National Semiconductor MM54HC540, MM74HC540, MM54HC541, MM74HC541 Service Manual

MM54HC540/MM74HC540 Inverting Octal TRI-STATE
É
MM54HC541/MM74HC541 Octal TRI-STATE Buffer
These TRI-STATE buffers utilize advanced silicon-gate CMOS technology. They possess high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits achieve speeds compara­ble to low power Schottky devices, while retaining the ad­vantage of CMOS circuitry, i.e., high noise immunity, and low power consumption. Both devices have a fanout of 15 LS-TTL equivalent inputs.
The MM54HC540/MM74HC540 is an inverting buffer and the MM54HC541/MM74HC541 is a non-inverting buffer. The TRI-STATE control gate operates as a two-input NOR such that if either G1 the high-impedance state.
or G2 are high, all eight outputs are in
February 1988
Buffer
In order to enhance PC board layout, the ’HC540 and ’HC541 offers a pinout having inputs and outputs on oppo­site sides of the package. All inputs are protected from dam­age due to static discharge by diodes to V
Features
Y
Typical propagation delay: 12 ns
Y
TRI-STATE outputs for connection to system buses
Y
Wide power supply range: 2 –6V
Y
Low quiescent current: 80 mA maximum (74HC Series)
Y
Output current: 6 mA
and ground.
CC
MM54HC540/MM74HC540 Inverting Octal TRI-STATE Buffer
MM54HC541/MM74HC541 Octal TRI-STATE Buffer
Connection Diagrams
Dual-In-Line Package
TL/F/5341– 1
Top View
Order Number MM54HC540 or MM74HC540
TL/F/5341– 2
Top View
Order Number MM54HC541 or MM74HC541
TRI-STATEÉis a registered trademark of National Semiconductor Corporation.
C
1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.
TL/F/5341
Absolute Maximum Ratings (Notes1&2)
Operating Conditions
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (V
CC
)
DC Input Voltage (VIN)
DC Output Voltage (V
OUT
)
Clamp Diode Current (ICD)
DC Output Current, per pin (I
OUT
)
DC VCCor GND Current, per pin (ICC)
Storage Temperature Range (T
STG
b
b
)
b
0.5 toa7.0V
1.5 to V
CC
0.5 to V
CC
g
g
b
g
65§Ctoa150§C
a
1.5V
a
0.5V
20 mA
35 mA
70 mA
Supply Voltage (V
)26V
CC
DC Input or Output Voltage 0 V
(V
IN,VOUT
)
Operating Temp. Range (TA)
MM74HC MM54HC
Input Rise or Fall Times
e
V
2.0V(tr,tf) 1000 ns
CC
e
V
4.5V 500 ns
CC
e
V
6.0V 400 ns
CC
Power Dissipation (PD)
(Note 3) 600 mW S.O. Package only 500 mW
Lead Temp. (T
) (Soldering 10 seconds) 260§C
L
DC Electrical Characteristics (Note 4)
e
T
25§C
Symbol Parameter Conditions V
CC
A
Typ Guaranteed Limits
V
Minimum High Level 2.0V 1.5 1.5 1.5 V
IH
Input Voltage 4.5V 3.15 3.15 3.15 V
6.0V 4.2 4.2 4.2 V
V
Maximum Low Level 2.0V 0.5 0.5 0.5 V
IL
Input Voltage** 4.5V 1.35 1.35 1.35 V
6.0V 1.8 1.8 1.8 V
V
Minimum High Level V
OH
Output Voltage
e
VIHor V
l
IN
I
OUT
IL
s
20 mA 2.0V 2.0 1.9 1.9 1.9 V
l
4.5V 4.5 4.4 4.4 4.4 V
6.0V 6.0 5.9 5.9 5.9 V
e
V
VIHor V
IN
I
l
OUT
I
l
OUT
l
IN
I
OUT
e
V
Maximum Low Level V
OL
Output Voltage
IL
s
6.0 mA 4.5V 4.2 3.98 3.84 3.7 V
l
s
7.8 mA 6.0V 5.7 5.48 5.34 5.2 V
l
VIHor V
IL
s
20 mA 2.0V 0 0.1 0.1 0.1 V
l
4.5V 0 0.1 0.1 0.1 V
6.0V 0 0.1 0.1 0.1 V
e
V
VIHor V
IN
I
l
OUT
I
l
OUT
I
IN
I
OZ
Maximum Input V Current
Maximum TRI-STATE V Output Leakage V Current
I
CC
Maximum Quiescent V Supply Current I
Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.
Note 2: Unless otherwise specified all voltages are referenced to ground.
Note 3: Power Dissipation temperature derating Ð plastic ‘‘N’’ package:
Note 4: For a power supply of 5V
with this supply. Worst case V
) occur for CMOS at the higher voltage and so the 6.0V values should be used.
I
OZ
**V
limits are currently tested at 20% of VCC. The above VILspecification (30% of VCC) will be implemented no later than Q1, CY’89.
IL
g
and VILoccur at V
IH
e
IN
e
IN
OUT
e
IN
OUT
10% the worst case output voltages (VOH, and VOL) occur for HC at 4.5V. Thus the 4.5V values should be used when designing
IL
s
6.0 mA 4.5V 0.2 0.26 0.33 0.4 V
l
s
7.8 mA 6.0V 0.2 0.26 0.33 0.4 V
l
VCCor GND 6.0V
VIHor VIL,GeVIH6.0V
e
VCCor GND
g
0.1
g
0.5
VCCor GND 6.0V 8.0 80 160 mA
e
0 mA
b
12 mW/§C from 65§Cto85§C; ceramic ‘‘J’’ package:b12 mW/§C from 100§Cto125§C.
e
5.5V and 4.5V respectively. (The VIHvalue at 5.5V is 3.85V.) The worst case leakage current (IIN,ICC, and
CC
74HC 54HC
eb
T
40 to 85§CT
A
g
1.0
g
5
Min Max Units
V
§
§
Units
b b
40 55
A
eb
CC
a
85
a
125
55 to 125§C
g
1.0 mA
g
10 mA
C C
2
Loading...
+ 2 hidden pages