P22
Bit 2 of PMGBPORT2.2
Remarks:
4
Internal bus
Fig. 6-2 Clock Output Circuit Configuration
A measures to prevent outputting narrow width pulse when selecting clock output enable/ disable is taken.
21
Page 22
6.4 BASIC INTERVAL TIMER
µ
PD75512 is provided with the 8-bit basic interval timer. The basic interval timer has these functions:
The
Interval timer operation which generates a reference time interrupt
Watchdog timer application which detects a program runaway
Selects the wait time for releasing the standby mode and counts the wait time
Reads out the count value
From the clock generator
5
fX/2
Clear
µ
PD75512
Clear
7
fX/2
MPX
9
fX/2
12
fX/2
3
BTM3 BTM2 BTM1 BTM0 BTM
SET1*
4
*: Instruction execution
Fig. 6-3 Basic Interval Timer Configuration
Basic interval timer
(8-bit frequency divider circuit)
8
Internal bus
Set signal
BT
Wait release signal for standby release
BT
interrupt
request flag
IRQBT
Vector interrupt request signal
22
Page 23
µ
PD75512
6.5 WATCH TIMER
µ
PD75512 has a built-in 1-ch watch timer. The watch timer is configured as shown in Fig. 5-4.
The
Sets the test flag (IRQW) with 0.5 sec interval.
The standby mode can be released by IRQW.
0.5 second interval can be generated either from the main system clock or subsystem clock.
Time interval can be advanced to 128 times faster (3.91 ms) by setting the fast mode. This is convenient
for program debugging, test, etc.
Fixed frequency (2.048 kHz) can be output to the P23/BUZ pin. This can be used for beep and system clock
frequency trimming.
The frequency divider circuit can be cleared so that zero second watch start is possible.
W
f
(256 Hz: 3.91 ms)
7
2
INTW (IRQW set signal)
P23/BUZ
From the clock generator
f
X
128
(32.768 kHz)
f
XT
(32.768 kHz)
f
Selector Frequency divider
W
(32.768 kHz)
f 16
W
(2.048 kHz)
Clear
f
W
14
2
(2 Hz
0.5 sec)
Selector
Output buffer
WM PORT2.3 Bit 2 of PMGB
WM70000WM2WM1WM0
Bit test
8
instruction
Internal bus
P23 output latch
Port 2 input/output mode
Remarks: ( ) is for fX = 4.194304 MHz, fXT = 32.768 kHz.
Fig. 6-4 Watch Timer Block Diagram
6.6 TIMER/EVENT COUNTER
The
µ
PD75512 has a built-in 1-ch timer/event counter. The timer/event counter has these functions:
Programmable interval timer operation
Outputs square-wave signal of an arbitrary frequency to the PTO0 pin.
Event counter operation
Divides the TI0 pin input in N and outputs to the PTO0 pin (frequency divider operation).
Supplies serial shift clock to the serial interface circuit.
Count condition read out function
23
Page 24
µ
PD75512
24
Internal bus
88 SET1*
TM07 TM06 TM05 TM04 TM03 TM02 TM01 TM00
TM0
PORT1.3
Input
buffer
P13/TI0
From the clock generator
MPX
*:Instruction execution
Timer operation start signal
CP
8
8
Modulo register (8)
Comparator (8)
Count register (8)
Clear
T0
TMOD0
Reset
TOE0 PORT2.0
Bit 2 of PGMB
To serial interface
P20/PTO0
INTT0 IRQT0 set signal
()
RESET IRQT0
clear signal
Output buffer
TOUT F/F
TO enable flag
P20 output latch
Port 2 input/ output mode
Coinci­dence
8
Fig. 6-5 Timer/Event Counter Block Diagram
(Refer to Fig. 4-11.)
Page 25
µ
PD75512
6.7 TIMER/PULSE GENERATOR
µ
PD75512 contains a timer/pulse generator, that can be used as the timer or the pulse generator. Timer/pulse
The
generator has the following functions.
(a) Function, when used in the timer mode
• 8-bit interval timer operation (IRQTPG generation), for which the clock source can be changed in 5 steps.
• Square waveform output to the PPO pin
(b) Function, when used in the PWM pulse generation mode
• 14-bit accuracy PWM pulse output to PPO pin (can be used as a D/A converter for electronics tuning).
15
• Fixed time interval interrupt generation (2
/fX = 7.81ms: fX = 4.19 MHz)
When no pulse output is required, the PPO pin can be used as 1-bit output port.
Note: When setting the STOP mode, if the timer pulse generator is in operating mode, erroneous operation
may occur. Therefore, the timer/pulse generator must be set in no-operation state by the mode register, before setting the STOP mode.
TPGM3 (Set to1)
Frequency divider
1/2
f
x
TPGM1
Internal bus
8
MODL
Modulo register L (8) Modulo register H (8)
CP
Prescaler select latch (5)
Clear
8
Modulo latch H (8)
8
Comparator (8)
8
Count register (8)
Clear
MODH
Coincidence
T F/F
Set
Selector
TPGM4 TPGM5 TPGM7
INTTPG (IRQTPG set signal)
Output buffer
PPO
Fig. 6-6 Timer/Pulse Generator Block Diagram (Timer Mode)
25
Page 26
Internal bus
µ
PD75512
TPGM3
TPGM1 f
x
1/2
Frequency divider
Fig. 6-7 Timer/Pulse Generator Block Diagram (PWM Pulse Generation Mode)
MODH
Modulo register H (8)
MODH(8) MODL (6)
Modulo latch (14)
PWM pulse generator
INTTPG TPGM5
IRQTPG set signal
Modulo register L (8)
15
2
( = 7.8 ms: f at 4.19MHz)
f
x
7-2
MODL
Output buffer
Selector
TPGM7
x
PPO
6.8 SERIAL INTERFACE
µ
PD75512 is provided with two serial interface channels. Table 4-8 indicates differences between channel
The
0 and channel 1.
Table 6-2 Differences Between Channel 0 and Channel 1
Serial Transfer Mode, Funciton Channel 0 Channel 1
Clock Selection fX/24, fX/23, TOUT F/F, external clock fX/24, fX/23 external clock
3-Line Transfer Method MSB first/LSB first selectable MSB first Serial I/O
2-Line Serial I/O
Serial Bus Interface (SBI)
(1) Serial interface function (Channel 0)
Transfer Completion Serial transfer completion interrupt Serial transfer completion flag (EOT) Flag request flag (IRQCSI0)
Usable Unprovided
µ
PD75512 is equipped with the following four modes:
The
• Operation stop mode
• Three-line serial I/O mode
• Two-line serial I/O mode
• SBI mode (serial bus interface mode)
26
Page 27
µ
PD75512
27
Internal bus
8/4
8
88
P03/SI/SB1
P02/SO/SB0
P01/SCK0
P01 output latch
Selector Selector
Bit test
Slave address register
(SVA)
Address comparator
Shift register (SIO0)
SET CLR
Bit manipulation
(8)
(8)
Coincidence
signal
SBIC
RELT
CMDT
SO0 latch
Bit test
ACKT
ACKE
BSYE
Busy/ acknowledge output circuit
Bus release/ command/ acknowledge detector circuit
RELD CMDD ACKD
Serial clock counter
Serial clock control circuit
INTCSI0 control circuit
MPX
I
NTCSI0 IRQCSI0 set signal
(
)
DQ
f
X
/2
3
fX/2
4
fX/2
6
TOUT F/F (from timer/ event counter)
External SCK0
(8)
Fig. 6-8 Serial Interface (Channel 0) Block Diagram
CSIM0
Page 28
(2) Serial interface (Channel 1) configuration
µ
PD75512 serial interface (channel 1) has following two modes.
• Operation stop mode
• 3-line serial I/O mode
µ
PD75512
28
Page 29
µ
PD75512
29
Fig. 6-9 Serial Interface (Channel 1) Block Diagram
Bit manipulation
0
CSIM1
Clear
Set
Serial transfer completion flag (EOT)
f /2
x
3
f /2
x
4
MPX
8
Bit manipulation
bit 7
Serial operation mode (8) register 1 (8)
Internal bus
8
SIO1 write signal (serial start signal)
SIO1
7bit 0
Shift register 1 (8)
P83/SI1
P82/SO1
P81/SCK1
Serial clock counter (3)
Overflow
Clear
QRS
Page 30
6.9 A/D CONVERTER
µ
PD75512 is provided with an 8-bit resolution analog-to-digital (A/D) converter with eight channels of
The
analog inputs (AN0-AN7).
This A/D converter is of a successive approximation type.
8
Internal bus
µ
PD75512
AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7
AV
REF
0
ADM6 ADM5 ADM4 SOC EOC
Sample hold circuit
Multiplexer
Tap decoder
R/2 R/2RR R
ADM1 0 ADM
Control circuit
+
Comparator
8
SA register (8)
8
AV
SS
Fig. 6-10 Block Diagram of A/D Converter
30
Page 31
µ
PD75512
6.10 BIT SEQUENTIAL BUFFER ..... 16 BITS
The bit sequential buffer is a data memory specifically provided for bit manipulation. With this buffer, addresses and bit specifications can be sequentially up-dated in bit manipulation operation. Therefore, this buffer is very useful for processing long data in bit units.
Address bit
Symbol
L register
Remarks:
L = F L = C L = B L = 8 L = 7 L = 4 L = 3 L = 0
For the pmem.@L addressing, the specification bit is shifted according to the L register.
FC3H FC2H FC1H FC0H
3210321032103210
BSB3 BSB2 BSB1 BSB0
DECS L
INCS L
Fig. 6-11 Bit Sequential Buffer Format
7. INTERRUPT FUNCTIONS
The µPD75512 has 7 different interrupt sources and multiplexed interrupt with priority order.
µ
In addition to that, the of edge detection testable inputs.
The interrupt control circuit of the µPD75512 has these functions:
Hardware controlled vector interrupt function which can control whether or not to accept an interrupt by
using the interrupt flag (IExxx) and interrupt master enable flag (IME).
The interrupt start address can be arbitrarily set.
Interrupt request flag (IRQxxx) test function (an interrupt generation can be confirmed by means of
software).
Standby mode release (Interrupts to be released can be selected by the interrupt enable flag).
PD75512 is also provided with two types of test sources, of which INT2 has two types
31
Page 32
µ
PD75512
32
Internal bus
222
IM2 IM1 IM0
IRQBT
INT4 /P00
INT0 /P10
INT1 /P11
INT2 /P12
KR0/P60
KR7/P73
Noise
elimination
circuit
INT BT
INTCSI0
INTT0
INTTPG
Selector
Both edge
detection
circuit
Edge
detection
circuit
Edge
detection
circuit
Rising edge
detection
circuit
Falling edge
detection
circuit
IRQ4
IRQ0
IRQ1
IRQCSI0
IRQT0
IRQTPG
IM2
Interrupt enable flag (IExxx)
(IME)
VRQn
Decoder
IST
Priority control
circuit
Vector table
address
generator
Standby release signal
Fig. 7-1 Interrupt Control Block Diagram
IRQ2
INTW
IRQW
4
2
IPS
Page 33
µ
PD75512
8. STANDBY FUNCTIONS
In order to fully exploit the µPD75512 low power dissipation, CPU operation can be stopped by setting the unit
µ
to the standby mode, thus, further reducing power dissipation. The
PD75512 features two standby modes, a STOP
mode and a HALT mode.
Table 8-1 Status in Standby Mode
Item Instruction for Setting STOP instrtuction HALT instruction System Clock at the Time of
Setting
Clock Oscillator Only the main system clock can stop
Basic Interval Timer
Serial Interface (Channel 0)
Serial Interface (Channel 1)
Operation Status
Timer/Event Counter
Clock Timer Operates when fXT is selected as the
A/D Converter Does not operate
Timer/Pulse Generator
Timer/Pulse Generator
Mode
Can be set only when operating on the main system clock
its operation. Does not operate Operates (Sets IRQBT with the
Can operate only when the external SCK0 input is selected as the serial clock
Can operate only when the external SCK1 input is selected as the serial clock
Can only operate when the TI0 pin input is selected as system clock
count clock
Does not operate
STOP Mode
Can be set when operating either on the main system clock or the subsys­tem clock
Only the CPU clock Φ stops its operation. (oscillation continues)
reference time interval) Operates when the timer system
clock is operating or external SCK0 is selected
Operates only when the main system clock is operating
Operates only when the main system clock is operating
Can operate
Operates only when the main system clock is operating
Operates only when the main system clock is operating
INT1, INT2, and INT4 can operate, but INT0 cannot operate
HALT Mode
CPU Does not operate
Release Signal
An interrupt request signal from a piece of hardware, whose operation is enabled by the interrupt enable flag, or the RESET signal input
33
Page 34
9. RESET FUNCTION
µ
PD75512
When the
RESET
signal is input, the µPD75512 is reset and each hardware is initialized as indicated in Table
9-1. Fig. 9-1 shows the reset operation timing.
Wait
(31.3ms/4.19MHz)
RESET input
Operation mode or standby mode
Internal reset operation
HALT mode Operation mode
Fig. 9-1 Reset Operation by RESET Input
Table 9-1 Status of Each Hardware after Reset (1/2)
Hardware RESET Input in Standby Mode RESET Input during Operation
Program Counter (PC) The contents of the lower 6 bits
PSW Carry Flag (CY) Retained Undefined
Skip Flag (SK0-2) 0 0 Interrupt Status Flag (IST0, 1) 0 0 Bank Enable Flag (MBE, RBE) The contents of bit 6 of address
Stack Pointer (SP) Undefined Undefined Data Memory (RAM) Retained * Undefined
General-Purpose Register (X, A, H, L, D, E, B, C)
Bank Selection Register (MBS, RBS) 0, 0 0, 0 Basic Interval
Timer
Timer/Event Counter
Timer/Pulse Generator
Watch Timer
Counter (BT) Undefined Undefined
Mode Register (BTM) 0 0
Counter (T0) 0 0 Modulo Register
(TMOD0) Mode Register (TM0) 0 0
TOE0, TOUT F/F 0, 0 0, 0
Modulo Register
Mode Register (WM) 0
of address 0000H of the program memory are set to PC13-8, and the contents of address 0001H are set to PC7-0.
0000H of the program memory are set to RBE and those of bit 7 are set to MBE.
Retained Undefined
FFH
Retained
0
Same as left
Same as left
FFH
Retained
0Mode Register 0
*: Data of address 0F8H to 0FDH of the data memory becomes undefined when a
34
RESET
signal is input.
Page 35
Table 9-1 Status of Each Hardware after Reset (2/2)
Hardware RESET Input during OperationRESET Input in Standby Mode
Serial Interface (Channel 0)
A/D Converter Mode Regiseter (ADM), 04H (EOC = 1) 04H (EOC = 1)
Clock Processor Clock Control 0 0 Generator, Register (PCC) Clock Output Circuit
Serial Shift Register Retained Undefined Interface (SIO1) (Channel 1)
Interrupt Interrupt Request Flag Reset (0) Reset (0) Function (IRQxxx)
Digital Port Output Buffer Off Off
Bit Sequential Buffer (BSB0-3) Retained Undefined
Shift Register (SIO0) Retained Undefined Operation Mode 0 0
Register (CSIM0) SBI Control Register 0 0
(SBIC) Slave Address Register Retained Undefined
(SVA) P01/SCK0 Output 1 1
Latch
EOC SA Register 7FH 7FH
System Clock Control 0 0 Register (SCC)
Clock Output Mode 0 0 Register (CLOM)
Operation Mode 0 0 Register 1 (CSIM1)
Serial Transfer End 0 0 Flag (EOT)
Interrupt Enable Flag 0 0 (IExxx)
Interrupt Master Enable 0 0 Flag (IME)
INT0, INT1, INT2 Mode 0, 0, 0 0, 0, 0 Registers (IM0, 1, 2)
Output Latch Clear (0) Clear (0) Input/Output Mode 0 0
Register (PMGA, B, C) Pull-Up Resistor 0 0
Specification Register (POGA)
µ
PD75512
35
Page 36
µ
10. INSTRUCTION SET
(1) Operand representation and description
Describe one or more operands in the operand field of each instruction according to the operand representation and description methods of the instruction (for details, refer to RA75X Assembler Package User's Manual - Language (EEU-730)). With some instructions, only one operand should be selected from several operands. The uppercase characters, +, and – are keywords and must be described as is.
Describe an appropriate numeric value or label as immediate data.
Representation Description
reg X, A, B, C, D, E, H, L reg1 X, B, C, D, E, H, L
rp XA, BC, DE, HL rp1 BC, DE, HL rp2 BC, DE rp' XA, BC, DE, HL, XA', BC', DE', HL' rp'1 BC, DE, HL, XA', BC', DE', HL'
rpa HL, HL+, HL–, DE, DL rpa1 DE, DL
n4 4-bit immediate data or label n8 8-bit immediate data or label
mem 8-bit immediate data or label* bit 2-bit immediate data or label
fmem FB0H to FBFH,FF0H to FFFH immediate data or label pmem FC0H to FFFH immediate data or label
addr 0000H to 1F7FH immediate data or label caddr 12-bit immediate data or label faddr 11-bit immediate data or label
taddr 20H to 7FH immediate data (where bit0 = 0) or label PORTn PORT0 to PORT15
IExxx IEBT, IECSI0, IET0, IE0, IE1, IE2, IE4, IEW, IETPG RBn RB0-RB3 MBn MB0, MB1, MB15
PD75512
*: Only even addresses can be described in mem when processing
8-bit data.
36
Page 37
(2) Legend of operation field
A : A register; 4-bit accumulator B : B register; 4-bit accumulator C : C register; 4-bit accumulator D : D register; 4-bit accumulator E : E register; 4-bit accumulator H : H register; 4-bit accumulator L : L register; 4-bit accumulator X : X register; 4-bit accumulator XA : Register pair (XA); 8-bit accumulator BC : Register pair (BC); 8-bit accumulator DE : Register pair (DE); 8-bit accumulator HL : Register pair (HL); 8-bit accumulator XA' : Expanded register pair (XA') BC' : Expanded register pair (BC')
µ
PD75512
DE' : Expanded register pair (DE') HL' : Expanded register pair (HL') PC : Program counter SP : Stack pointer CY : Carry flag; or bit accumulator PSW : Program status word MBE : Memory bank enable flag RBE : Register bank enable flag PORTn : Port n (n = 0 to 15) IME : Interrupt mask enable flag IPS : Interrupt priority selector register IExxx : Interrupt enable flag RBS : Memory bank selector register MBS : Memory bank selector register PCC : Processor clock control register
.
(xx) : Contents addressed by xx xxH : Hexadecimal data
: Delimiter of address and bit
37
Page 38
(3) Symbols in addressing area field
µ
PD75512
*1 MB = MBE . MBS
*2 MB = 0 *3 MBE = 0 : MB = 0 (00H-7FH) Data memory
*4 MB = 15, fmem = FB0H-FBFH,
*5 MB = 15, pmem = FC0H-FFFH *6 addr = 0000H-2F7FH *7 addr = (Current PC) – 15 to (Current PC) – 1
*8 caddr = 0000H-0FFFH (PC13, 12 = 00B) or memory
*9 faddr = 0000H-07FFH
*10 taddr = 0020H-007FH
(MBS = 0, 1, 15)
MB = 15 (80H-FFH) addressing
MBE = 1 : MB = MBS (MBS = 0, 1, 15)
FF0H-FFFH
(Current PC) + 2 to (Current PC) + 16
1000H-1F7FH (PC13, 12 = 01B) or addressing 2000H-2F7FH (PC13, 12 = 10B)
Program
Remarks 1: MB indicates memory bank that can be accessed.
2: In *2, MB = 0 regardless of MBE and MBS. 3: In *4 and *5, MB = 15 regardless of MBE and MBS. 4: *6 to *10 indicate areas that can be addressed.
(4) Machine cycle field
In this field, S indicates the number of machine cycles required when an instruction having a skip
function skips. The value of S varies as follows:
When no instruction is skipped ····························································· S = 0
When 1-byte or 2-byte instruction is skipped······································ S = 1
When 3-byte instruction (BR ! addr or CALL ! addr) is skipped ······· S = 2
Note
: The GETI instruction is skipped in one machine cycle.
One machine cycle equals to one cycle of the CPU clock Φ, (=tCY), and can be changed in three steps
depending on the setting of the processor clock control register (PCC).
38
Page 39
µ
PD75512
Ma- Ad­Instruc- Mne­tions monics Cyc- ing Conditions
Transfer MOV A, #n4 1 1 A n4 String effect A
XCH A, @HL 1 1 A (HL) *1
Table MOVT XA, @PCDE 1 3 XA (PC13-8+DE)ROM Reference
Operand Bytes
reg1, #n4 2 2 reg1 n4 XA, #n8 2 2 XA n8 String effect A HL, #n8 2 2 HL n8 String effect B rp2, #n8 2 2 rp2 n8 A, @HL 1 1 A (HL) *1 A, @HL+ 1 2+S A (HL), then L L+1 *1 L = 0 A, @HL– 1 2+S A (HL), then L L–1 *1 L = FH A, @rpa1 1 1 A (rpa1) *2 XA, @HL 2 2 XA (HL) *1 @HL, A 1 1 (HL) A*1 @HL, XA 2 2 (HL) XA *1 A,mem 2 2 A (mem) *3 XA, mem 2 2 XA (mem) *3 mem, A 2 2 (mem) A*3 mem, XA 2 2 (mem) XA *3 A, reg 2 2 A reg XA, rp' 2 2 XA rp reg1, A 2 2 reg1 A rp'1, XA 2 2 rp1 XA
A, @HL+ 1 2+S A (HL), then L L+1 *1 L = 0 A, @HL– 1 2+S A (HL), then L L–1 *1 L = FH A, @rpa1 1 1 A (rpa1) *2 XA, @HL 2 2 XA (HL) *1 A, mem 2 2 A (mem) *3 XA, mem 2 2 XA (mem) *3 A, reg1 1 1 A reg1 XA, rp' 2 2 XA rp'
XA, @PCXA 1 3 XA (PC13-8+XA)ROM
chine
les Area
Operation
dress- Skip
39
Page 40
µ
PD75512
Instruc- Mne­tions monics Cyc- ing Conditions
Bit Transfer
MOV1 bit
Arithme­tic Opera­tion
ADDS A,@HL 1 1+S AA+(HL) *1 carry
ADDC XA,rp’ 2 2 XA,CYXA+rp’+CY
SUBS XA,rp’ 2 2+S XAXA-rp’ borrow
SUBC XA,rp’ 2 2 XA,CYXA-rp’-CY
AND A,@HL 1 1 AA (HL) *1
OR A,@HL 1 1 AA (HL) *1
XOR A,@HL 1 1 AA (HL) *1
Operand Bytes
CY, fmem.bit 2 2 CY(fmem.bit) *4 CY, pmem.@L 2 2 CY(pmem7-2+L3-2.bit(L1-0)) *5 CY, @H+mem. 2 2 CY(H+mem3-0.bit) *1
fmem.bit, CY 2 2 (fmem.bit) ← CY *4 pmem.@L, CY 2 2 (pmem7-2+L3-2.bit(L1-0)) ← CY *5 @H+mem.bit, 2 2 (H+mem3-0.bit) ← CY *1
CY A,#n4 1 1+S AA+n4 carry XA,#n8 2 2+S XAXA+n8 carry
XA,rp’ 2 2+S XAXA+rp’ carry rp’1,XA 2 2+S rp’1rp’1+XA carry A,@HL 1 1 A,CYA+(HL)+CY *1
rp’1,XA 2 2 rp’1,CYrp’1+XA+CY A,@HL 1 1+S AA-(HL) *1 borrow
rp’1,XA 2 2+S rp’1rp’1-XA borrow A,@HL 1 1 A,CYA-(HL)-CY *1
rp’1,XA 2 2 rp’1,CYrp’1-XA-CY A,#n4 2 2 AA n4
XA,rp’ 2 2 XAXA-rp’ rp’1,XA 2 2 rp’1rp’1 XA A,#n4 2 2 AA n4
XA,rp’ 2 2 XAXA rp’ rp’1,XA 2 2 rp’1rp’1 XA A,#n4 2 2 AA n4
XA,rp’ 2 2 XAXA rp’ rp’1,XA 2 2 rp’1rp’1 XA
Ma- Ad-
chine
les Area
Operation
dress- Skip
40
Page 41
µ
PD75512
Ma- Ad-
Instruc- Mne­tions monics Cyc- ing Conditions
Accumu­lator Manipu­lation
Incre- reg 1 1+S regreg+1 reg = 0 ment/ INCS rp1 1 1+S rp1rp1+1 rp1 = 00H Decre- @HL 2 2+S (HL)(HL)+1 *1 (HL) = 0 ment mem 2 2+S (mem)(mem)+1 *3 (mem) = 0
Compari- reg,#n4 2 2+S Skip if reg = n4 reg = n4 son @HL,#n4 2 2+S Skip if (HL) = n4 *1 (HL) = n4
Carry Flag Manipu­lation
RORC A 1 1 CY ← A0, A3CY, An-1 ← An
NOT A 2 2 A
DECS reg 1 1+S regreg-1 reg = FH
SKE A,@HL 1 1+S Skip if A = (HL) *1 A = (HL)
SET1 CY 1 1 CY ← 1 CLR1 CY 1 1 CY ← 0 SKT CY 1 1+S Skip if CY = 1 CY = 1 NOT1 CY 1 1 CY
Operand Bytes
rp’ 2 2+S rp’rp’-1 rp’ = FFH
XA,@HL 2 2+S Skip if XA = (HL) *1 XA = (HL) A,reg 2 2+S Skip if A = reg A = reg XA,rp’ 2 2+S Skip if XA = rp’ XA = rp’
chine
les Area
A
CY
Operation
dress- Skip
41
Page 42
µ
PD75512
Instruc- Mne­tions monics Cyc- ing Conditions
Memory/ SET1 mem.bit 2 2 (mem.bit) 1 *3 Bit fmem.bit 2 2 (fmem.bit) 1 *4 Manipu- pmem.@L 2 2 (pmem7-2 + L3-2.bit(L1-0)) 1*5 lation @H+mem.bit 2 2 (H + mem3-0.bit) 1*1
CLR1 mem.bit 2 2 (mem.bit) 0*3
SKT mem.bit 2 2+S Skip if (mem.bit) = 1 *3 (mem.bit) = 1
SKF mem.bit 2 2+S Skip if (mem.bit) = 0 *3 (mem.bit) = 0
SKTCLR
AND1 CY,fmem.bit 2 2 CY CY (fmem.bit) *4
OR1 CY,fmem.bit 2 2 CY
XOR1 CY,fmem.bit 2 2 CY
Branch BR addr PC13-0 addr *6
BRCB !caddr 2 2 PC13-0 PC13,12+caddr11-0 *8
Operand Bytes
fmem.bit 2 2 (fmem.bit) 0*4 pmem.@L 2 2 (pmem7-2 + L3-2.bit(L1-0)) 0*5 @H+mem.bit 2 2 (H+mem3-0.bit) 0*1
fmem.bit 2 2+S Skip if (fmem.bit) = 1 *4 (fmem.bit) = 1 pmem.@L 2 2+S @H+mem.bit 2 2+S Skip if (H + mem3-0.bit) = 1 *1
fmem.bit 2 2+S Skip if (fmem.bit) = 0 *4 (fmem.bit) = 0 pmem.@L 2 2+S @H+mem.bit 2 2+S Skip if (H + mem3-0.bit) = 0 *1 fmem.bit 2 2+S Skip if (fmem.bit) = 1 and clear *4 (fmem.bit) = 1 pmem.@L 2 2+S Skip if (pmem7-2+L3-2.bit *5 (pmem.@L) = 1
@H+mem.bit 2 2+S
CY,pmem.@L 2 2 CY,@H+mem.bit
CY,pmem.@L 2 2 CY,@H+mem.bit
CY,pmem.@L 2 2 CY,@H+mem.bit
!addr 3 3 PC13-0 addr *6 $addr 1 2 PC13-0 addr *7
Ma- Ad-
chine
les Area
Skip if (pmem
Skip if (pmem7-2 +L3-2.bit (L1-0)) = 0
(L1-0)) = 1 and clear
Skip if (H+mem3-0.bit) = 1 and clear
CY CY (pmem7-2+L3-2.bit(L1-0))
2 2 CY
CY CY ∨ (pmem7-2+L3-2.bit (L1-0))
2 2 CY
CY CY ∨ (pmem7-2+L3-2.bit (L1-0))
2 2 CY
(The most suitable instruction is selectable from among BR !addr, BRCB !caddr, and BR $addr depending on the assembler.)
Operation
7-2+L3-2
.bit (L
1-0
CY (H+mem3-0.bit) *1
CY (fmem.bit) *4
CY (H+mem3-0.bit) *1
CY (fmem.bit) *4
CY (H+mem3-0.bit) *1
)) = 1
dress- Skip
*5 (pmem.@L) = 1
(@H+mem.bit) = 1
*5 (pmem.@L) = 0
(@H+mem.bit) = 0
*1
*5
*5
*5
(@H+mem.bit) = 1
42
Page 43
µ
PD75512
Instruc- Mne­tions monics Cyc- ing Conditions
Subrou­tine/ Stack Control
Inter- EI 2 2 IME (IPS.3) 1 rupt IExxx 2 2 IExxx 1 Control DI 2 2 IME (IPS.3) 0
I/O IN *1A,PORTn 2 2 A PORTn (n = 0-15)
CPU HALT 2 2 Set HALT Mode (PCC.2 1) Control STOP 2 2 Set STOP Mode (PCC.3 1)
Special RBn 2 2 RBS n (n = 0-3)
CALL !addr 3 3 (SP-4)(SP-1)(SP-2) PC11-0 *6
CALLF !faddr 2 2 (SP-4)(SP-1)(SP-2) PC11-0 *9
RET 1 3 MBE, RBE, PC13,12 (SP+1)
RETS 1 3+S MBE, RBE, PC13,12 (SP+1) Undefined
RETI 1 3 PC13,12 (SP+1)
PUSH rp 1 1 (SP-1)(SP-2) rp, SP SP-2
POP rp 1 1 rp (SP+1)(SP), SP SP+2
OUT *1PORTn,A 2 2 PORTn A (n = 2-7, 9-14)
NOP 1 1 No Operation
SEL
GETI *2taddr 1 3
Operand Bytes
BS 2 2
BS 2 2
IExxx 2 2 IExxx 0
XA,PORTn 2 2
PORTn,XA 2 2 PORTn+1,PORTn XA (n = 4, 6)
MBn 2 2 MBS n (n = 0, 1, 15)
Ma- Ad-
chine
les Area
(SP-3) MBE, RBE, PC13,12 PC13-0 addr, SP SP-4
(SP-3) MBE, RBE, PC13,12 PC13-0 00, faddr, SP SP-4
PC11-0 (SP)(SP+3)(SP+2) SP SP+4
PC11-0 (SP)(SP+3)(SP+2) SP SP+4,
PC11-0 (SP)(SP+3)(SP+2) PSW (SP+4)(SP+5), SP SP+6
(SP-1) MBS, (SP-2) RBS, SP SP-2
MBS (SP+1), RBS (SP), SP SP+2
XA
.
Where TBR instruction, *10 PC13-0 (taddr)4-0+(taddr+1)
......................................................... .............................
.
Where TCALL instruction, (SP-4)(SP-1)(SP-2) PC11-0 (SP-3) MBE, RBE, PC13,12 PC13-0 (taddr)5-0+(taddr+1) SP SP-4
......................................................... .............................
.
Except for TBR and TCALL Depends on instructions, referenced Instruction execution of instruction (taddr)(taddr+1)
Operation
then skip unconditionally
PORTn+1,PORTn
(n = 4, 6)
dress- Skip
*1: When executing the IN/OUT instruction, MBE = 0, or MBE = 1, and MBS = 15. *2: The TBR, and TCALL instructions are the assembler pseudo-instructions for the table definition of
GETI instruction.
43
Page 44
11. ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Parameter Symbol Conditions Ratings Unit
Supply Voltage VDD -0.3 to +7.0 V
VI1 Other than ports 4, 5, 12-14 -0.3 to VDD+0.3 V
Input Voltage VI2 Ports 4, 5, 12-14 w/pull-up -0.3 to VDD+0.3
Output Voltage VO -0.3 to VDD+0.3 V High-Level Output IOH 1 pin -15 mA
Current
Low-Level Output IOL* 1 pin Peak 30 mA Current rms 15 mA
Operating Temperature Topt -40 to +85 °C Storage Temperature Tstg -65 to +150 °C
All pins -30 mA
Total of ports 0, 2, 3, 4 Peak 100 mA
Total of ports 5-11 Peak 100 mA
Total of ports 12-14 Peak 40 mA
*: rms = Peak value x Duty
resistor Open drain -0.3 to +11 V
rms 60 mA
rms 60 mA
rms 25 mA
µ
PD75512
V
OPERATING SUPPLY VOLTAGE
Parameter Symbol Conditions MIN. MAX. Unit
A/D Converter Supply voltage VDD 3.5 6.0 V
Ambient temperature Ta -10 +70 °C
Timer/Pulse Supply voltage VDD 4.5 6.0 V Generator Ambient temperatuare Ta -40 +85 °C Other Circuits Supply voltage VDD 2.7 6.0 V
Ambient temperatuare Ta -40 +85 °C
CAPACITANCE (Ta = 25°C, VDD = 0 V)
Parameter Symbol Conditions MIN. TYP. MAX. Unit Input Capacitance CI f = 1 MHz 15 pF Output Capacitance CO Pins other than thosemeasured are at 0 V 15 pF Input/Output CIO
Capacitance
15 pF
44
Page 45
MAIN SYSTEM CLOCK OSCILLATOR CIRCUIT CHARACTERISTICS
a = -40 to +85°C, VDD = 2.7 to 6.0 V)
(T
µ
PD75512
Oscillator
Ceramic Oscillation VDD = osccillation
Crystal Oscillation
External Clock X1 input frequency
Recommended
Constants
X1 X2
C1 C2
X1 X2
C1 C2
X1 X2
Item Conditions MIN. TYP. MAX. Unit
frequency(fX)* Oscillation stabiliza- After VDD came to
tion time*
1
voltage range
2
MIN. of oscillation voltage range
frequency (fX)* Oscillation stabiliza- VDD = 4.5 to 6.0 V 10 ms
tion time*
1
(fX)*
1
2
X1 input high-, low-level widths
µ
PD74HCU04
(tXH, tXL) 100 500 ns
SUBSYSTEM CLOCK OSCILLATOR CIRCUIT CHARACTERISTICS
a = -40 to +85°C, VDD = 2.7 to 6.0 V)
(T
1.0 5.0
1.0 4.19 5.0
1.0 5.0
3
*
MHz
4ms
3
*
MHz
30 ms
3
*
MHz
Oscillator
Crystal Oscillation*
External Clock XT1 input frequency
Recommended
Constants
XT1 XT2
R
C3 C4
XT1 XT2
Open
Item Conditions MIN. TYP. MAX. Unit
1
frequency (fXT) Oscillation stabiliza- VDD = 4.5 to 6.0 V 1.0 2 s
tion time*
2
32 32.768 35 kHz
10 s
(fXT)*
1
32 100 kHz
XT1 input high-, low-level widths 5 15
µ
s
(tXTH, tXTL)
*1: Only to express the characteristics of the oscillator circuit. For instruction execution time, refer to AC
Characteristics.
2: Time required for oscillation to stabilize after VDD reaches the minimum value of the oscillation voltage
range or the STOP mode has been released.
3: When the oscillation frequency is 4.19 MHz < fx 5.0 MHz, do not select PCC = 0011 as the instruction
µ
execution time: otherwise, one machine cycle is set to less than 0.95
µ
minimum value of 0.95
s.
s, falling short of the rated
45
Page 46
µ
PD75512
Note: When using the oscillation circuit of the main system clock and subsystem clock, wire the portion
enclosed in dotted line in the figures as follows to avoid adverse influences on the wiring capacity:
Keep the wiring length as short as possible.
• Do not cross the wiring over the other signal lines. Do not route the wiring in the vicinity of lines through which a high alternating current flows.
• Always keep the ground point of the capacitor of the oscillator circuit at the same potential as V
DD.
Do not connect the power source pattern through which a high current flows.
• Do not extract signals from the oscillation circuit.
The amplification factor of the subsystem clock oscillation circuit is designed to be low to reduce the current dissipation and therefore, the subsystem clock oscillation circuit is influenced by noise more easily than the main system clock oscillation circuit. When using the subsystem clock, therefore, exercise utmost care in wiring the circuit.
RECOMMENDED OSCILLATION CIRCUIT CONSTANTS
MAIN SYSTEM CLOCK: CERAMIC OSCILLATOR (Ta = -40 to +85°C)
Manufacturer Product Remarks
External Capacitor (pF) Oscillation Voltage Range (V)
C1 C2 MIN. MAX.
Kyocera KBR-1000H 100 100
Murata CSA 2.00MG
Toko CRHF 3.00 27 27 3.0 6.0
KBR-2.0MS 47 47 2.7 6.0 KBR-4.0MS 33 33
CSA 4.00MGU 30 30 2.7 CSA 4.19MG093 CSA 4.91MGU
CSA 4.91MG 30 30 3.0 6.0
CST 2.00MG CST 4.00MGU Internally Internally 2.7 CST 4.19MG093 provided provided CST 4.91MGU
CST 4.91MG Internally Internally 3.0
provided provided
CRHF 4.19
MAIN SYSTEM CLOCK: CRYSTAL OSCILLATOR (Ta = -20 to +70°C)
Manufacturer Product Remarks
External Capacitor (pF) Oscillation Voltage Range (V)
C1 C2 MIN. MAX.
Kinseki HC-49/U 27 27 2.7 6.0
46
Page 47
DC CHARACTERISTICS (Ta = -40 to +85°C, VDD = 2.7 to 6.0 V)
Parameter Symbol Conditions MIN. TYP. MAX. Unit
High-Level Input VIH1 Ports 2, 3, 9-11, P80, P82 0.7VDD VDD V Voltage
Low-level Input VIL1 Ports 2-5, 9-14, P80, P82 0 0.3VDD V Voltage VIL2 Ports 0, 1, 6, 7, 15, P81, P83,
High-Level Output VOH VDD = 4.5 to 6.0 V, IOH = -1 mA VDD-1.0 V Voltage IOH = -100 µAVDD-0.5 V Low-Level Output VOL Ports 3, 4, and 5 VDD = 4.5 to 6.0 V, 0.4 2.0 V
Voltage IOL = -15 mA
High-Level Input ILIH1 VI = VDD Other than below 3 Leakage Current
Low-Level Input ILIL1 VI = 0 V Other than below -3 Leakage Current
High-Level Output ILOH1 VO = VDD Other than below 3 Leakage Current
Low-Level Output ILOL VO = 0 V Leakage Current
Internal Pull-Up Resistor RU1
Internal Pull-Down RD VO = 2 V Port 9 20 70 140 k Resistor
VIH2 Ports 0, 1, 6, 7, 15, P81, P83, VIH3 Ports 4, 5, 12-14 w/pull-up resistor 0.7VDD VDD V
Open-drain 0.7VDD 10 V
VIH4 X1, X2, XT1 VDD-0.5 VDD V
VIL3 X1, X2, XT1 0 0.4 V
VDD = 4.5 to 6.0 V, IOL = 1.6 mA 0.4 V IOL = 400 µA 0.5 V SB0, 1 Open-drain Pull-up
resistor 1 k
ILIH2 X1, X2, XT1 20 ILIH3 VI = 9 V Ports 4, 5, 12-14
(open-drain)
ILIL2 X1, X2, XT1 -20
ILOH2 VO = 9 V Ports 4, 5, 12-14
(open-drain)
Ports 0, 1, 2, 3, 6, 7 (except P00) VI = 0V
RU2 Ports 4, 5, 12-14 VDD = 5.0 V±10% 15 40 70 k
VO = VDD-2.0 V
VDD = 5.0 V±10% 15 40 80 k VDD = 3.0 V±10% 30 300 k
VDD = 3.0 V±10% 10 60 k
RESET
RESET
0.8VDD VDD V
0 0.2VDD V
0.2VDD V
20
20
-3
µ
PD75512
µ
A
µ
A
µ
A
µ
A
µ
A
µ
A
µ
A
µ
A
47
Page 48
µ
PD75512
Parameter Symbol Conditions MIN. TYP. MAX. Unit
Supply Current *1IDD1 4.19 MHz*2 crystal Ooperation VDD = 5 V±10%*
IDD2
IDD3 32.768 kHz*5 crystal Operation VDD = 3 V±10%
IDD4 HALT mode VDD = 3 V±10% 5 15 IDD5 XT1 = 0 V VDD = 5 V±10% 0.5 20
oscillator mode C1 = C2 = 22pF
oscillator mode
STOP mode
HALT mode VDD = 5 V±10% 600 1800
VDD
= 3 V±10%
VDD = 3 V±10%*
VDD = 3 V±10% 200 600
Ta = 25°C5
3
4
39mA
0.55 1.5 mA
µ
A
µ
A
40 120
0.3 10
µ
A
µ
A
µ
A
µ
A
µ
A
*1: Currents for the built-in pull-up resistor are not included.
2: Including when the subsystem clock is operated. 3: When operand in the high-speed mode with the processor clock control register (PCC) set to 0011. 4: When operated in the low-speed mode with the PCC set to 0000. 5: When operated with the subsystem clock by setting the system clock control register (SCC) to 1001 to
stop the main system clock operation.
48
Page 49
AC CHARACTERISTICS (Ta = -40 to +85°C, VDD = 2.7 to 6.0 V)
(1) Basic Operation
Parameter Symbol Conditions MIN. TYP. MAX. Unit
1
CPU Clock Cycle Time* (Minimum Instruction Execution Time = 1 Machine Cycle
TI0 Input Frequency fTI VDD = 4.5 to 6.0 V 0 1 MHz
TI0 Input High-, tTIH,VDD = 4.5 to 6.0 V 0.48 Low-Level Widths t
Interrupt Input High-, tINTH, INT0 *2 Low-Level Widths t
RESET Low-Level Width tRSL 10
tCY w/main system clock VDD = 4.5 to 6.0 V 0.95 64
3.8 64
w/sub-system clock 114 122 125
0 275 kHz
TIL
INTL
INT1, 2, 4 10 KR0-7 10
1.8
*1: The CPU clock (Φ) cycle time is
determined by the oscillation frequency
tCY vs V
of the connected oscillator, system clock control register (SCC), and processor clock control register (PCC). The figure on the right is cycle time t voltage V
DD characteristics at the main
CY vs. supply
system clock.
2: 2tCY or 128/fX depending on the setting
of the interrupt mode register (IM0).
70
64 60
6 5
Guaranteed operating range
4
DD
(with main system clock)
µ
PD75512
µ
s
µ
s
µ
s
µ
s
µ
s
µ
s
µ
s
µ
s
µ
s
3
µ
[ s]
CY
2
Cycle time t
1
0.5 0123 456
Supply voltage V
DD
[V]
49
Page 50
(2) Serial Transfer Operation
(a) Two-Line and Three-Line Serial I/O Modes (SCK: internal clock output)
Parameter Symbol Conditions MIN. TYP. MAX. Unit
SCK Cycle Time tKCY1 VDD = 4.5 to 6.0 V 1600 ns
3800 ns
SCK High-, Low-Level tKL1 VDD = 4.5 to 6.0 V (tKCY1/2)-50 ns Widths
SI Set-Up Time (vs. SCK ) tSIK1 150 ns
SI Hold Time (vs. SCK )tKSI1 400 ns SCK ↓→ SO Output tKSO1 RL = 1 k,VDD = 4.5 to 6.0 V 250 ns
Delay Time CL = 100 pF*
tKH1 (tKCY1/2)
-150
*: RL and CL are load resistance and load capacitance of the SO output line.
(b) Two-Line and Three-Line Serial I/O Modes (SCK: external clock input)
Parameter Symbol Conditions MIN. TYP. MAX. Unit
SCK Cycle Time tKCY2 VDD = 4.5 to 6.0 V 800 ns
3200 ns
SCK High-, Low-Level tKL2 VDD = 4.5 to 6.0 V 400 ns Widths
SI Set-Up Time (vs. SCK ) tSIK2 100 ns
SI Hold Time (vs. SCK )tKSI2 400 ns SCK ↓→ SO Output tKSO2 RL = 1 k, CL = 100 pF* VDD = 4.5 to 6.0 V 300 ns
Delay Time
tKH2 1600 ns
*: RL and CL are load resistance and load capacitance of the SO output line.
µ
PD75512
ns
1000 ns
1000 ns
50
Page 51
µ
PD75512
(c) SBI Mode (SCK: internal clock output (master))
Parameter Symbol Conditions MIN. TYP. MAX. Unit
SCK Cycle Time tKCY3 VDD = 4.5 to 6.0 V 1600 ns
3800 ns
SCK High-, Low-Level tKL3 VDD = 4.5 to 6.0 V tKCY3/2-50 ns Widths t
SB0, 1 Set-Up Time tSIK3 (vs. SCK )
SB0, 1 Hold Time tKSI3 (vs. SCK )
SCK ↓→ SB0, 1 Output tKSO3 RL = 1 k,VDD = 4.5 to 6.0 V 0 250 ns Delay Time CL = 100 pF*
SCK ↑→ SB0, 1 tKSB tKCY3 ns SB0,1 ↓→ SCK tSBK tKCY3 ns SB0, 1 Low-Level Width tSBL tKCY3 ns SB0, 1 High-Level Width tSBH tKCY3 ns
KH3
tKCY3/2-150 ns
150 ns
tKCY3/2 ns
0 1000 ns
*: RL and CL are load resistance and load capacitance of the SO output line.
(d) SBI Mode (SCK: external clock input (slave))
Parameter Symbol Conditions MIN. TYP. MAX. Unit
SCK Cycle Time tKCY4 VDD = 4.5 to 6.0 V 800 ns
3200 ns
SCK High-, Low-Level tKL4 VDD = 4.5 to 6.0 V 400 ns Widths tKH4
SB0, 1 Set-Up Time tSIK4 (vs. SCK )
SB0, 1 Hold Time tKSI4 (vs. SCK )
SCK ↓→ SB0, 1 Output tKSO4 RL = 1 k,VDD = 4.5 to 6.0 V 0 300 ns Delay Time CL = 100 pF*
SCK ↑→ SB0, 1 tKSB tKCY4 ns SB0,1 ↓→ SCK tSBK tKCY4 ns SB0, 1 Low-Level Width tSBL tKCY4 ns SB0, 1 High-Level Width tSBH tKCY4 ns
1600 ns
100 ns
tKCY4/2 ns
0 1000 ns
*: RL and CL are load resistance and load capacitance of the SO output line.
51
Page 52
µ
PD75512
(3) A/D Converter (Ta = -10 to +70°C, VDD = 3.5 to 6.0 V, AVSS = VSS = 0 V)
Parameter Symbol Conditions MIN. TYP. MAX. Unit Resolution 8 8 8 bit Absolute Accuracy* Conversion Time* Sampling Time*
4
1
3
tCONV 168/fXµs
2.5 V AVREF VDD*
tSAMP 44/fX
2
±1.5 LSB
Analog Input Voltage VIAN AVSS AVREF V Analog Input Impedance RAN 1000 M AVREF Current IREF 1.0 2.0 mA
*1: Absolute accuracy excluding quantization error (±1–2LSB)
2: Set ADM1 as follows, in respect to the reference voltage of the AD converter (AV
REF).
µ
s
2.5 V 0.6 V
REF
AV
DD
0.65 V
DD
VDD(3.5 to 6.0 V)
ADM1=0
ADM1=1
ADM1 can be set to either 0 or 1 when 0.6V
DD AVREF 0.65VDD
3: Time since execution of conversion start instruction until EOC = 1 (40.1 µs: fX = 4.19 MHz)
µ
4: Time since execution of conversion start instruction until end of sampling (10.5
s: fX = 4.19 MHz)
52
Page 53
AC TIMING TEST POINT (excluding X1 and XT1 inputs)
0.8 V
0.2 V
DD
DD
Test points
CLOCK TIMING
1/f
X
t
XL
µ
PD75512
0.8 V
DD
0.2 V
DD
t
XH
TI0 TIMING
X1 input
XT1 input
V
DD
–0.5V
0.4 V
1/f
XT
t
XTL
t
XTH
V
DD
–0.5V
0.4 V
1/f
TI
TI0
t
TIL
t
TIH
53
Page 54
SERIAL TRANSFER TIMING
THREE-LINE SERIAL I/O MODE:
SCK
µ
PD75512
t
KCY1
t
KL1
t
SIK1
t
KH1
t
KSI1
SI
SO
TWO-LINE SERIAL I/O MODE:
SCK
t
KSO1
tKL2
Input data
Output data
tKCY2
tKH2
tKSO2
SB0,1
54
tSIK2 tKSI2
Page 55
SERIAL TRANSFER TIMING
BUS RELEASE SIGNAL
SCK
t
KSB
SB0,1
µ
PD75512
t
KCY3,4
t
KL3,4
t
t
t
SBL
SBH
SBK
t
KH3,4
t
KSO3,4
t
SIK3,4
t
KSI3,4
COMMAND SIGNAL TRANSFER:
SCK
t
KSB
SB0,1
INTERRUPT INPUT TIMING:
INT0, 1, 2, 4
KR0-7
t
KCY3,4
t
KL3,4
t
SBK
t
INTL
t
KH3,4
t
KSO3,4
t
INTH
t
SIK3,4
t
KSI3,4
RESET INPUT TIMING:
RESET
t
RSL
55
Page 56
LOW-VOLTAGE DATA RETENTION CHARACTERISTICS OF DATA MEMORY IN STOP MODE
a = –40 to +85°C)
(T
Parameter Symbol Conditions MIN. TYP. MAX. Unit
Data Retention Supply VDDDR Voltage
Data Retention Supply IDDDR VDDDR = 2.0 V Current*
1
2.0 6.0 V
0.1 10
Release Signal Set Time tSREL 0 Oscillation Stabilization tWAIT Released by RESET 217/fX ms Wait Time*
2
Released by interrupt *3 ms
*1: Does not include current flowing through internal pull-up resistor
2: The oscillation stabilization wait time is the time during which the CPU is stopped to prevent
unstable operation when oscillation is started.
3: Depends on the setting of the basic interval timer mode register (BTM) as follows:
BTM3 BTM2 BTM1 BTM0 WAIT time ( ): fX = 4.19 MHz
–0002 –0112 –1012 –1112
20
/fX (approx. 250 ms)
17
/fX (approx. 31.3 ms)
15
/fX (approx. 7.82 ms)
13
/fX (approx. 1.95 ms)
µ
PD75512
µ
A
µ
s
DATA RETENTION TIMING (releasing STOP mode by RESET)
Internal reset operation
HALT mode
STOP mode
Data retention mode
DD
V
V
DDDR
t
SREL
STOP instruction execution
RESET
t
WAIT
DATA RETENTION TIMING (standby release signal: releasing STOP mode by interrupt)
HALT mode
STOP mode
Data retention mode
Operation mode
Operation mode
DD
V
STOP instruction execution
Standby release signal
(interrupt request)
56
V
DDDR
t
SREL
t
WAIT
Page 57
12. PERFORMANCE CURVES
µ
PD75512
IDD vs VDD (Main system clock: Crystal oscillator)
5000
High-speed mode PCC=0011
Middle-speed mode PCC=0010
Low-speed mode PCC=0000
1000
Main system clock HALT mode
500
µ
DD
100
Subsystem clock Operation mode
(T = 25°C)
a
50
Operating current I [ A]
10
5
1
0123456 7
C1
Operating voltage V [V]
DD
Main system clock STOP mode + 32 kHz oscillation and subsystem clock HALT mode
X1 X2 XT1 XT2
Crystal oscillator
4.19 MHz
C2 C3
Crystal oscillator
32.768 kHz
R
C4
57
Page 58
µ
PD75512
IDD vs VDD (Main system clock: Ceramic oscillator)
a
(T = 25°C)
5000
High-speed mode PCC=0011
Middle-speed mode PCC=0010
Low-speed mode PCC=0000
1000
Main system clock HALT mode
500
µ
DD
100
Subsystem clock Operation mode
50
Operating current I [ A]
10
5
1
01234567
C1
Operating voltage V [V]
DD
Main system clock STOP mode + 32 kHz oscillation and subsystem clock HALT mode
X1 X2 XT1 XT2
Ceramic oscillator
4.19 MHz
C2 C3 C4
Crystal oscillator
32.768 kHz
R
*: When compared to crystal oscillation, increased by approximately 10%.
58
Page 59
5000
1000
500
IDD vs VDD (Main system clock: Ceramic oscillator)
µ
(T = 25°C)
a
High-speed mode PCC=0011
Middle-speed mode PCC=0010
Low-speed mode PCC=0000
Main system clock HALT mode
PD75512
µ
DD
100
50
Operating current I [ A]
10
5
Subsystem clock Operation mode
Main system clock STOP mode + 32 kHz oscillation and subsystem clock HALT mode
X1 X2 XT1 XT2
C1
Ceramic oscillator
2.0 MHz
C2 C3
Crystal oscillator
32.768 kHz
R
C4
1
0123456 7
Operating voltage V [V]
DD
59
Page 60
µ
PD75512
IDD vs VDD (Main system clock: Ceramic oscillator)
a
(T = 25°C)
5000
High-speed mode PCC=0011 Middle-speed mode PCC=0010 Low-speed mode
1000
500
µ
DD
100
PCC=0000
Main system clock HALT mode
Subsystem clock Operation mode
50
Operating current I [ A]
10
5
1
0123456 7
C1
Operating voltage V [V]
DD
Main system clock STOP mode + 32 kHz oscillation and subsystem clock HALT mode
X1 X2 XT1 XT2
Ceramic oscillator
1.0 MHz
C2 C3
Crystal oscillator
32.768 kHz
R
C4
60
Page 61
µ
PD75512
I
DD
[mA]
x
f
DD
vs
3
I
(V = 5V, T = 25°C)
DD
2
High-speed mode PPC = 0011
a
X1
X2
Middle-speed
0.5
High-speed mode PPC = 0011
0.4
(V = 3V, T = 25°C)
x
f
DD
vs
I
DD
Middle-speed mode PPC = 0010
a
X1
X2
mode PPC = 0010
0.3
I
1
Low-speed mode
DD
[mA]
0.2
Low-speed mode PPC = 0000
PPC = 0000
Main system clock
0.1
HALT mode
0
123
x
f [MHz]
4
5
0
12345
Main system clock HALT mode
x
f [MHz]
I
OL
[mA]
40
30
20
10
0
V = 6V
DD
VOLvs I
V = 5V
OL
DD
(Port 0, 2, 6, 7)
V = 3V
DD
V = 2.7V
DD
(T = 25°C)
a
V = 4V
DD
12345
V [V]
OL
OL
I
[mA]
40
30
20
10
0
V = 6V
DD
VOLvs I
V = 5V
DD
OL
V = 4V
DD
(Port 3, 4, 5)
V = 3V
DD
V = 2.7V
DD
a
(T = 25°C)
12345
V [V]
OL
61
Page 62
20
V
OH vs
µ
PD75512
I
OH
(T = 25°C)
a
OH
I
[mA]
15
10
V = 6V
DD
5
0
12345
V = 5V
DD
V = 2.7VDD
OH
V - V [V]
DD
DD
V = 3V
V = 4V
DD
62
Page 63
13. PACKAGE DRAWINGS
80 PIN PLASTIC QFP (14×20)
µ
PD75512
A
B
64
65
80
F
1
G
H
M
I
P
N
NOTE
Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.
41
40
detail of lead end
C
D
S
Q
25
24
J
K
M
L
P80GF-80-3B9-2
ITEM MILLIMETERS INCHES
M
A B C
D
F G H
I
J
K
L
N
23.6±0.4 
20.0±0.2
14.0±0.2
17.6±0.4
1.0
0.8
0.35±0.10
0.15
0.8 (T.P.)
1.8±0.2
0.8±0.2
+0.10
0.15
–0.05
0.15
0.929±0.016
+0.009
0.795
–0.008
+0.009
0.551
–0.008
0.693±0.016
0.039
0.031
+0.004
0.014
–0.005
0.006
0.031 (T.P.)
+0.008
0.071
–0.009 +0.009
0.031
–0.008
+0.004
0.006
–0.003
0.006 P 2.7 0.106 Q
0.1±0.1
0.004±0.004 S 3.0 MAX. 0.119 MAX.
5°±5°
63
Page 64
µ
PD75512
14. RECOMMENDED SOLDERING CONDITIONS
It is recommended that µPD75512 be soldered under the following conditions. For details on the recommended soldering conditions, refer to Information Document "Semiconductor
Devices Mounting Manual" (IEI-616).
The soldering methods and conditions are not listed here, consult NEC.
Table 14-1 Soldering Conditions
µ
PD75512GF-xxx-3B9: 80-pin plastic QFP (14 × 20 mm)
Soldering Method Soldering Conditions
Infrared Reflow Package peak temperature: 230°C, IR30-00-1
time: 30 seconds max. (210°C min.), number of times: 1
VPS Package peak temperature: 215°C, VP15-00-1
time: 40 seconds max. (200°C min.), number of times: 1
Wave Soldering Soldering bath temperature: 260°C max., WS60-00-1
time: 10 seconds max., number of times: 1, pre-heating temperature: 120°C max. (package surface temperature)
Pin Partial Heating Pin temperature: 300°C max.,
time: 3 seconds max. (per side)
Symbol for Recommended Condition
Caution: Do not use two or more soldering methods in combination (except the pin partial heating
method).
Notice
A model that can be soldered under the more stringent conditions (infrared reflow peak temperature: 235°C, number of times: 2, and an extended number of days) is also available. For details, consult NEC.
64
Page 65
µ
PD75512
APPENDIX A. DEVELOPMENT TOOLS
The following development support tools are readily available to support development of systems using
µ
PD75512:
Hardware IE-75000-R *
IE-75001-R IE-75000-R-EM * EP-75516GF-R Emulation prove for µPD75512, provided with 80-pin conversion socket
PG-1500 PROM programmer PA-75P516GF PROM programmer adapter solely used for µPD75P516GF. It is connected
Software IE Control Program
PG-1500 Controller RA75X Relocatable
Assembler
1
2
EV-9200G-80
In-circuit emulator for 75X series
Emulation board for IE-75000-R and IE-75001-R
EV-9200G-80.
to PG-1500.
Host machine
• PC-9800 series (MS-DOSTM Ver.3.30 to Ver.5.00A*3)
• IBM PC/ATTM (PC DOSTM Ver.3.1)
*1: Maintenance product
2: Not provided with IE-75001-R. 3: Ver.5.00/5.00A has a task swap function, but this function cannot be used with this software.
Remarks: For development tools from other companies, refer to 75X Series Selection Guide (IF-151).
65
Page 66
µ
PD75512
APPENDIX B. RELATED DOCUMENTS
66
Page 67
µ
PD75512
GENERAL NOTES ON CMOS DEVICES
1 STATIC ELECTRICITY (ALL MOS DEVICES)
Exercise care so that MOS devices are not adversely influenced by static electricity while being
handled.
The insulation of the gates of the MOS device may be destroyed by a strong static charge. Therefore, when transporting or storing the MOS device, use a conductive tray, magazine case, or conductive buffer materials, or the metal case NEC uses for packaging and shipment, and use grounding when assembling the MOS device system. Do not leave the MOS device on a plastic plate and do not touch the pins of the device.
Handle boards on which MOS devices are mounted similarly .
2 PROCESSING OF UNUSED PINS (CMOS DEVICES ONLY)
Fix the input level of CMOS devices.
Unlike bipolar or NMOS devices, if a CMOS device is operated with nothing connected to its input pin, intermediate level input may be generated due to noise, and an inrush current may flow through the device, causing the device to malfunction. Therefore, fix the input level of the device by using a pull-down or pull-up resistor. If there is a possibility that an unused pin serves as an output pin (whose timing is not specified), each pin should be connected to V a resistor.
Refer to “Processing of Unused Pins” in the documents of each devices.
DD or GND through
3 STATUS BEFORE INITIALIZATION (ALL MOS DEVICES)
The initial status of MOS devices is undefined upon power application.
Since the characteristics of an MOS device are determined by the quantity of injection at the molecular level, the initial status of the device is not controlled during the production process. The output status of pins, I/O setting, and register contents upon power application are not guaranteed. However, the items defined for reset operation and mode setting are subject to guarantee after the respective operations have been executed.
When using a device with a reset function, be sure to reset the device after power application.
67
Page 68
[MEMO]
µ
PD75512
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties b y or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. The devices listed in this document are not suitable for uses in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for the applications not intended by NEC, please contact our sales people in advance. Application examples recommended by NEC Corporation
Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment,
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products,etc.
Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,
Anticrime system, etc.
M4 92.6
MS-DOS is a trademark of Microsoft Corporation. PC DOS and PC/AT are trademarks of IBM Corporation.
68
Loading...