National Semiconductor LM5008 Technical data

February 5, 2008
LM5008 High Voltage (100V) Step Down Switching Regulator
LM5008 High Voltage (100V) Step Down Switching Regulator

General Description

The LM5008 Step Down Switching Regulator features all of the functions needed to implement a low cost, efficient, Buck bias regulator. This high voltage regulator contains an 100 V N-Channel Buck Switch. The device is easy to implement and is provided in the MSOP-8 and the thermally enhanced LLP-8 packages. The regulator is based on a hysteretic control scheme using an ON time inversely proportional to VIN. This feature allows the operating frequency to remain relatively constant. The hysteretic control requires no loop compensa­tion. An intelligent current limit is implemented with forced OFF time, which is inversely proportional to Vout. This scheme ensures short circuit protection while providing min­imum foldback. Other protection features include: Thermal Shutdown, VCC under-voltage lockout, Gate drive under-volt­age lockout, and Max Duty Cycle limiter

Features

Integrated 100V, N-Channel buck switch
Internal VCC regulator
No loop compensation required
Ultra-Fast transient response
On time varies inversely with line voltage
Operating frequency remains constant with varying line
voltage and load current Adjustable output voltage
Highly efficient operation
Precision internal reference
Low bias current
Intelligent current limit protection
Thermal shutdown

Typical Applications

Non-Isolated Telecommunication Buck Regulator
Secondary High Voltage Post Regulator
+42V Automotive Systems

Package

MSOP - 8
LLP - 8 (4mm x 4mm)

Connection Diagram

8-Lead MSOP, LLP
20097902

Ordering Information

Order Number Package Type NSC Package Drawing Supplied As
LM5008MM
LM5008MMX 3500 Units on Tape and Reel
LM5008SD
LM5008SDX 4500 Units on Tape and Reel
LM5008SDC
LM5008SDCX 4500 Units on Tape and Reel
MSOP-8 MUA08A
SDC08A
LLP-8
SDC08B
1000 Units on Tape and Reel
1000 Units on Tape and Reel
1000 Units on Tape and Reel
© 2008 National Semiconductor Corporation 200979 www.national.com

Typical Application Circuit and Block Diagram

LM5008
20097901

FIGURE 1.

www.national.com 2

Pin Descriptions

Pin Name Description Application Information
1 SW Switching Node Power switching node. Connect to the output inductor,
re-circulating diode, and bootstrap capacitor.
2 BST Boost Pin (Boot–strap capacitor input) An external capacitor is required between the BST
and the SW pins. A 0.01µF ceramic capacitor is recommended. An internal diode charges the capacitor from VCC.
3 R
4 RTN Ground pin Ground for the entire circuit.
5 FB Feedback input from Regulated Output This pin is connected to the inverting input of the
6 RON/SD On time set pin
7 V
CC
8 V
EP Exposed Pad The exposed pad has no electrical contact. Connect
Current Limit OFF time set pin
CL
Toff = 10-5 / (0.285 + (FB / 6.35 x 10
− 6
x RCL))
A resistor between this pin and RTN sets the off-time when current limit is detected. The off-time is preset to 35µs if FB = 0V.
internal regulation comparator. The regulation threshold is 2.5V.
A resistor between this pin and VIN sets the switch on
Ton = 1.25 x 10
-10
RON / V
IN
time as a function of VIN. The minimum recommended on time is 400ns at the maximum input voltage. This pin can be used for remote shutdown.
Output from the internal high voltage series pass regulator. Regulated at 7.0V.
If an auxiliary voltage is available to raise the voltage on this pin, above the regulation setpoint (7V), the internal series pass regulator will shutdown, reducing the IC power dissipation. Do not exceed 14V. This voltage provides gate drive power for the internal Buck switch. An internal diode is provided between this pin and the BST pin. A local 0.1µF decoupling capacitor is recommended. Series pass regulator is current limited to 10mA.
Input voltage Recommended operating range: 9.5V to 95V.
IN
to system ground plane for reduced thermal resistance.
LM5008
3 www.national.com

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required,
LM5008
please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
VIN to GND -0.3V to 100V
BST to GND -0.3V to 114V SW to GND (Steady State) -1V ESD Rating (Note 5) Human Body Model 2kV BST to V
CC
100V
BST to SW 14V VCC to GND 14V
All Other Inputs to GND -0.3 to 7V Lead Temperature (Soldering 4 sec) 200°C Storage Temperature Range -55°C to +150°C

Operating Ratings (Note 1)

V
IN
Operating Junction Temperature −40°C to + 125°C

Electrical Characteristics

Specifications with standard typeface are for TJ = 25°C, and those with boldface type apply over full Operating Junction Tem­perature range. VIN = 48V, unless otherwise stated (Note 3).
Symbol Parameter Conditions Min Typ Max Units
VCC Supply
VCC Reg VCC Regulator Output 6.6 7 7.4 V
VCC Current Limit (Note 4) 9.5 mA
VCC undervoltage Lockout
Voltage (VCC increasing)
VCC Undervoltage Hysteresis 200
VCC UVLO Delay (filter) 100mV overdrive 10
I
I
Operating Current Non-Switching, FB = 3V 485 675 µA
IN
Shutdown Current RON/SD = 0V 76 150 µA
IN
Switch Characteristics
Buck Switch Rds(on) I
Gate Drive UVLO V
Gate Drive UVLO Hysteresis 430 mV
Current Limit
Current Limit Threshold 0.41 0.51 0.61 A
Current Limit Response Time I
OFF time generator (test 1) FB=0V, RCL = 100K 35 µs
OFF time generator (test 2) FB=2.3V, RCL = 100K 2.56 µs
On Time Generator
TON - 1 Vin = 10V
TON - 2 Vin = 95V
Remote Shutdown Threshold Rising 0.40 0.70 1.05 V
Remote Shutdown Hysteresis 35 mV
6.3 V
= 200mA, (Note 6) 1.15 2.47
TEST
− VSW Rising 3.4 4.5 5.5 V
BST
Overdrive = 0.1A Time
switch
400 ns
to Switch Off
2.15 2.77 3.5 µs
Ron = 200K
200 300 420 ns
Ron = 200K
9.5V to 95V
mV
µs
www.national.com 4
Symbol Parameter Conditions Min Typ Max Units
Minimum Off Time
Minimum Off Timer FB = 0V 300 ns
Regulation and OV Comparators
FB Reference Threshold Internal reference
2.445 2.5 2.550 V
Trip point for switch ON
FB Over-Voltage Threshold Trip point for switch OFF 2.875 V
FB Bias Current 100 nA
Thermal Shutdown
Tsd Thermal Shutdown Temp. 165 °C
Thermal Shutdown Hysteresis 25 °C
Thermal Resistance
θ
JA
Junction to Ambient MUA Package
200
°C/W
SDC Package 40 °C/W
Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is intended to be functional. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: For detailed information on soldering plastic MSOP and LLP packages, refer to the Packaging Data Book available from National Semiconductor Corporation.
Note 3: All limits are guaranteed. All electrical characteristics having room temperature limits are tested during production with TA = TJ = 25°C. All hot and cold limits are guaranteed by correlating the electrical characteristics to process and temperature variations and applying statistical process control.
Note 4: The VCC output is intended as a self bias for the internal gate drive power and control circuits. Device thermal limitations limit external loading.
Note 5: The human body model is a 100pF capacitor discharged through a 1.5k resistor into each pin.
Note 6: For devices procured in the LLP-8 package the Rds(on) limits are guaranteed by design characterization data only.
LM5008
5 www.national.com

Typical Performance Characteristics

LM5008
20097909

FIGURE 2. ICC Current vs Applied VCC Voltage

20097910
FIGURE 3. ON-Time vs Input Voltage and R
ON
20097912
FIGURE 5. Current Limit Off-Time vs VFB and R
20097923
FIGURE 6. Efficiency vs V
(Circuit of Figure 13)
IN
CL
20097911
FIGURE 4. Maximum Frequency vs V
www.national.com 6
OUT
and V
IN
LM5008
20097927
FIGURE 7. Efficiency vs Load Current vs V
(Circuit of Figure 13)
IN

Functional Description

The LM5008 Step Down Switching Regulator features all the functions needed to implement a low cost, efficient, Buck bias power converter. This high voltage regulator contains a 100 V N-Channel Buck Switch, is easy to implement and is pro­vided in the MSOP-8 and the thermally enhanced LLP-8 packages. The regulator is based on a hysteretic control scheme using an on-time inversely proportional to VIN. The hysteretic control requires no loop compensation. Current limit is implemented with forced off-time, which is inversely proportional to V tection while providing minimum foldback. The Functional
. This scheme ensures short circuit pro-
OUT
Block Diagram of the LM5008 is shown in Figure 1. The LM5008 can be applied in numerous applications to ef-
ficiently regulate down higher voltages. This regulator is well suited for 48 Volt Telecom and the new 42V Automotive pow­er bus ranges. Protection features include: Thermal Shut­down, VCC under-voltage lockout, Gate drive under-voltage lockout, Max Duty Cycle limit timer and the intelligent current limit off timer.

Hysteretic Control Circuit Overview

The LM5008 is a Buck DC-DC regulator that uses a control scheme in which the on-time varies inversely with line voltage (VIN). Control is based on a comparator and the on-time one­shot, with the output voltage feedback (FB) compared to an internal reference (2.5V). If the FB level is below the reference the buck switch is turned on for a fixed time determined by the line voltage and a programming resistor (RON). Following the ON period the switch will remain off for at least the minimum off-timer period of 300ns. If FB is still below the reference at that time the switch will turn on again for another on-time pe­riod. This will continue until regulation is achieved.
The LM5008 operates in discontinuous conduction mode at light load currents, and continuous conduction mode at heavy load current. In discontinuous conduction mode, current through the output inductor starts at zero and ramps up to a peak during the on-time, then ramps back to zero before the end of the off-time. The next on-time period starts when the
20097924
FIGURE 8. Output Voltage vs Load Current
(Circuit of Figure 13)
voltage at FB falls below the internal reference - until then the inductor current remains zero. In this mode the operating fre­quency is lower than in continuous conduction mode, and varies with load current. Therefore at light loads the conver­sion efficiency is maintained, since the switching losses re­duce with the reduction in load and frequency. The discon­tinuous operating frequency can be calculated as follows:
where RL = the load resistance In continuous conduction mode, current flows continuously
through the inductor and never ramps down to zero. In this mode the operating frequency is greater than the discontinu­ous mode frequency and remains relatively constant with load and line variations. The approximate continuous mode oper­ating frequency can be calculated as follows:
(1)
The output voltage (V nal resistors as shown in Figure 1. The regulation point can
) can be programmed by two exter-
OUT
be calculated as follows:
V
= 2.5 x (R1 + R2) / R2
OUT
All hysteretic regulators regulate the output voltage based on ripple voltage at the feedback input, requiring a minimum amount of ESR for the output capacitor C2. A minimum of 25mV to 50mV of ripple voltage at the feedback pin (FB) is required for the LM5008. In cases where the capacitor ESR is too small, additional series resistance may be required (R3 in Figure 1).
For applications where lower output voltage ripple is required the output can be taken directly from a low ESR output ca­pacitor, as shown in Figure 9. However, R3 slightly degrades the load regulation.
7 www.national.com
LM5008
20097905

FIGURE 9. Low Ripple Output Configuration

High Voltage Start-Up Regulator

The LM5008 contains an internal high voltage startup regu­lator. The input pin (VIN) can be connected directly to the line voltages up to 95 Volts, with transient capability to 100 volts. The regulator is internally current limited to 9.5mA at VCC. Upon power up, the regulator sources current into the external capacitor at VCC (C3). When the voltage on the VCC pin reach­es the under-voltage lockout threshold of 6.3V, the buck switch is enabled.
In applications involving a high value for VIN, where power dissipation in the VCC regulator is a concern, an auxiliary volt­age can be diode connected to the VCC pin. Setting the auxiliary voltage to 8.0 -14V will shut off the internal regulator, reducing internal power dissipation. See Figure 10. The cur- rent required into the VCC pin is shown in Figure 2.

FIGURE 10. Self Biased Configuration

Regulation Comparator

The feedback voltage at FB is compared to an internal 2.5V reference. In normal operation (the output voltage is regulat­ed), an on-time period is initiated when the voltage at FB falls below 2.5V. The buck switch will stay on for the on-time, causing the FB voltage to rise above 2.5V. After the on-time period, the buck switch will stay off until the FB voltage again falls below 2.5V. During start-up, the FB voltage will be below
2.5V at the end of each on-time, resulting in the minimum off­time of 300 ns. Bias current at the FB pin is nominally 100 nA.
www.national.com 8
20097906

Over-Voltage Comparator

The feedback voltage at FB is compared to an internal 2.875V reference. If the voltage at FB rises above 2.875V the on-time pulse is immediately terminated. This condition can occur if the input voltage, or the output load, change suddenly. The buck switch will not turn on again until the voltage at FB falls below 2.5V.
LM5008

On-Time Generator and Shutdown

The on-time for the LM5008 is determined by the RON resistor, and is inversely proportional to the input voltage (Vin), result­ing in a nearly constant frequency as Vin is varied over its range. The on-time equation for the LM5008 is:
TON = 1.25 x 10
See Figure 3. RON should be selected for a minimum on-time (at maximum VIN) greater than 400 ns, for proper current limit
-10
x RON / V
IN

FIGURE 11. Shutdown Implementation

(2)

Current Limit

The LM5008 contains an intelligent current limit OFF timer. If the current in the Buck switch exceeds 0.5A the present cycle is immediately terminated, and a non-resetable OFF timer is initiated. The length of off-time is controlled by an external resistor (RCL) and the FB voltage (see Figure 5). When FB = 0V, a maximum off-time is required, and the time is preset to 35µs. This condition occurs when the output is shorted, and during the initial part of start-up. This amount of time ensures safe short circuit operation up to the maximum input voltage of 95V. In cases of overload where the FB voltage is above zero volts (not a short circuit) the current limit off-time will be less than 35µs. Reducing the off-time during less severe overloads reduces the amount of foldback, recovery time, and the start-up time. The off-time is calculated from the following equation:
T
= 10-5 / (0.285 + (VFB / 6.35 x 10-6 x RCL)) (3)
OFF
The current limit sensing circuit is blanked for the first 50-70ns of each on-time so it is not falsely tripped by the current surge which occurs at turn-on. The current surge is required by the re-circulating diode (D1) for its turn-off recovery.

N - Channel Buck Switch and Driver

The LM5008 integrates an N-Channel Buck switch and as­sociated floating high voltage gate driver. The gate driver circuit works in conjunction with an external bootstrap capac­itor and an internal high voltage diode. A 0.01µF ceramic capacitor (C4) connected between the BST pin and SW pin provides the voltage to the driver during the on-time.
During each off-time, the SW pin is at approximately 0V, and the bootstrap capacitor charges from Vcc through the internal diode. The minimum OFF timer, set to 300ns, ensures a min­imum time each cycle to recharge the bootstrap capacitor.
An external re-circulating diode (D1) carries the inductor cur­rent after the internal Buck switch turns off. This diode must be of the Ultra-fast or Schottky type to minimize turn-on losses and current over-shoot.
operation. This requirement limits the maximum frequency for each application, depending on VIN and V
The LM5008 can be remotely disabled by taking the RON/SD pin to ground. See Figure 11. The voltage at the RON/SD pin is between 1.5 and 3.0 volts, depending on Vin and the value of the RON resistor.
20097907
. See Figure 4.
OUT

Thermal Protection

The LM5008 should be operated so the junction temperature does not exceed 125°C during normal operation. An internal Thermal Shutdown circuit is provided to protect the LM5008 in the event of a higher than normal junction temperature. When activated, typically at 165°C, the controller is forced into a low power reset state, disabling the buck switch and the VCC regulator. This feature prevents catastrophic failures from accidental device overheating. When the junction tempera­ture reduces below 140°C (typical hysteresis = 25°C), the Vcc regulator is enabled, and normal operation is resumed.

Applications Information

SELECTION OF EXTERNAL COMPONENTS

A guide for determining the component values will be illus­trated with a design example. Refer to Figure 1. The following steps will configure the LM5008 for:
Input voltage range (Vin): 12V to 95V
Output voltage (V
Load current (for continuous conduction mode): 100 mA to 300 mA
Maximum ripple at V voltage
R1 and R2: From Figure 1, V since VFB = 2.5V, the ratio of R1 to R2 calculates as 3:1. Standard values of 3.01 kΩ (R1) and 1.00 kΩ (R2) are cho­sen. Other values could be used as long as the 3:1 ratio is maintained. The selected values, however, provide a small amount of output loading (2.5 mA) in the event the main load is disconnected. This allows the circuit to maintain regulation until the main load is reconnected.
Fs and RON: The recommended operating frequency range for the LM5008 is 50kHz to 600 kHz. Unless the application requires a specific frequency, the choice of frequency is gen­erally a compromise since it affects the size of L1 and C2, and
): 10V
OUT1
: 100 mVp-p at maximum input
OUT2
= VFB x (R1 + R2) / R2, and
OUT1
9 www.national.com
the switching losses. The maximum allowed frequency, based on a minimum on-time of 400 ns, is calculated from:
LM5008
F
MAX
= V
OUT
/ (V
INMAX
x 400ns)
For this exercise, Fmax = 263kHz. From equation 1, RON cal­culates to 304 k. A standard value 357 k resistor will be used to allow for tolerances in equation 1, resulting in a fre­quency of 224kHz.
L1: The main parameter affected by the inductor is the output current ripple amplitude. The choice of inductor value there­fore depends on both the minimum and maximum load cur­rents, keeping in mind that the maximum ripple current occurs at maximum Vin.
a) Minimum load current: To maintain continuous conduc­tion at minimum Io (100 mA), the ripple amplitude (IOR) must be less than 200 mA p-p so the lower peak of the waveform does not reach zero. L1 is calculated using the following equation:
At Vin = 95V, L1(min) calculates to 200 µH. The next larger standard value (220 µH) is chosen and with this value I calculates to 181 mA p-p at Vin = 95V, and 34 mA p-p at Vin = 12V.
b) Maximum load current: At a load current of 300 mA, the peak of the ripple waveform must not reach the minimum guaranteed value of the LM5008’s current limit threshold (410 mA). Therefore the ripple amplitude must be less than 220 mA p-p, which is already satisfied in the above calculation. With L1 = 220 µH, at maximum Vin and Io, the peak of the ripple will be 391 mA. While L1 must carry this peak current without saturating or exceeding its temperature rating, it also must be capable of carrying the maximum guaranteed value of the LM5008’s current limit threshold (610 mA) without sat­urating, since the current limit is reached during startup.
OR
The DC resistance of the inductor should be as low as pos­sible. For example, if the inductor’s DCR is one ohm, the power dissipated at maximum load current is 0.09W. While small, it is not insignificant compared to the load power of 3W.
C3: The capacitor on the VCC output provides not only noise filtering and stability, but its primary purpose is to prevent false triggering of the VCC UVLO at the buck switch on/off transi­tions. For this reason, C3 should be no smaller than 0.1 µF.
C2, and R3: When selecting the output filter capacitor C2, the items to consider are ripple voltage due to its ESR, ripple voltage due to its capacitance, and the nature of the load.
a) ESR and R3: A low ESR for C2 is generally desirable so as to minimize power losses and heating within the capacitor. However, a hysteretic regulator requires a minimum amount of ripple voltage at the feedback input for proper loop opera­tion. For the LM5008 the minimum ripple required at pin 5 is 25 mV p-p, requiring a minimum ripple at V Since the minimum ripple current (at minimum Vin) is 34 mA p-p, the minimum ESR required at V
2.94. Since quality capacitors for SMPS applications have
OUT1
of 100 mV.
OUT1
is 100mV/34mA =
an ESR considerably less than this, R3 is inserted as shown in Figure 1. R3’s value, along with C2’s ESR, must result in at least 25 mV p-p ripple at pin 5. Generally, R3 will be 0.5 to
3.0Ω. b) Nature of the Load: The load can be connected to
V
or V
OUT1
ripple voltage which ranges from 100 mV (@ Vin = 12V) to 500mV (@Vin = 95V). Alternatively, V ple, but lower regulation due to R3.
OUT2
. V
provides good regulation, but with a
OUT1
provides low rip-
OUT2
For a maximum allowed ripple voltage of 100 mVp-p at V
(@ Vin = 95V), assume an ESR of 0.4 for C2. At
OUT2
maximum Vin, the ripple current is 181 mAp-p, creating a rip­ple voltage of 72 mVp-p. This leaves 28 mVp-p of ripple due to the capacitance. The average current into C2 due to the ripple current is calculated using the waveform in Figure 12.

FIGURE 12. Inductor Current Waveform

Starting when the current reaches Io (300 mA in Figure 12) half way through the on-time, the current continues to in­crease to the peak (391 mA), and then decreases to 300 mA half way through the off-time. The average value of this por­tion of the waveform is 45.5mA, and will cause half of the voltage ripple, or 14 mV. The interval is one half of the fre­quency cycle time, or 2.23 µs. Using the capacitor’s basic equation:
C = I x Δt / ΔV
the minimum value for C2 is 7.2 µF. The ripple due to C2’s capacitance is 90° out of phase from the ESR ripple, and the
www.national.com 10
20097926
two numbers do not add directly. However, this calculation provides a practical minimum value for C2 based on its ESR, and the target spec. To allow for the capacitor’s tolerance, temperature effects, and voltage effects, a 15 µF, X7R ca­pacitor will be used.
c) In summary: The above calculations provide a minimum value for C2, and a calculation for R3. The ESR is just as important as the capacitance. The calculated values are guidelines, and should be treated as starting points. For each application, experimentation is needed to determine the op­timum values for R3 and C2.
LM5008
RCL: When a current limit condition is detected, the minimum
off-time set by this resistor must be greater than the maximum normal off-time which occurs at maximum Vin. Using equation 2, the minimum on-time is 0.470 µs, yielding a maximum off­time of 3.99 µs. This is increased by 117 ns (to 4.11 µs) due to a ±25% tolerance of the on-time. This value is then in­creased to allow for:
The response time of the current limit detection loop (400ns),
The off-time determined by equation 3 has a ±25% toler­ance,
t
OFFCL(MIN)
= (4.11 µs + 0.40µs) x 1.25 = 5.64 µs
Using equation 3, RCL calculates to 264kΩ (at VFB = 2.5V). The closest standard value is 267 kΩ.
D1: The important parameters are reverse recovery time and forward voltage. The reverse recovery time determines how long the reverse current surge lasts each time the buck switch is turned on. The forward voltage drop is significant in the event the output is short-circuited as it is only this diode’s voltage which forces the inductor current to reduce during the forced off-time. For this reason, a higher voltage is better, al­though that affects efficiency. A good choice is an ultrafast power diode, such as the MURA110T3 from ON Semicon­ductor. Its reverse recovery time is 30ns, and its forward voltage drop is approximately 0.72V at 300 mA at 25°C. Other types of diodes may have a lower forward voltage drop, but may have longer recovery times, or greater reverse leakage. D1’s reverse voltage rating must be at least as great as the maximum Vin, and its current rating be greater than the max­imum current limit threshold (610 mA).
C1: This capacitor’s purpose is to supply most of the switch current during the on-time, and limit the voltage ripple at Vin, on the assumption that the voltage source feeding Vin has an output impedance greater than zero. At maximum load cur­rent, when the buck switch turns on, the current into pin 8 will suddenly increase to the lower peak of the output current waveform, ramp up to the peak value, then drop to zero at turn-off. The average input current during this on-time is the load current (300 mA). For a worst case calculation, C1 must supply this average load current during the maximum on-time. To keep the input voltage ripple to less than 2V (for this ex­ercise), C1 calculates to:
Quality ceramic capacitors in this value have a low ESR which adds only a few millivolts to the ripple. It is the capacitance which is dominant in this case. To allow for the capacitor’s tolerance, temperature effects, and voltage effects, a 1.0 µF, 100V, X7R capacitor will be used.
C4: The recommended value is 0.01µF for C4, as this is ap­propriate in the majority of applications. A high quality ceramic
capacitor, with low ESR is recommended as C4 supplies the surge current to charge the buck switch gate at turn-on. A low ESR also ensures a quick recharge during each off-time. At minimum Vin, when the on-time is at maximum, it is possible during start-up that C4 will not fully recharge during each 300 ns off-time. The circuit will not be able to complete the start­up, and achieve output regulation. This can occur when the frequency is intended to be low (e.g., RON = 500K). In this case C4 should be increased so it can maintain sufficient voltage across the buck switch driver during each on-time.
C5: This capacitor helps avoid supply voltage transients and ringing due to long lead inductance at VIN. A low ESR, 0.1µF ceramic chip capacitor is recommended, located close to the LM5008.

FINAL CIRCUIT

The final circuit is shown in Figure 13. The circuit was tested, and the resulting performance is shown in Figure 6 through Figure 8.

MINIMUM LOAD CURRENT

A minimum load current of 1 mA is required to maintain proper operation. If the load current falls below that level, the boot­strap capacitor may discharge during the long off-time, and the circuit will either shutdown, or cycle on and off at a low frequency. If the load current is expected to drop below 1 mA in the application, the feedback resistors should be chosen low enough in value so they provide the minimum required current at nominal Vout.

PC BOARD LAYOUT

The LM5008 regulation and over-voltage comparators are very fast, and as such will respond to short duration noise pulses. Layout considerations are therefore critical for opti­mum performance. The components at pins 1, 2, 3, 5, and 6 should be as physically close as possible to the IC, thereby minimizing noise pickup in the PC tracks. The current loop formed by D1, L1, and C2 should be as small as possible. The ground connection from C2 to C1 should be as short and di­rect as possible.
If the internal dissipation of the LM5008 produces excessive junction temperatures during normal operation, good use of the pc board’s ground plane can help considerably to dissi­pate heat. The exposed pad on the bottom of the LLP-8 package can be soldered to a ground plane on the PC board, and that plane should extend out from beneath the IC to help dissipate the heat. Additionally, the use of wide PC board traces, where possible, can also help conduct heat away from the IC. Judicious positioning of the PC board within the end product, along with use of any available air flow (forced or natural convection) can help reduce the junction tempera­tures.
11 www.national.com
LM5008

FIGURE 13. LM5008 Example Circuit

Bill of Materials (Circuit of Figure 13)

Item Description Part Number Value
C1 Ceramic Capacitor TDK C4532X7R2A105M 1µF, 100V
C2 Ceramic Capacitor TDK C4532X7R1E156M 15µF, 25V
C3 Ceramic Capacitor Kemet C1206C104K5RAC 0.1µF, 50V
C4 Ceramic Capacitor Kemet C1206C103K5RAC 0.01µF, 50V
C5 Ceramic Capacitor TDK C3216X7R2A104M 0.1µF, 100V
D1 UltraFast Power Diode ON Semi MURA110T3 100V, 1A
L1 Power Inductor Coilcraft DO3316-224 or 220 µH
TDK SLF10145T-221MR65
R1 Resistor Vishay CRCW12063011F
R2 Resistor Vishay CRCW12061001F
R3 Resistor Vishay CRCW12062R00F
R
ON
R
CL
U1 Switching Regulator National Semiconductor
Resistor Vishay CRCW12063573F
Resistor Vishay CRCW12062673F
LM5008
20097922
3.01 k
1.0 k
2.0 Ω
357 k
267 k
www.national.com 12

Physical Dimensions inches (millimeters) unless otherwise noted

LM5008
8-Lead MSOP Package
NS Package Number MUA08A
8-Lead LLP Package
NS Package Number SDC08A
13 www.national.com
LM5008
8-Lead LLP Package
NS Package Number SDC08B
www.national.com 14
Notes
LM5008
15 www.national.com
Notes
For more National Semiconductor product information and proven design tools, visit the following Web sites at:
Products Design Support
Amplifiers www.national.com/amplifiers WEBENCH www.national.com/webench
Audio www.national.com/audio Analog University www.national.com/AU
Clock Conditioners www.national.com/timing App Notes www.national.com/appnotes
Data Converters www.national.com/adc Distributors www.national.com/contacts
Displays www.national.com/displays Green Compliance www.national.com/quality/green
Ethernet www.national.com/ethernet Packaging www.national.com/packaging
Interface www.national.com/interface Quality and Reliability www.national.com/quality
LVDS www.national.com/lvds Reference Designs www.national.com/refdesigns
Power Management www.national.com/power Feedback www.national.com/feedback
Switching Regulators www.national.com/switchers
LDOs www.national.com/ldo
LED Lighting www.national.com/led
PowerWise www.national.com/powerwise
Serial Digital Interface (SDI) www.national.com/sdi
Temperature Sensors www.national.com/tempsensors
Wireless (PLL/VCO) www.national.com/wireless
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION (“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE
LM5008 High Voltage (100V) Step Down Switching Regulator
NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS. EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright© 2008 National Semiconductor Corporation
For the most current product information visit us at www.national.com
www.national.com
National Semiconductor Americas Technical Support Center
Email: new.feedback@nsc.com Tel: 1-800-272-9959
National Semiconductor Europe Technical Support Center
Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288
National Semiconductor Asia Pacific Technical Support Center
Email: ap.support@nsc.com
National Semiconductor Japan Technical Support Center
Email: jpn.feedback@nsc.com
Loading...