LM49350
High Performance Audio Codec Sub-System with a
Ground-Referenced Stereo Headphone Amplifier & an
Ultra Low EMI Class D Loudspeaker Amplifier with Dual
I2S/PCM Digital Audio Interfaces
SNR (Stereo DAC at 48kHz)96dB (typ)
1.0 General Description
The LM49350 is a high performance audio subsystem that
supports both analog and digital audio functions. The
LM49350 includes a high quality stereo DAC, a high quality
stereo ADC, a stereo headphone amplifier that supports
ground referenced output cap-less operation, a dual mode
earpiece speaker amplifier, and a low EMI Class D loudspeaker amplifier. It is designed for demanding applications
in mobile phones and other portable devices.
The LM49350 features dual bi-directional I2S or PCM audio
interfaces for full range audio and an I2C compatible interface
for control. The stereo DAC path features an SNR of 96dB
with 24-bit 48 kHz input. The headphone amplifier delivers
69mW
than 1% distortion (THD+N) when A_VDD = 3.3V. The earpiece speaker amplifier delivers 58mW
bridged-tied load with less than 1% distortion (THD+N) when
A_VDD = 3.3V. The loudspeaker amplifier delivers up to
495mW into an 8Ω load with less than 1% distortion when
LS_VDD = 3.3V and up to 1.2W when LS_VDD = 5.0V.
The LM49350 employs advanced techniques to reduce power consumption, to reduce controller overhead, to speed development time, and to eliminate click and pop. Boomer audio
power amplifiers were designed specifically to provide high
quality output power with a minimal amount of external components. It is therefore ideally suited for mobile phone and
other low voltage applications where minimal power consumption, PCB area and cost are primary requirements.
(typ) to a 32Ω single-ended stereo load with less
RMS
(typ) to a 32Ω
RMS
2.0 Applications
Smart Phones
■
Mobile Phones and VOIP Phones
■
Portable GPS Navigator and Portable Gaming Devices
4.0 Features ........................................................................................................................................ 1
F5PORT1_CLKDigitalInput/Output Audio Port 1 clock signal (can be master or slave)
F6I/O_V
DD
7.1 PIN TYPE DEFINITIONS
Analog Input —
Analog Output —
Analog Input/Output —
SupplyInputHeadphone and mixer power supply input
AnalogOutputNegative power supply pin for the headphone amplifier
SupplyInputLoudspeaker power supply input
SupplyInputDigital power supply input
SupplyInputDigital interface power supply input
vice. Passive components can be
A pin that is used by the analog
and is never driven by the device.
Supplies are part of this classification.
A pin that is driven by the device
and should not be driven by external sources.
A pin that is typically used for filtering a DC signal within the de-
Digital Input —
Digital Output —
Digital Input/Output —
connected to these pins.
A pin that is used by the digital but
is never driven by the device.
A pin that is driven by the device
and should not be driven by another device to avoid contention.
A pin that is either open drain
(SDA) or a bidirectional CMOS in/
out. In the latter case the direction
is selected by a control register
within the LM49350.
LM49350
11www.national.com
8.0 Absolute Maximum Ratings (Notes
1, 2)
LM49350
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Analog Supply Voltage
(A_VDD and LS_VDD)
Digital Supply Voltage
D_V
DD
I/O Supply Voltage
I/O_V
DD
Storage Temperature−65°C to +150°C
Power Dissipation (Note )Internally Limited
6.0V
2.2V
5.5V
Junction Temperature150°C
Thermal Resistance
θJA – RLA36 (soldered down
to PCB with 2in2 1oz. copper
plane)60°C/W
Soldering Information
See Applications Note AN-1112.
(Notes 1, 2) The following specifications apply for R
for TA = 25°C.
SymbolParameterConditions
DC CHARACTERISTICS (Digital current combines D_VDD and I/O_VDD. Analog current combines A_VDD and LS_VDD)
DI
DI
SD
ST
Digital Shutdown Current
Digital Standby Current
Shutdown Mode,
f
f
f
Digital Active Current (MP3 Mode)
Stereo DAC On, OSR
PLL Off, HP On
Digital Active Current (FM Mode)f
Analog Audio modes
DI
DD
Digital Active Current (FM Record
Mode)
f
Stereo ADC On, OSR
PLL Off, Stereo Analog Inputs On
Digital Active Current (CODEC
Mode)-
f
Mono ADC On, Stereo DAC On,
OSR = 128, PLL Off, MIC On
AI
SD
AI
ST
Analog Shutdown CurrentShutdown Mode0.35
Analog Standby Quiescent CurrentReference Voltages On only0.851.5mA (max)
f
Analog Supply Current (MP3 Mode)
Stereo DAC On, OSR
PLL Off, HP On
Analog Supply Current (FM Mode)Stereo Analog Inputs On, HP On5.37mA (max)
AI
DD
PLLI
HPI
LSI
DD
DD
DD
Analog Supply Current (FM Record
Mode)
Analog Supply Current (CODEC
Mode)
PLL Total Active Current
Headphone Quiescent CurrentStereo HP On only3.5mA
Loudspeaker Quiescent CurrentLS On only2.9mA
f
Stereo ADC On, OSR
PLL Off, Stereo Analog Inputs On
f
Mono ADC On, Stereo DAC On,
OSR = 128, PLL Off, MIC On
f
f
= 8Ω, R
L(LS)
= 13MHz, PLL Off
MCLK
= 12.288MHz, PMC On only
MCLK
= 11.2896MHz, fS = 44.1kHz,
MCLK
= 13MHz
MCLK
= 12.288MHz, fS = 48kHz,
MCLK
= 11.2896MHz, fS = 44.1kHz,
MCLK
= 11.2896MHz, fS = 44.1kHz,
MCLK
= 12.288MHz, fS = 48kHz,
MCLK
= 11.2896MHz, fS = 44.1kHz,
MCLK
= 13MHz,
MCLK
= 12MHz, PLL On only
PLLOUT
= 32Ω, f = 1kHz, unless otherwise specified. Limits apply
L(HP)
DAC
ADC
DAC
ADC
= 128,
= 128,
= 128,
= 128,
LM49350
Typical
(Note 6)
Limit
(Note 7)
215µA (max)
0.251mA (max)
0.92mA (max)
0.20.5mA (max)
1.52mA (max)
2.73.8mA (max)
7.810mA (max)
9.812mA (max)
1315mA (max)
2.95.5mA (max)
2.7V to 5.5V
1.7V to 2.0V
1.6V to 4.5V
Units
(Limits)
μA (max)
www.national.com12
LM49350
SymbolParameterConditions
MICI
DD
ADCI
DD
DACI
DD
AUXINI
AUXOUTI
Microphone Quiescent Currentmono MIC + MIC Bias On0.5mA
ADC Total Active Current
DAC Total Active Current
Auxiliary Input Amplifier Quiescent
DD
Current
Auxiliary Output Amplifier Quiescent
DD
Current
fS = 48kHz, Stereo
fS = 48kHz, Stereo
Stereo Auxiliary Inputs enabled0.7mA
AUX_LINE_OUT enabled0.5mA
Earpiece mode enabled1.0mA
LOUDSPEAKER AMPLIFIER
LS
EFF
THD+NTotal Harmonic Distortion + Noise
Loudspeaker Efficiency
PO = 400mW, RL = 8Ω
PO = 400mW, f = 1kHz,
RL = 8Ω, Mono Input Signal
RL = 8Ω, f = 1kHz, THD+N = 1%,
P
O
Output Power
Mono Input Signal
RL = 4Ω, f = 1kHz, THD+N = 1%,
Mono Input Signal
V
= 200mV
PSRRPower Supply Rejection Ration
SNRSignal-to-Noise Ratio
RIPPLE
f
= 217Hz
RIPPLE
Mono Input Terminated
V
= 1.0μF
REF
Reference = V
Gain = 0dB, A-weighted
P-P
OUT
Mono Input Terminated
e
OS
V
OS
T
WU
Output Noise
Offset VoltageGain = 0dB, form Mono Input1050mV (max)
Turn-On TimePMC Clock = 300kHz28ms
Gain = 0dB, A-weighted,
Mono Input Terminated
HEADPHONE AMPLIFIERS
PO = 7.5mW, f = 1kHz,
THD+NTotal Harmonic Distortion + Noise
RL = 32Ω
Stereo Analog Input Signal
P
O
Headphone Output Power
PSRRPower Supply Rejection Ratio
RL = 32Ω, f = 1kHz, THD+N = 1%,
Stereo Analog Input Signal
V
= 200mV
RIPPLE
P-P
Stereo Analog Inputs Terminated,
V
= 1.0μF, Mono Differential Input
REF
Mode
Reference = V
OUT
Gain = 0dB, A-weighted
SNRSignal-to-Noise Ratio
Stereo Inputs Terminated
Reference = V
OUT
0dB,
A-weighted, I2S Input = Digital Zero
Gain = 0dB, A-weighted,
e
OS
Output Noise
Stereo Inputs Terminated
Gain = 0dB, A-weighted,
I2S Input = Digital Zero
PO = 60mW, f = 1kHz,
X
TALK
Crosstalk
RL = 32Ω
Stereo Analog Input Signal
(1% THD+N )
, f
RIPPLE
= 217Hz
(1% THD+N )
(0dBFS ) Gain =
LM49350
Typical
(Note 6)
Limit
(Note 7)
Units
(Limits)
9mA
5.5mA
83%
0.07%
495400mW (min)
800mW
7355dB (min)
9585dB (min)
35µV
0.0250.1% (max)
6960mW (min)
9775dB (min)
10698dB (min)
9690dB (min)
8µV
16µV
71dB
13www.national.com
SymbolParameterConditions
LM49350
ΔA
CH-CH
V
OS
T
WU
AUXILIARY OUTPUTS
THD+NTotal Harmonic Distortion + Noise
P
OUT
PSRRPower Supply Rejection Ratio
SNRSignal-to-Noise Ratio
∈
OUT
V
OS
T
WU
STEREO ADC
THD+N
PB
ADC
R
ADC
SNR
ADC
ADC
LEVEL
STEREO DAC
THD+N
DAC
LEVEL
Channel-to-Channel Gain Matching
AUX Gain = 0dB
Output Offset Voltage
From Differential Mono Input
DAC Gain = 0dB, From DAC Input
f
= 12.288MHz, PLL off
MCLK
Turn-On TimePMC Clock = 300kHz28ms
AUX_LINE_OUT
RL = 5kΩ, V
Earpiece mode, f = 1kHz
RL = 32Ω BTL, P
Output Power
Earpiece mode, f = 1kHz
RL = 32Ω BTL, THD+N = 1%
V
= 200mV
RIPPLE
Mono Input terminated, C
AUX_LINE_OUT
V
= 200mV
RIPPLE
Mono Input terminated, C
Earpiece mode
Gain = 0dB, V
A-weighted, Mono Input Terminated
Output Noise
Gain = 0dB, V
A-weighted, Mono Input Terminated
Gain = 0dB, From Mono Input
Output Offset Voltage
AUX_LINE_OUT
Gain = 0dB, From Mono Input
Earpiece mode
Turn-On TimePMC Clock = 300kHz28ms
ADC Total Harmonic Distortion +
ADC
Noise
Differential Line Input
VIN = 200mV
Gain = 0dB
HPF On, fS = 48kHz
ADC Passband
Lower -3dB Point
HPF On, Upper -3dB Point
ADC RippleADC Compensated0.1dB
Reference = V
6dB,
A-weighted From MIC, fS = 8kHz
ADC Signal-to-Noise Ratio
Reference = V
0dB,
A-weighted From Stereo Input, fS =
48kHz
ADC Full Scale Input Level
DAC Total Harmonic Distortion +
DAC
Noise
I2S Input
VIN = 500mFFS
Gain = 0dB
DAC Full Scale Output Level
= 1V
OUT
RMS
= 20mW
OUT
, f
P-P
, f
P-P
= V
REF
= V
REF
, f = 1kHz
RMS
(0dBFS ) Gain =
OUT
(0dBFS ) Gain =
OUT
, f = 1kHz
RMS
= 217Hz
RIPPLE
= 1μF
REF
= 217Hz
RIPPLE
= 1μF
REF
(1%THD+N)
OUT
(1%THD+N)
OUT
LM49350
Typical
(Note 6)
Limit
(Note 7)
Units
(Limits)
0.03dB
0.56mV (max)
16mV (max)
0.004%
0.08%
5845mW (min)
100dB
9462dB (min)
100dB
13
7mV
315mV (max)
0.03%
300Hz
0.41*f
S
kHz
90dB
94dB
1
V
0.05%
1
V
μV
RMS
RMS
www.national.com14
LM49350
SymbolParameterConditions
R
DAC
PB
SNR
DAC
DAC
DAC Ripple
DAC PassbandUpper –3dB Point0.45*f
DAC Signal-to-Noise RatiofS = 48kHz, A-weighted
LM49350
Typical
(Note 6)
Limit
(Note 7)
0.1dB
S
kHz
96dB
Units
(Limits)
MIC BIAS
V
BIAS
Microphone Bias VoltageMIC input selected2.2V
VOLUME CONTROL
VCR
AUX
VCR
DAC
VCR
ADC
VCR
MIC
SS
AUX
SS
DAC
SS
ADC
SS
MIC
SV
AUX
SV
MIC
Note 1: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability
and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in
the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the
device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.
Note 2: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified
or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by T
allowable power dissipation is P
Note 4: Human body model, applicable std. JESD22-A114C.
Note 6: Typical values represent most likely parametric norms at TA = +25ºC, and at the Recommended Operation Conditions at the time of product
characterization and are not guaranteed.
Note 7: Datasheet min/max specification limits are guaranteed by test or statistical analysis.
Stereo Input Volume Control Range
DAC Volume Control Range
ADC Volume Control Range
MIC Volume Control Range
AUX Volume Control Stepsize1.5dB
DAC Volume Control Stepsize1.5dB
DAC Volume Control Stepsize1.5dB
MIC Volume Control Stepsize2dB
AUX Volume Setting Variation±1dB (max)
MIC Volume Setting Variation±1dB (max)
= (T
DMAX
- TA) / θJA or the number given in Absolute Maximum Ratings, whichever is lower.
JMAX
Minimum Gain–46.5dB
Maximum Gain12dB
Minimum Gain–76.5dB
Maximum Gain18dB
Minimum Gain–76.5dB
Maximum Gain18dB
Minimum Gain6dB
Maximum Gain36dB
, θJA, and the ambient temperature, TA. The maximum
JMAX
15www.national.com
11.0 Timing Characteristics: DVDD = I/OVDD = 1.8V (Notes 1, 2) The following specifications
apply for R
LM49350
SymbolParameterConditions
PLL
f
IN
DIGITAL AUDIO INTERFACE TIMING
t
BCLKR
t
BCLKCF
t
BCLKDS
t
DL
t
DST
t
DHT
CONTROL INTERFACE TIMING
1
2Clock Low Time
3Clock High Time600ns (min)
4Setup Time for a Repeated START
5Data Hold Time
6Data Setup Time100ns (min)
7Rise Time of SDA and SCL
8Fall Time SDA and SCL
9Setup Time for STOP Condition600ns (min)
10
C
B
L(SP)
= 8Ω, R
= 32Ω, f = 1kHz, unless otherwise specified. Limits apply for TA = 25°C.
L(HP)
LM49350
PLL Input Frequency Range
BCK rise time
BCK fall time
BCK duty cycle
WS Propagation Delay from BCK
falling edge
DATA Setup Time to BCK Rising Edge
DATA Hold Time from BCK Rising
Edge
Typical
(Note 6)
Minimum MCLK Frequency0.5MHz (min)
Maximum MCLK Frequency50MHz (max)
3ns (max)
50%
10ns (max)
10ns (min)
10ns (min)
Limit
(Note 7)
3ns (max)
SCL Frequency400kHz (max)
Hold Time (repeated START
Condition)
0.6
1.3
Condition
Bus Free Time Between a STOP and
START Condition
Bus Capacitance
600ns (min)
Output
Input
1.3
300
900
0
900
20+0.1C
300
15+0.1C
300
B
B
10
200
Units
(Limits)
μs (min)
μs (min)
ns (min)
ns (max)
ns (min)
ns (max)
ns (min)
ns (max)
ns (min)
ns (max)
μs (min)
pF (min)
pF(max)
www.national.com16
12.0 Typical Performance Characteristics
LM49350
DAC Frequency Response
fS = 48kHz, OSR = 128
20194139
Stereo Audio ADC Frequency Response
fS = 48kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB
DAC Frequency Response
fS = 8kHz, OSR = 128
20194140
Stereo Audio ADC Frequency Response
fS = 8kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB
20194141
Stereo Audio ADC HPF Frequency Response
fS = 48kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB
(Top-No HPF, Upper-HPF_Mode = '101',
Lower-HPF_Mode = '110)'
Bottom-HPF_Mode = '111'
20194143
20194142
Mono Voice ADC Frequency Response
fS = 48kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB
20194144
17www.national.com
LM49350
Mono Voice ADC Frequency Response
fS = 8kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB
20194145
Mono Voice ADC HPF Frequency Response
fS = 48kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB
(Top-No HPF)
(From Left to Right:
HPF_Mode = '000', '001', '010', '011', '100')
20194146
Mono Voice ADC HPF Frequency Response
fS = 8kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB
(Top-No HPF)
(From Left to Right:
HPF_Mode = '000', '001', '010', '011', '100')
20194147
ADC Output THD+N vs Frequency
Differential MIC Input, MIC Gain = 6dB
VIN = 100mV
, fS = 48kHz
RMS
ADC Output THD+N vs Frequency
Differential Line Input, Aux Gain = 0dB
VIN = 200mV
ADC Output THD+N vs V
Differential Line Input, Aux Gain = 0dB
, fS = 48kHz
RMS
20194155
IN
VIN = 1kHz, fS = 48kHz
20194156
www.national.com18
20194148
LM49350
ADC Output THD+N vs V
Differential MIC Input, MIC Gain = 6dB
IN
VIN = 1kHz, fS = 48kHz
20194149
Loudspeaker THD+N vs Frequency
Differential Aux Input, Aux Gain = 0dB
VDD = 5V, P
= 400mW, RL = 8Ω
OUT
Loudspeaker THD+N vs Frequency
Differential Aux Input, Aux Gain = 0dB
VDD = 3.3V, P
= 400mW, RL = 8Ω
OUT
20194159
Loudspeaker THD+N vs Frequency
Differential Aux Input, Aux Gain = 0dB
LS_VDD = 3.3V, P
= 500mW, RL = 4Ω
OUT
20194161
Loudspeaker THD+N vs Output Power
Differential Aux Input, Aux Gain = 0dB
VDD = 3.3V, VIN = 1kHz, RL = 8Ω
20194165
20194181
Loudspeaker THD+N vs Output Power
Differential Aux Input, Aux Gain = 0dB
VDD = 4.2V, VIN = 1kHz, RL = 8Ω
20194166
19www.national.com
LM49350
Loudspeaker THD+N vs Output Power
Differential Aux Input, Aux Gain = 0dB
VDD = 5V, VIN = 1kHz, RL = 8Ω
Loudspeaker THD+N vs Output Power
Differential Aux Input, Aux Gain = 0dB
LS_VDD = 3.3V, RL = 4Ω, f = 1kHz
20194167
Loudspeaker THD+N vs Output Power
Differential Aux Input, Aux Gain = 0dB
LS_VDD = 4.2V, RL = 4Ω, f = 1kHz
20194183
Loudspeaker PSRR vs Frequency
LS_VDD = 3.3V, Aux Gain = 0dB
Differential Aux Input to Ground
V
= 200mV
RIPPLE
PP
20194182
Loudspeaker THD+N vs Output Power
Differential Aux Input, Aux Gain = 0dB
LS_VDD = 5V, RL = 4Ω, f = 1kHz
20194184
Loudspeaker PSRR vs Frequency
LS_VDD = 4.2V, Aux Gain = 0dB
Differential Aux Input to Ground
V
= 200mV
RIPPLE
PP
20194151
www.national.com20
20194152
LM49350
Loudspeaker PSRR vs Frequency
LS_VDD = 5V, Aux Gain = 0dB
Differential Aux Input to Ground
V
= 200mV
RIPPLE
PP
Headphone THD+N vs Frequency
Stereo Aux Input, Aux Gain = 0dB
VDD = 5V, P
= 7.5mW, RL = 32Ω
OUT
20194153
Headphone THD+N vs Frequency
Stereo Aux Input, Aux Gain = 0dB
VDD = 3.3V, P
= 7.5mW, RL = 32Ω
OUT
20194157
Headphone THD+N vs Frequency
Differential Aux Input, Aux Gain = 0dB
A_VDD = 3.3V, P
= 7.5mW, RL = 16Ω
OUT
20194158
Headphone THD+N vs Output Power
Stereo Aux Input, Aux Gain = 0dB
VDD = 3.3V, VIN = 1kHz, RL = 32Ω
20194173
20194179
Headphone THD+N vs Output Power
Stereo Aux Input, Aux Gain = 0dB
VDD = 5V, VIN = 1kHz, RL = 32Ω
20194174
21www.national.com
LM49350
Headphone THD+N vs Output Power
A_VDD = 3.3V, Stereo Aux Input, Aux Gain = 0dB
RL = 16Ω, f = 1kHz
Differential Aux Input to Ground, Aux Gain = 0dB
Headphone PSRR vs Frequency
V
= 200mV
RIPPLE
PP
20194180
Headphone Crosstalk vs Frequency
Stereo Aux Inputs, Aux Gain = 0dB, RL = 32Ω
20194169
Earpiece THD+N vs Output Power
Differential Aux Input, Aux Gain = 0dB
A_VDD45 = 3.3V, RL = 32Ω, f = 1kHz
20194175
Earpiece THD+N vs Frequency
Differential Aux Input, Aux Gain = 0dB
A_VDD = 3.3V, P
= 20mW, RL = 32Ω
OUT
20194176
Earpiece PSRR vs Frequency
Differential Aux Input to Ground, Aux Gain = 0dB
V
= 200mV
RIPPLE
PP
20194177
www.national.com22
20194178
LM49350
AUXOUT THD+N vs Frequency
Differential Aux Input, Aux Gain = 0dB
VDD = 5V, V
OUT
= 1V
, RL = 5kΩ
RMS
20194162
AUXOUT PSRR vs Frequency
Differential Aux Input to Ground, Aux Gain = 0dB
V
= 200mV
RIPPLE
PP
AUXOUT THD+N vs Output Voltage
Differential Aux Input, Aux Gain = 0dB
V
= 1kHz, RL = 5kΩ
IN
20194168
20194154
23www.national.com
13.0 System Control
Method 1. I2C Compatible Interface
LM49350
13.1 I2C SIGNALS
In I2C mode the LM49350 pin SCL is used for the I2C clock
SCL and the pin SDA is used for the I2C data signal SDA. Both
these signals need a pull-up resistor according to I2C specification. The I2C slave address for LM49350 is 00110102.
13.2 I2C DATA VALIDITY
The data on SDA line must be stable during the HIGH period
of the clock signal (SCL). In other words, state of the data line
can only be changed when SCL is LOW.
FIGURE 6: I2C Signals: Data Validity
13.3 I2C START AND STOP CONDITIONS
START and STOP bits classify the beginning and the end of
the I2C session. START condition is defined as SDA signal
transitioning from HIGH to LOW while SCL line is HIGH.
STOP condition is defined as the SDA transitioning from LOW
to HIGH while SCL is HIGH. The I2C master always generates
FIGURE 7: I2C Start and Stop Conditions
13.4 TRANSFERRING DATA
Every byte put on the SDA line must be eight bits long, with
the most significant bit (MSB) being transferred first. Each
byte of data has to be followed by an acknowledge bit. The
acknowledge related clock pulse is generated by the master.
The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA
line during the 9th clock pulse, signifying an acknowledge. A
receiver which has been addressed must generate an acknowledge after each byte has been received.
20194123
START and STOP bits. The I2C bus is considered to be busy
after START condition and free after STOP condition. During
data transmission, I2C master can generate repeated START
conditions. First START and repeated START conditions are
equivalent, function-wise.
20194124
After the START condition, the I2C master sends a chip address. This address is seven bits long followed by an eight bit
which is a data direction bit (R/W). The LM49350 address is
00110102. For the eighth bit, a “0” indicates a WRITE and a
“1” indicates a READ. The second byte selects the register to
which the data will be written. The third byte contains data to
write to the selected register.
FIGURE 8: I2C Chip Address
Register changes take effect at the SCL rising edge during
the last ACK from slave.
www.national.com24
20194125
LM49350
w = write (SDA = “0”)
r = read (SDA = “1”)
ack = acknowledge (SDA pulled down by slave)
rs = repeated start
20194126
FIGURE 9: Example I2C Write Cycle
25www.national.com
When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in the Read Cycle
waveform.
LM49350
FIGURE 10: Example I2C Read Cycle
FIGUREW 11: I2C Timing Diagram
20194128
20194127
13.5 I2C TIMING PARAMETERS
SymbolParameterLimitUnits
MinMax
1Hold Time (repeated) START Condition0.6µs
2Clock Low Time1.3µs
3Clock High Time600ns
4Setup Time for a Repeated START Condition600ns
5Data Hold Time (Output direction, delay generated by LM49350)300900ns
5Data Hold Time (Input direction, delay generated by the Master)0900ns
6Data Setup Time100ns
7Rise Time of SDA and SCL20+0.1C
8Fall Time of SDA and SCL15+0.1C
b
b
300ns
300ns
9Set-up Time for STOP condition600ns
10Bus Free Time between a STOP and a START Condition1.3µs
Unless otherwise specified, the default values of the I2C registers is 0x00h.
AUX_LINE
_OUT
ADC_C1_MSB
ADC_C2_LSB
ADC_C2_MSB
RSVD
LM49350
31www.national.com
15.0 Basic PMC Setup Register
This register is used to control the LM49350's Basic Power Management Setup:
LM49350
TABLE 2. PMC_SETUP (0x00h)
BitsFieldDescription
When this bit is set the power management will enable the MCLK I/O or internal
oscillator1. It will then use this clock to sequence the enabling of the analog references and
bias points. When this bit is cleared the PMC will bring the analog down gently and disable
0CHIP_ENABLE
1PLL1_ENB
2PLL2_ENB
3OSC_ENB
4MCLK_OVR
5PORT1_CLK_OVR
6PORT2_CLK_OVR
7CHIP_ACTIVEThis bit is used to readback the enable status of the chip.
the MCLK or oscillator.
CHIP _ENABLEChip Status
0Turn Chip Off
1Turn Chip On
This enables the primary PLL
PLL1_ENABLEPLL1 Status
0PLL1 Off
1PLL1 On
This enables the secondary PLL
PLL2_ENABLEPLL2 Status
0PLL2 Off
1PLL2 On
This enables the internal 300kHz Oscillator. For analog only chip modes, the oscillator can
be used instead of an external system clock to drive the chip's power management (PMC).
OSC_ENABLEOscillator Status
0Oscillator Off
1Oscillator On
This forces the MCLK input to enable, regardless of requirement. If set, the audio ports and
digital mixer can be activated even if the chip is in shutdown mode. This assumes that MCLK
is selected as the clock source and that there is an active clock signal driving the MCLK pin.
Setting this bit reduces power consumption, by allowing audio ports and digital mixer to
operate while the analog sections of the chip is powered down.
MCLK_OVRComment
0I/O control is automatic
1MCLK input forced on.
This forces the clock input of Audio Port 1 input to enable, regardless of other port settings.
PORT1_CLK_OVRComment
0I/O control is automatic
1PORT_CLK input forced on
This forces the clock input of Audio Port 2 input to enable, regardless of other port settings.
PORT2_CLK_OVRComment
0I/O control is automatic
1PORT_CLK input forced on
1. If the PMC is set to operate from one of the audio ports then it will wait for the port to be enabled or the relevant over ride bit to
be set, forcing the port clock input to enable.
www.national.com32
16.0 PMC Clocks Register
This register is used to control the LM49350's Basic Power Management Setup:
TABLE 3. PMC_SETUP (0x01h)
BitsFieldDescription
1:0PMC_CLK_SELThis selects the source of the PMC input clock.
PMC_CLK_SELPMC Input Clock Source
00MCLK (Default divide is 40)
01Internal 300kHz Oscillator
10DAC SOURCE CLOCK
11ADC SOURCE CLOCK
17.0 PMC Clock Divide Register
This register is used to control the LM49350's Power Management Circuits Clocks:
TABLE 4. PMC_SETUP (0x02h) (Default data value is 0x50h)
BitsFieldDescription
7:0PMC_CLK_DIVThis programs the half cycle divider that precedes the PMC. The PMC should run from a
300kHz clock. The default of this divider is 0x50h (divide by 40) to get a ≈300kHz PMC clock
from a 12MHz or 12.288MHz MCLK.
Program this divider with the division you want, multiplied by 2, and subtract 1.
PMC_CLK_DIVDivide by
000000001
000000011
000000101.5
000000112
000001002.5
000001013
——
11111101126
11111110127.5
11111111128
LM49350
33www.national.com
18.0 LM49350 Clock Network
(Refer to Figure 12)
LM49350
The audio DAC and ADC operate at a clock frequency of 2*OSR*fS where OSR is the oversampling ratio and fS is the sampling
frequency of the DAC or ADC. The DAC can operate at four different OSR settings (128, 125, 64, 32). The ADC can operate at
three different OSR settings (128, 125, 64). For example, if the stereo DAC or ADC is set at OSR = 128, a 12.288MHz clock is
required for 48kHz data. If a 12.288MHz clock is not available, then one of the LM49350's dual PLLs can be used to generate the
desired clock frequency. Otherwise, if a 12.288MHz is available, then the PLL can be bypassed to reduce power consumption.
The DAC clock divider (S divider) or ADC clock divider (T divider) can also be used to generate the correct clock. If an 18.432 MHz
clock is available, the S or T divider could be set to 1.5 in order to generate a 12.288MHz clock from 18.432MHz without using a
PLL.
The DAC path clock (DAC_SOURCE_CLK) and ADC path clock (ADC_SOURCE_CLK) can be driven directly by the MCLK input,
the PORT1_CLK input, the PORT2_CLK input, PLL1's output, or PLL2's output.
For instances where a PLL must be used, the PLL input clock can come from three sources. The clock input to PLL1 or PLL2 can
come from the MCLK input, the PORT1_CLK input, or the PORT2_CLK input.
The LM49350's Power Management Circuit (PMC) requires a clock that is independent from the DAC or ADC. It is recommended
to provide a ≈300kHz clock at Point C. The PMC clock divider (R divider) is available to generate the correct clock to the PMC
block. The PMC clock path can be driven directly by the MCLK input, the internal 300kHz oscillator, the DAC_SOURCE_CLK, or
the ADC_SOURCE_CLK.
TABLE 5. DAC Clock Requirements
DAC Sample Rate
(kHz)
82.048 MHz2 MHz1.024 MHz0.512 MHz
11.0252.8224 MHz2.75625 MHz1.4112 MHz0.7056 MHz
123.072 MHz3 MHz1.536 MHz0.768 MHz
164.096 MHz4 MHz2.048 MHz1.024 MHz
22.055.6448 MHz5.5125 MHz2.8224 MHz1.4112 MHz
246.144 MHz6 MHz3.072 MHz1.536 MHz
328.192 MHz8 MHz4.096 MHz2.048MHz
44.111.2896 MHz11.025 MHz5.6448 MHz2.8224 MHz
4812.288 MHz12 MHz6.144 MHz3.072 MHz
9624.576 MHz24 MHz12.288 MHz6.144 MHz
192
ADC Sample Rate
(kHz)
82.048 MHz2 MHz1.024 MHz
11.0252.8224 MHz2.75625 MHz1.4112 MHz
123.072 MHz3 MHz1.536 MHz
164.096 MHz4 MHz2.048 MHz
22.055.6448 MHz5.5125 MHz2.8224 MHz
246.144 MHz6 MHz3.072 MHz
328.192 MHz8 MHz4.096 MHz
44.111.2896 MHz11.025 MHz5.6448 MHz
4812.288 MHz12 MHz6.144 MHz
Clock Required at A
(OSR = 128)
——
TABLE 6. ADC Clock Requirements
Clock Required at B
(OSR = 128)
Clock Required at A
(OSR= 125)
Clock Required at B
Clock Required at A
(OSR = 64)
24.576 MHz12.288 MHz
(OSR= 125)
Clock Required at A
Clock Required at B
(OSR = 64)
(OSR = 32)
www.national.com34
LM49350
FIGURE 12: Internal Clock Network
20194129
35www.national.com
19.0 PLL Setup Registers
LM49350
FIGURE 13: PLL1 Loop
FIGURE 14: PLL2 Loop
20194130
20194131
The LM49350 contains two PLLs for flexible operation of its dual audio ports. PLL1 has a P1 and P2 output divider thereby allowing
PLL1 to generate two distinct clock outputs. The equations for PLL1's generated output clocks are as follows:
f
= (fIN . N1 / M1 . P1)
OUT1
f
= (fIN . N1 / M1 . P2)
OUT2
where:
N1 = PLL1_N + PLL1_N_MOD
M1 = (PLL1_M + 1) / 2
P1 = (PLL1_P1 + 1) / 2
P2 = (PLL1_P2 + 1) / 2
The equations for PLL2's generated output clock are as follows:
f
= (fIN.N2 / M2.P)
OUT3
where:
N2 = PLL2_N + PLL2_N_MOD
M2 = (PLL2_M + 1) / 2
P = (PLL2_P + 1) / 2
www.national.com36
TABLE 7. PLL_CLOCK_SOURCE (0x03h)
BitsFieldDescription
1:0PLL1_CLK_SELThis selects the source of the input clock to PLL1
PLL1_CLK_SELPLL1 Input Clock Source
00MCLK
01PORT1_CLK
10PORT2_CLK
11RESERVED
TABLE 8. PLL1_M (0x04h)
BitsFieldDescription
6:0PLL1_MThis programs the PLL1 M divider to divide from 1 to 64.
PLL1_MPLL1 Input Divider Vaue
0000001
0000011
0000101.5
0000112
0001002.5
0001013
——
111110163
111111063.5
111111164
LM49350
TABLE 9. PLL1_N (0x05h)
BitsFieldDescription
7:0PLL1_NThis programs the PLL1 N divider to divide from 1 to 250.
PLL1_NFeedback Divider Value
00000000 to 0000101010
0000101111
0000110012
0000110113
0000111014
0000111115
——
11111000248
11111001249
11111010 to 11111111250
37www.national.com
TABLE 10. PLL1_N_MOD (0x06h)
BitsFieldDescription
LM49350
4:0PLL1_N_MODThis programs the sigma-delta modulator in PLL1
PLL1_N_MODFractional Part of N
000000
000011/32
000102/32
000113/32
001004/32
001015/32
——
1110120/32
1111030/32
1111131/32
5PLL1_P1[8]This sets the MSB of the 1st P Divider on PLL1 which is part of a standard half-cycle divider
control.
6PLL1_P2[8]This sets the MSB of the 2nd P Divider on PLL1 which is part of a standard half-cycle divider
control.
TABLE 11. PLL1_P1 (0x07h)
BitsFieldDescription
7:0PLL1_P1[7:0]This programs the 8 LSBs of the PLL1's P1 Divider. These LSBs combine with PLL1_P1[8] which
allows the P1 divider to divide by up to 256
PLL1_P1P1 Divider Value
0000000001
0000000011
0000000101.5
0000000112
0000001002.5
0000001013
——
111111101255
111111110255.5
111111111256
TABLE 12. PLL1_P2 (0x08h)
BitsFieldDescription
7:0PLL1_P2[7:0]This programs 8 LSBs of PLL1's P2 Divider. These LSBs combine with PLL1_P2[8] which allows
the P2 divider to divide by up to 256
PLL1_P2P2 Divider Value
0000000001
0000000011
0000000101.5
0000000112
0000001002.5
0000001013
——
111111101255
111111110255.5
111111111256
www.national.com38
TABLE 13. PLL2_M (0x09h)
BitsFieldDescription
6:0PLL2_MThis programs the PLL2 M divider to divide from 1 to 64.
PLL2_MPLL2 Input Divider Value
00000001
00000011
00000101.5
00000112
00001002.5
00001013
——
111110163
000001063.5
111111164
TABLE 14. PLL2_N (0x0Ah)
BitsFieldDescription
7:0PLL2_NThis programs PLL2's N divider to divide from 10 to 250.
PLL2_NComment
00000000 to 0000101010
0000101111
0000110012
0000110113
0000111014
0000111115
——
11111000248
11111001249
11111010 to 11111111250
LM49350
TABLE 15. PLL2_N_MOD (0x0Bh)
BitsFieldDescription
4:0PLL2_N_MODThis programs the sigma-delta modulator in PLL2
PLL2_N_MODFractional Part of N
000000
000011/32
000102/32
000113/32
001004/32
001015/32
——
1110129/32
1111030/32
1111131/32
5PLL2_P[8]This is the MSB of the P Divider on PLL2.
39www.national.com
TABLE 16. PLL2_P (0x0Ch)
BitsFieldDescription
LM49350
7:0PLL2_P[7:0]This programs the 8 LSBs of PLL2's P Divider. These LSBs combine with PLL2_P[8] which
allows the P divider to divide by up to 256
PLL2_PP Divides by
0000000001
0000000011
0000000101.5
0000000112
0000001002.5
0000001013
——
111111101255
111111110255.5
111111111256
www.national.com40
20.0 Analog Mixer Control Registers
This register is used to control the LM49350's Analog Mixer:
TABLE 17. CLASS_D_OUTPUT (0x10h)
BitsFieldDescription
0DACR_LSThe right DAC output is added to the loudspeaker output.
1DACL_LSThe left DAC output is added to the loudspeaker output.
2MICR_LSThe right MIC input is added to the loudspeaker output. Setting this bit enables MIC BIAS.
3MICL_LSThe left MIC input is added to the loudspeaker output. Setting this bit enables MIC BIAS.
4AUXR_LSThe right AUX input is added to the loudspeaker output.
5AUXL_LSThe left AUX input is added to the loudspeaker output.
Class D Loudspeaker Amplifier
The LM49350 features a filterless modulation scheme. The differential outputs of the device switch at 300kHz from VDD to GND.
When there is no input signal applied, the two outputs (LS+ and LS-) switch with a 50% duty cycle, with both outputs in phase.
Because the outputs of the LM49350 are differential, the two signals cancel each other. This results in no net voltage across the
speaker, thus there is no load current during an idle state, conserving power.
With an input signal applied, the duty cycle (pulse width) of the LM49350 outputs changes. For increasing output voltages, the duty
cycle of LS+ increases, while the duty cycle of LS- decreases. For decreasing output voltages, the converse occurs, the duty cycle
of LS- increases while the duty cycle of LS+ decreases. The difference between the two pulse widths yields the differential output
voltage.
Spread Spectrum Modulation
The LM49350 features a fitlerless spread spectrum modulation scheme that eliminates the need for output filters, ferrite beads or
chokes. The switching frequency varies by ±30% about a 300kHz center frequency, reducing the wideband spectral content,
improving EMI emissions radiated by the speaker and associated cables and traces. Where a fixed frequency class D exhibits
large amounts of spectral energy at multiples of the switching frequency, the spread spectrum architecture of the LM49350 spreads
that energy over a larger bandwidth. The cycle-to-cycle variation of the switching period does not affect the audio reproduction or
efficiency.
Class D Power Dissipation and Efficiency
In general terms, efficiency is considered to be the ratio of useful work output divided by the total energy required to produce it
with the difference being the power dissipated, typically, in the IC. The key here is “useful” work. For audio systems, the energy
delivered in the audible bands is considered useful including the distortion products of the input signal. Sub-sonic (DC) and supersonic components (>22kHz) are not useful. The difference between the power flowing from the power supply and the audio band
power being transduced is dissipated in the LM49350 and in the transducer load. The amount of power dissipation in the LM49350's
class D amplifier is very low. This is because the ON resistance of the switches used to form the output waveforms is typically less
than 0.25Ω. This leaves only the transducer load as a potential "sink" for the small excess of input power over audio band output
power. The LM49350 dissipates only a fraction of the excess power requiring no additional PCB area or copper plane to act as a
heat sink.
LM49350
TABLE 18. LEFT HEADPHONE_OUTPUT (0x11h)
BitsFieldDescription
0DACR_HPLThe right DAC output is added to the left headphone output.
1DACL_HPLThe left DAC output is added to the left headphone output.
2MICR_HPLThe right MIC input is added to the left headphone output. Setting this bit enables MIC BIAS.
3MICL_HPLThe left MIC input is added to the left headphone output. Setting this bit enables MIC BIAS.
4AUXR_HPLThe right AUX input is added to the left headphone output.
5AUXL_HPLThe left AUX input is added to the left headphone output.
41www.national.com
TABLE 19. RIGHT HEADPHONE_OUTPUT (0x12h)
BitsFieldDescription
LM49350
0DACR_HPRThe right DAC output is added to the right headphone output.
1DACL_HPRThe left DAC output is added to the right headphone output.
2MICR_HPR
3MICL_HPR
The right MIC input is added to the right headphone output. Setting this bit enables the MIC
BIAS output.
The left MIC input is added to the right headphone output. Setting this bit enables the MIC
BIAS output.
4AUXR_HPRThe right AUX input is added to the right headphone output.
5AUXL_HPRThe left AUX input is added to the right headphone output.
Headphone Amplifier Function
The LM49350 headphone amplifier features National’s ground referenced architecture that eliminates the large DC-blocking capacitors required at the outputs of traditional headphone amplifiers. A low-noise inverting charge pump creates a negative supply
(HP_VSS) from the positive supply voltage (LS_VDD). The headphone amplifiers operate from these bipolar supplies, with the
amplifier outputs biased about GND, instead of a nominal DC voltage (typically VDD/2), like traditional amplifiers. Because there is
no DC component to the headphone output signals, the large DC-blocking capacitors (typically 220μF) are not necessary, conserving board space and system cost, while improving frequency response.
Charge Pump Capacitor Selection
Use low ESR ceramic capacitors (less than 100mΩ) for optimum performance.
Charge Pump Flying Capacitor (C6)
The flying capacitor (C6) affects the load regulation and output impedance of the charge pump. A C6 value that is too low results
in a loss of current drive, leading to a loss of amplifier headroom. A higher valued C6 improves load regulation and lowers charge
pump output impedance to an extent. Above 2.2μF, the R
the output impedance. A lower value capacitor can be used in systems with low maximum output power requirements. Please refer
of the charge pump switches and the ESR of C6 and C5 dominate
DS(ON)
to the demonstration board schematic shown in Figure 23.
Charge Pump Flying Capacitor (C5)
The value and ESR of the hold capacitor (C5) directly affects the ripple on CPVSS. Increasing the value of C5 reduces output ripple.
Decreasing the ESR of C5 reduces both output ripple and charge pump output impedance. A lower value capacitor can be used
in systems with low maximum output power requirements. Please refer to the demonstration board schematic shown in Figure 23.
TABLE 20. AUX_OUTPUT (0x13h)
BitsFieldDescription
0DACR_AUXThe right DAC output is added to the AUX output.
1DACL_AUXThe left DAC output is added to the AUX output.
2MICR_AUXThe right MIC input is added to the AUX output. Setting this bit enables the MIC BIAS output.
3MICL_AUXThe left MIC input is added to the AUX output. Setting this bit enables the MIC BIAS output.
4AUXR_AUXThe right AUX input is added to the AUX output.
5AUXL_AUXThe left AUX input is added to the AUX output.
Auxiliary Output Amplifier
The LM49350’s auxiliary output (AUXOUT) amplifier provides differential drive capability to loads that are connected across its
outputs. This results in output signals at the AUX_OUT+ and AUX_OUT- pins that are 180 degrees out of phase with respect to
each other. This effectively doubles the maximum possible output swing for a specific supply voltage when compared to singleended output configurations. The differential output configuration also allows the load to be isolated from ground since both the
AUX_OUT+ and AUX_OUT- pins are biased at the same DC potential. This eliminates the need for any large and expensive DC
blocking capacitors at the AUXOUT amplifier outputs. The load can then be directly connected to the positive and negative outputs
of the AUXOUT amplifier which then isolates it from any ground noise, thereby improving signal to noise ratio (SNR) and power
supply rejection ratio (PSRR).
The AUXOUT amplifier has two modes of operation. The primary mode of operation is high current drive mode (Earpiece Mode)
where the AUXOUT amplifier can be used to differentially drive a mono earpiece speaker. The secondary mode of operation is
low current drive mode where the AUXOUT amplifier operates in a power saving mode (AUX_LINE_OUT Mode) to provide a
differential output that is used as a mono differential line level input to a standalone mono differential input class D amplifier
(LM4675) for stereo loudspeaker applications.
www.national.com42
TABLE 21. OUTPUT_OPTIONS (0x14h)
BitsFieldDescription
0EPMODEIf set the HPR output is driven with the negative input of the HPL output stage.
1HP_NEG_6dB
2LS_NEG_6dB
3AUX_NEG_6dB
4CP_FORCEIf set, a -LS_VDD rail will be created on HP_VSS, even if the HP output stage is not required.
BitsFieldDescription
0DACR_ADCRThe right DAC output is added to the ADC right input.
1DACL_ADCLThe left DAC output is added to the ADC left input.
2MICR_ADCRThe right MIC input is added to the ADC right input. Setting this bit enables MIC BIAS.
3MICL_ADCLThe left MIC input is added to the ADC left input. Setting this bit enables MIC BIAS.
4AUXR_ADCRThe right AUX input is added to the ADC right input.
5AUXL_ADCLThe left AUX input is added to the ADC left input.
If set, both HPL and HPR are attenuated by 6dB. This is useful when adding stereo signals
that need more headroom due to being highly correlated.
If set the class D output is attenuated by 6dB. This is useful when adding stereo signals that
need more headroom due to being highly correlated.
If set the AUX output is attenuated by 6dB. This is useful when adding stereo signals that
need more headroom due to being highly correlated.
TABLE 22. ADC_INPUT (0x15h)
LM49350
TABLE 23. MIC_L_INPUT (0x16h)
BitsFieldDescription
3:0MIC_L_LEVELThis sets the gain of the left microphone preamp.
MIC_L_LEVELGain
00006dB
00018dB
001010dB
001112dB
010014dB
010116dB
011018dB
011120dB
100022dB
100124dB
101026dB
101128dB
110030dB
110132dB
111034dB
111136dB
4SE_DIFFIf set, the MIC_L negative input is ignored.
5MUTEIf set, the left microphone preamp is muted.
43www.national.com
TABLE 24. MIC_R_INPUT (0x17h)
BitsFieldDescription
LM49350
3:0MIC_R_LEVELThis sets the gain of the right microphone preamp.
MIC_R_LEVELGain
00006dB
00018dB
001010dB
001112dB
010014dB
010116dB
011018dB
011120dB
100022dB
100124dB
101026dB
101128dB
110030dB
110132dB
111034dB
111136dB
4SE_DIFFIf set, the MIC_R negative input is ignored.
5MUTEIf set, the right microphone preamp is muted.
www.national.com44
TABLE 25. AUX_L_INPUT (0x18h)
BitsFieldDescription
5:0AUX_L_LEVEL This programs the left AUX input level. All gain changes are performed at zero crossings.
AUX_L_LEVELLevelAUX_L_LEVELLevel
000000–46.5dB0000001.5dB
000001–45dB1000013dB
000010–43.5dB1000104.5dB
000011–42dB1000116dB
000100–40.5dB1001007.5dB
000101–39dB1001019dB
000110–37.5dB10011010.5dB
000111–36dB10011112dB
001000–34.5dB10100012dB
001001–33dB10100112dB
001010–31.5dB10101012dB
001011–30dB10101112dB
001100–28.5dB10110012dB
001101–27dB10110112dB
001110–25.5dB10111012dB
001111–24dB10111112dB
010000–22.5dB11000012dB
010001–21dB11000112dB
010010–19.5dB11001012dB
010011–18dB11001112dB
010100–16.5dB11010012dB
010101–15dB11010112dB
010110–13.5dB11011012dB
010111–12dB11011112dB
011000–10.5dB11100012dB
011000–9dB11100112dB
011001–7.5dB11101012dB
011010–6dB11101112dB
011100–4.5dB11110012dB
011101–3dB11110112dB
011110–1.5dB11111012dB
0111110dB11111112dB
6FROM_LINE_L If set, the LEFT_MIC/LINE differential input is routed to the AUX_L input amplifier for line level volume
control. This bit overrides the DIFF_MODE (bit 7 of 0x19h) setting.
LM49350
45www.national.com
TABLE 26. AUX_R_INPUT (0x19h)
BitsFieldDescription
LM49350
5:0AUX_R_LEVEL This programs the right AUX input level. All gain changes are performed at zero crossings.
AUX_R_LEVELLevelAUX_R_LEVELLevel
000000–46.5dB0000001.5dB
000001–45dB1000013dB
000010–43.5dB1000104.5dB
000011–42dB1000116dB
000100–40.5dB1001007.5dB
000101–39dB1001019dB
000110–37.5dB10011010.5dB
000111–36dB10011112dB
001000–34.5dB10100012dB
001001–33dB10100112dB
001010–31.5dB10101012dB
001011–30dB10101112dB
001100–28.5dB10110012dB
001101–27dB10110112dB
001110–25.5dB10111012dB
001111–24dB10111112dB
010000–22.5dB11000012dB
010001–21dB11000112dB
010010–19.5dB11001012dB
010011–18dB11001112dB
010100–16.5dB11010012dB
010101–15dB11010112dB
010110–13.5dB11011012dB
010111–12dB11011112dB
011000–10.5dB11100012dB
011000–9dB11100112dB
6FROM_LINE_R If set, the RIGHT_MIC/LINE differential input is routed to the AUX_R input amplifier for line level volume
control. This bit overrides the DIFF_MODE (bit 7) setting.
7DIFF_MODEIf set, the stereo single-ended inputs AUX_L and AUX_R convert to a mono differential input pair MONO_IN
+ and MONO_IN-.
(MONO_IN+) - (MONO_IN-) is routed to the AUX_L input amplifier.
(MONO_IN-) - (MONO_IN+) is routed to the AUX_R input amplifier.
(unless overriden by the respective FROM_LINE bits).
011001–7.5dB11101012dB
011010–6dB11101112dB
011100–4.5dB11110012dB
011101–3dB11110112dB
011110–1.5dB11111012dB
0111110dB11111112dB
www.national.com46
21.0 ADC Control Registers
This register is used to control the LM49350's ADC:
TABLE 27. ADC Basic (0x20h)
BitsFieldDescription
0MONOThis sets mono or stereo operation of the ADC.
MONOADC Operation
0Stereo Audio
1Mono Voice (Right ADC channel disabled, Left ADC channel active)
1OSRThis sets the oversampling ratio of the ADC.
OSRStereo Audio ADC
Oversampling Ratio
0128125
164128
2MUTE_LIf set, a digital mute is applied to the Left (or mono) ADC output.
3MUTE_RIf set, a digital mute is applied to the Right ADC output.
6.4ADC_CLK_SELThis selects the source of the ADC clock domain, ADC_SOURCE_CLK.
ADC_CLK_SELSource
000MCLK
001PORT1_RX_CLK
010PORT2_RX_CLK
011PLL1_OUTPUT2
100PLL2_OUTPUT
7ADC_DSP_ONLYIf set the ADC's analog circuitry is disabled to reduce power consumption, however, ADC DSP
functionality is maintained. This can be used to perform asyncronous resampling between audio
rates of a common family. Setting this bit is also useful whenever applying Automatic Level Control
(ALC) to an analog only audio path.
Mono Voice ADC Oversampling Ratio
LM49350
TABLE 28. ADC_CLK_DIV (0x21h)
BitsFieldDescription
7:0ADC_CLK_DIVThis programs the half cycle divider that preceeds the ADC. The input of this divider should be
around 12MHz. The default of this divider is 0x00.
Program this divider with the division you want, multiplied by 2, and subtract 1.
ADC_CLK_DIVDivides by
000000001
000000011
000000101.5
000000112
——
11111101127
11111110127.5
11111111128
47www.national.com
TABLE 29. ADC TRIM (0x22h)
BitsFieldDescription
LM49350
0ADC_TRIMIf set, the ADC is compensated with recommended compensation filter coefficients. The
recommended ADC compensation filter coefficients are programmed as follows:
Register 0xF8h set to 0x00h
Register 0xF9h set to 0x01h
Register 0xFAh set to 0x96h
Register 0xFBh set to 0xFBh
Register 0xFCh set to 0x30h
Register 0xFDh set to 0x62h
www.national.com48
22.0 DAC Control Registers
This register is used to control the LM49350's DAC:
TABLE 30. DAC Basic (0x30h)
BitsFieldDescription
1:0MODEThis programs the over sampling ratio of the stereo DAC.
MODEDAC Oversampling Ratio
00125
01128
1064
1132
2MUTE_LThis digitally mutes the Left DAC output.
3MUTE_RThis digitally mutes the Right DAC output.
6:4DAC_CLK_SELThis selects the source of the DAC clock domain, DAC_SOURCE_CLK.
DAC_CLK_SELSource
000MCLK
001PORT1_RX_CLK
010PORT2_RX_CLK
011PLL1_OUTPUT1
100PLL2_OUTPUT
7DSP_ONLYIf set, the DAC's analog circuitry is disabled to reduce power consumption, however DAC DSP
functionality is maintained. This can be used to perform asyncronous resampling between audio rates
of a common family.
LM49350
TABLE 31. DAC_CLK_DIV (0x31h)
BitsFieldDescription
7:0DAC_CLK_DIVThis programs the half cycle divider that precedes the DAC. The input of this divider should be
around 12MHz. The default of this divider is 0x00.
Program this divider with the division you want, multiplied by 2, and subtract 1.
DAC_CLK_DIVDivides by
000000001
000000011
000000101.5
000000112
——
11111101127
11111110127.5
11111111128
49www.national.com
23.0 Digital Mixer Control Registers
Digital Mixer
LM49350
The LM49350’s digital mixer allows for flexible routing of digital audio signals between both audio ports, DAC, and ADC. This mixer
handles which digital data path (Port1 RX data, Port2 RX data, or ADC output) is routed to the DAC input. The digital mixer also
selects the appropriate digital data path (Port1 RX data, Port2 RX data, ADC output, DAC DSP output, or ADC DSP output) that
is used for data transmission on Audio Port 1 and 2. Audio inputs to the digital mixer can be attenuated down to -18dB to avoid
clipping conditions.
Another key feature of the digital mixer is sample rate conversion (SRC) between audio ports. This allows simultaneous operation
of the dual audio ports even if each port is operating at a different sample rate. The LM49350 can be used as an audio port bridge
with SRC capability. The digital mixer allows either straight pass through between audio ports or, if desired, DSP effects can be
added to the digital audio signal during audio port bridge operation. The digital mixer automatically handles stereo I2S to mono
PCM conversion between audio ports and vice versa.
FIGURE 15: Digital Mixer
The LM49350 includes two separate and independent DSP blocks, one for the DAC and the other for the ADC. The digital mixer
also allows both DSP blocks to be cascaded together in either order so that the DSP effects from both blocks can be combined
into the same signal path. For example, the 5 band parametric EQ of each DSP block can be combined together to form a 10 band
parametric EQ for added flexibility.
www.national.com50
20194137
This register is used to control the LM49350's digital mixer:
TABLE 32. Input Levels 1 (0x40h)
BitsFieldDescription
1:0PORT1_RX_L
_LVL
3:2PORT1_RX_R
_LVL
5:4PORT2_RX_L
_LVL
7:6PORT2_RX_R
_LVL
This programs the input level of the data arriving from the left receive channel of Audio Port 1.
PORT1_RX_L_LVLLevel
000dB
01–6dB
10–12dB
11–18dB
This programs the input level of the data arriving from the right receive channel of Audio Port 1.
PORT1_RX_R_LVLLevel
000dB
01–6dB
10–12dB
11–18dB
This programs the input level of the data arriving from the left receive channel of Audio Port 2.
PORT2_RX_L_LVLLevel
000dB
01–6dB
10–12dB
11–18dB
This programs the input level of the data arriving from the right receive channel of Audio Port 2.
PORT2_RX_R_LVLLevel
000dB
01–6dB
10–12dB
11–18dB
LM49350
TABLE 33. Input Levels 2 (0x41h)
BitsFieldDescription
1:0ADC_L_LVLThis programs the input level of the data arriving from the left ADC channel.
ADC_L_LVLLevel
000dB
01–6dB
10–12dB
11–18dB
3:2ADC_R_LVLThis programs the input level of the data arriving from the right ADC channel.
ADC_R_LVLLevel
000dB
01–6dB
10–12dB
11–18dB
5:4INTERP_L_LVL This programs the input level of the data arriving from the left DAC's interpolator output.
INTERP_L_LVLLevel
000dB
01–6dB
10–12dB
11–18dB
51www.national.com
BitsFieldDescription
7:6INTERP_R_LVL This programs the input level of the data arriving from the right DAC's interpolator output.
LM49350
BitsFieldDescription
1:0L_SELThis selects which input is fed to the Left TX Channel of Audio Port 1.
3:2R_SELThis selects which input is fed to the Right TX Channel of Audio Port 1.
4SWAPIf set, this swaps the Left and Right outputs to Audio Port 1.
5MONOIf set, the right channel is ignored and the left channel becomes (left+right)/2.
INTERP_R_LVLLevel
000dB
01–6dB
10–12dB
11–18dB
TABLE 34. Audio Port 1 Input (0x42h)
L_SELSelected Input
00None
01ADC_L
10PORT2_RX_L
11DAC_INTERP_L
R_SELSelected Input
00None
01ADC_R
10PORT2_RX_R
11DAC_INTERP_R
TABLE 35. Audio Port 2 Input (0x43h)
BitsFieldDescription
1:0L_SELThis selects which input is fed to Audio Port 2's Left TX Channel.
L_SELSelected Input
00None
01ADC_L
10PORT1_RX_L
11DAC_INTERP_L
3:2R_SELThis selects which input is fed to Audio Port 2's Right TX Channel.
R_SELSelected Input
00None
01ADC_R
10PORT1_RX_R
11DAC_INTERP_R
4SWAPIf set, this swaps the Left and Right outputs to audio port 2.
5MONOIf set, the right channel is ignored and the left channel becomes (left+right)/2.
www.national.com52
TABLE 36. DAC Input Select (0x44h)
BitsFieldDescription
0PORT1_LThis adds Audio Port 1's left RX channel to the DAC's left input.
1PORT2_LThis adds Audio Port 2's left RX channel to the DAC's left input.
2ADC_LThis adds the ADC's left output to the DAC's left input
3PORT1_RThis adds Audio Port 1's right RX channel to the DAC's right input.
4PORT2_RThis adds Audio Port 2's right RX channel to the DAC's right input.
5ADC_RThis adds the ADC's right output to the DAC's right input.
6SWAPIf set, this swaps the Left and Right inputs to the DAC.
TABLE 37. Decimator Input Select (0x45h)
BitsFieldDescription
1:0L_SELThis selects which input is fed to the left ADC's decimator input.
L_SELSelected Input
00None
01PORT1_RX_L
10PORT2_RX_L
11DAC_INTERP_L
3:2R_SELThis selects which input is fed to the right ADC's decimator input.
R_SELSelected Input
00None
01PORT1_RX_R
10PORT2_RX_R
11DAC_INTERP_R
5:4MXR_CLK_SEL This selects sets the source of the Digital Mixer Clock. The 'Auto' setting will automatically select the source
with the highest clock frequency.
MXR_CLK_SELSelected Input
00Auto
01MCLK
10DAC
11ADC
LM49350
53www.national.com
24.0 Audio Port Control Registers
LM49350
FIGURE 16: I2S Serial Data Format (24 bit example)
FIGURE 17: Left Justified Data Format (24 bit example)
FIGURE 18: Right Justified Data Format (24 bit example)
20194171
20194172
20194170
FIGURE 19: PCM Serial Data Format (16 bit example)
www.national.com54
20194134
The following registers are used to control the LM49350's audio ports. Audio Port 1 and Audio Port 2 are identical. Port 1 is
programmed through the (0x5Xh) registers. Port 2 is programmed through the (0x6Xh) registers.
TABLE 38. BASIC_SETUP (0x50h/0x60h)
BitsFieldDescription
0STEREOIf set, the audio port will receive and transmit stereo data.
1RX_ENABLEIf set the input is enabled (enables the SDI port and input shift register and any clock
generation required).
2TX_ENABLEIf set the output is enabled (enables the SDO port and output shift register and any clock
generation required).
3CLOCK_MSIf set the audio port will transmit the clock when either the RX or TX is enabled.
4SYNC_MSIf set the audio port will transmit the sync signal when either the RX or TX is enabled.
5CLOCK_PHASEThis sets how data is clocked by the Audio Port.
CLOCK_PHASEAudio Data Mode
0I2S (TX on falling edge, RX on rising edge)
1PCM (TX on rising edge, RX on falling edge)
6STEREO_SYNC_PHASEIf set, this reverses the left and right channel data of the Audio Port.
STEREO_SYNC_PHASEAudio Port Data Orientation
0Left channel data goes to left channel output.
Right channel data goes to right channel output.
1Right channel data goes to left channel output.
Left channel data goes to right channel output.
7SYNC_INVERTIf this bit is set the SYNC is inverted before the receiver and transmitter.
SYNC_INVERTSYNC ORIENTATION
0SYNC Low = Left, SYNC High = Right
1SYNC Low = Right, SYNC High = Left
LM49350
TABLE 39. CLK_GEN_1 (0x51h/0x61h)
BitsFieldDescription
5:0HALF_CYCLE_CLK_
DIV
6CLOCK_SELThis selects the clock source of the master mode Audio Port Clock generator's half-cycle divider.
This programs the half-cycle divider that generates the master clocks in the audio port. The input
of this divider should be around 12MHz. The default of this divider is 0x00, i.e. bypassed.
Program this divider with the division you want, multiplied by 2, and subtract 1.
HALF_CYCLE_CLK_DIVDivides By
000000BYPASS
0000011
0000101.5
0000112
——
11110131
11111031.5
1111132
0 = DAC_SOURCE_CLK
1 = ADC_SOURCE_CLK
55www.national.com
TABLE 40. CLK_GEN_1 (0x52h/62h)
BitsFieldDescription
LM49350
2:0SYNTH_NUMAlong with SYNTH_DENOM, this sets the clock divider that generates the Port 1 or Port 2 clock in
master mode.
SYNTH_NUMNumerator
000SYNTH_DENOM (1/1)
001100/SYNTH_DENOM
01096/SYNTH_DENOM
01180/SYNTH_DENOM
10072/SYNTH_DENOM
10164/SYNTH_DENOM
11048/SYNTH_DENOM
1110/SYNTH_DENOM
3SYNTH_DENOMAlong with SYNTH_NUM, this sets the clock divider that generates the Port 1 or Port 2 clock in master
mode.
SYNTH_DENOMDenominator
0128
1125
TABLE 41. CLK_GEN_1 (0x53h/63h)
BitsFieldDescription
2:0SYNC_RATEThis sets the number of clock cycles before the sync pattern repeats. This depends if the audio port
data is mono or stereo.
In MONO mode:
SYNC_RATENumber of Clock Cycles
0008
00112
01016
01118
10020
10124
11025
11132
In STEREO mode:
SYNC_RATENumber of Clock Cycles
00016
00124
01032
01136
10040
10148
11050
11164
www.national.com56
BitsFieldDescription
5:3SYNC_WIDTHIn MONO mode, this programs the width (in number of bits) of the SYNC signal.
SYNC_WIDTHWidth of SYNC (in bits)
0001
0012
0104
1008
10111
11015
11116
TABLE 42. DATA_WIDTHS (0x54h/64h)
BitsFieldDescription
2:0RX_WIDTHThis programs the expected bits per word of the serial data input SDI.
RX_WIDTHBits
00024
00120
01018
01116
10014
10113
11012
1118
5:3TX_WIDTHThis programs the bits per word of the serial data output SDO.
TX_WIDTHDescription
00024
00120
01018
01116
10014
10113
11012
1118
7:6TX_EXTRA_BITSThis programs the TX data output padding.
TX_EXTRA_BITSDescription
000
011
10High-Z
11High-Z
LM49350
57www.national.com
TABLE 43. TX_MODE (0x55h/x65h)
BitsFieldDescription
LM49350
0TX_MODEThis sets the TX data input justification with respect to the SYNC signal.
TX_MODEDescription
0MSB Justified
1LSB Justified
5:1MSB_POSITION This specifies the bit location of the MSB from the start of the frame (MSB Justified) or from the end of
the frame (LSB Justified).
MSB_POSITIONDescription
000000(Left Justified/PCM Long)
000011(I2S/PCM Short)
000102
000113
001004
001015
001106
001117
010008
010019
0101010
0101111
0110012
0110113
0111014
0111115
1000016
1000117
1001018
1001119
1010020
1010121
1011022
1011123
1100024
1100125
1101026
1101127
1110028
1110129
1111030
1111131
6COMPANDIf set, audio data will be companded.
7
μLaw/A-Law
This sets the audio companding mode.
μLaw/A-Law
0
1A-Law
Compand Mode
μLaw
www.national.com58
25.0 Digital Effects Engine
Digital Signal Processor (DSP)
The LM49350 is designed to handle the entire audio signal conditioning and processing within the audio system, thereby freeing
up the workload of any other applications processor contained within the system. The LM49350 features two independent DSPs,
one for the DAC and the other for the ADC. Each DSP is fully featured and performs as a professional quality digital audio effects
engine. The data paths on each DSP engine are 24 bits wide for ultimate flexibility. Both DSP engines feature digital volume control,
automatic level control (ALC), digital soft clip compression, and a 5-band parametric EQ. The ADC DSP engine adds a dedicated
high-pass filter to reduce wind noise or pop noise during uplink. The DAC DSP engine adds a digital 3D algorithm that allows for
stereo widening of the original audio signal. The effects chain of each DSP engine is shown by the diagrams below.
LM49350
FIGURE 20: ADC DSP Effects Chain
FIGURE 21: DAC DSP Effects Chain
20194135
20194136
The ADC and DAC DSP engines can be cascaded together in any order via the digital mixer to combine different audio effects to
the same signal path. For example, a signal can be processed with high-pass filtering from the ADC effects engine with 3D stereo
widening from the DAC effects engine. The 5-band parametric EQs from each DSP engine can be combined to form a single 10band parametric EQ or a single 5-band parametric EQ with ±30dB (instead of ±15dB) gain control for each band.
TABLE 44. ADC EFFECTS (0x70h)
BitsFieldDescription
0ADC_HPF_ENBThis enables the ADC's High Pass Filter.
1ADC_ALC_ENBThis enables the ADC's Auto Level Control.
2ADC_PK_ENBThis enables the ADC's Peak Detector.
3ADC_EQ_ENBThis enables the ADC's 5-band Parametric EQ.
4ADC_SCLP_ENBThis enables the ADC's Soft Clip Feature.
TABLE 45. DAC EFFECTS (0x71h)
BitsFieldDescription
0DAC_ALC_ENBThis enables the DAC's Auto Level Control.
1DAC_PK_ENBThis enables the DAC's Peak Detector.
2DAC_EQ_ENBThis enables the DAC's 5-band Parametric EQ.
3DAC_3D_ENBThis enables the DAC's Stereo Widening Circuit.
4ADC_SCLP_ENBThis enables the DAC's Soft Clip Feature.
59www.national.com
TABLE 46. HPF MODE (0x80h)
BitsFieldDescription
LM49350
2:0HPF_MODEThis configures the ADC's High Pass Filter.
HPF_MODEFILTER CHARACTERISTICS
0008kHz Voice
00112kHz Voice
01016kHz Voice
01124kHz Voice
10032kHz Voice
10132kHz Audio
11048kHz Audio
11196kHz Audio
www.national.com60
ALC Overview
The Automatic Level Control (ALC) system can be used to regulate the audio output level to a user defined target level. The ALC
feature is especially useful whenever the level of the audio input is unknown, unpredictable, or has a large dynamic range. The
main purpose of the ALC is to optimize the dynamic range of the audio input to audio output path.
There are two separate and independent ALC circuits in the LM49350. One of the ALC circuits is located within the DAC DSP
effects block. The other ALC circuit is integrated into the ADC DSP effects block. The DAC ALC controls the DAC digital gain. The
ADC ALC controls the auxiliary input amplifier gain or microphone preamplifier gain. The dual ALCs can be used to regulate the
level of the analog (Stereo Auxiliary, mono differential, Stereo MIC/LINE) and digital (Port1 Data In, Port2 Data In) audio inputs.
The ALC regulated output can be routed to any of the LM49350’s amplifier outputs for playback. The ALC regulated output can
also be routed to Audio Port1 or Audio Port2 for digital data transmission via I2S or PCM.
Only audio inputs that are considered signals (rather than noise) are sent to the ALC’s peak detector block. The peak detector
compares the level of the audio input versus the ALC target level (TARGET_LEVEL). Signals lower than the target level will be
amplified and signals higher than the target level will be attenuated. Any audio input that is lower than the level specified by the
noise floor level (NOISE_FLOOR) will be considered as noise and will be gated from the ALC’s peak detector in order to avoid
noise pumping. So it is important to set NOISE_FLOOR to correlate with the signal to noise ratio of the corresponding audio path.
In some instances (ie. Conference calls), it may be desirable to mute audio input signals that consist solely of background noise
from the audio output. This is accomplished by enabling the ALC’s noise gate (NG_ENB). When the noise gate is enabled, signals
lower than the noise floor level will be muted from the audio output.
If the audio input signal is below the target level, the ALC will increase the gain of the corresponding volume control until the signal
reaches the target level. The rate at which the ALC performs gain increases is known as decay rate (DECAY RATE). But before
each ALC gain increase the ALC must wait a predetermined amount of time (HOLD TIME). If the audio input signal is above the
target level, the ALC will decrease the gain of the corresponding volume control until the signal reaches the target level. The rate
at which the ALC performs attenuation is known as attack rate (ATTACK RATE). The ALC’s peak detector tracks increases in
audio input signal amplitude instantaneously, but tracks decreases in audio input signal amplitude at programmable rate (PEAK
DECAY TIME). ATTACK RATE, DECAY RATE, HOLD TIME, and PEAK DECAY TIME are fully adjustable which allows flexible
operation of the ALC circuit. The ALC’s timers are based on the sample rate of the DAC or ADC, so the closest corresponding
sample rate must be programmed into the ALC SAMPLE RATE setting (for DAC ALC) or the ALC MODE setting (for ADC ALC).
LM49350
FIGURE 22: ALC Example
TABLE 47. ADC_ALC_1 (0x81h)
BitsFieldDescription
2:0SAMPLE_RATEThis programs the timers on the ALC with the closest sample rate of the ADC.
SAMPLE_RATEADC Fs
0008kHz
00112kHz
01016kHz
01124kHz
10032kHz
10148kHz
11096kHz
111192kHz
61www.national.com
20194138
BitsFieldDescription
3LIMITERIf set, the circuit will never apply gain to the signal, no matter how small, but it will attenuate the
LM49350
4STEREO LINKIf set, the ALC circuit uses the stereo average of the input signals to control the gain of the stereo
5SOURCE_SELIf SOURCE_OVR is set then this manually overides the selection of the input amplifier that is used
6SOURCE_OVRIf set, the output of the ALC is not set automatically but is controlled by the SOURCE_SEL bit. If
BitsFieldDescription
3:0NOISE_FLOORThis sets the anticipated noise floor. Signals lower than the noise floor specified will be gated from
4NG_ENBThis enables the Noise Gate.
signal as soon as it reaches target and release it at the decay rate, once signal level reduces below
target. The I2C gain setting (at the time the LIMITER is enabled) is the maximum gain that the ALC
will apply. Care should be taken when choosing the optimum I2C gain setting whenever enabling
the Limiter.
output. This maintains stereo imaging. If this bit is cleared, then both channels operate as dual
mono.
to alter the gain for ALC operation.
0 = Both ALCs control AUX gain
1 = Both ALCs control MIC gain
cleared each ALC controls the input gain of the amplifier (AUX or MIC) that is set to that ADC
channel (or MIC if both are selected).
TABLE 48. ADC_ALC_2 (0x82h)
the ALC to avoid noise pumping.
NOISE_FLOORNoise Floor (dB)
0000–39
0001–42
0010–45
0011–48
0100–51
0101–54
0110–57
0111–60
1000–63
1001–66
1010–69
1011–72
1100–75
1101–78
1110–81
1111–84
www.national.com62
TABLE 49. ADC_ALC_3 (0x83h)
BitsFieldDescription
4:0TARGET_LEVELThis sets the desired target output level. Signals lower than this will be amplified and signals larger
than this will be attenuated.
TARGET_LEVELTarget Level (dB)
00000–1.5
00001–3
00010–4.5
00011–6
00100–7.5
00101–9
00110–10.5
00111–12
01000–13.5
01001–15
01010–16.5
01011–18
01100–19.5
01101–21
01110–22.5
01111–24
10000–25.5
10001–27
10010–28.5
10011–30
10100–31.5
10101–33
10110–34.5
10111–36
11000–37.5
11001–39
11010–40.5
11011–42
11100–43.5
11101–45
11110–46.5
11111–48
LM49350
63www.national.com
TABLE 50. ADC_ALC_4 (0x84h)
BitsFieldDescription
LM49350
4:0ATTACK_RATEThis sets the rate at which the ALC will reduce gain if it detects the input signal is large.
ATTACK_RATE
0000021
0000142
0001083
00011167
00100250
00101333
00110417
00111542
01000729
01001958
010101250
010111604
011001896
011012208
011102792
011113708
100004792
100015688
100106563
100118396
1010011000
1010114167
1011017083
1011120000
1100025000
1100132000
1101045000
1101160000
1110075000
1110187500
11110100000
11111114583
Time between gain steps (μs)
www.national.com64
TABLE 51. ADC_ALC_5 (0x85h)
BitsFieldDescription
4:0DECAY_RATEThis sets the rate at which the ALC will increase gain if it detects the input signal is too
small.
DECAY_RATE
00000104
00001125
00010167
00011250
00100292
00101396
00110500
00111708
01000896
010011250
010101396
010112000
011002708
011013500
011104750
011116250
100008000
1000111000
1001014000
1001118500
1010025000
1010132000
1011042000
1011155000
1100072500
11001100000
11010125000
11011160000
11100225000
11101300000
11110375000
11111500000 (0.5s)
7:5PK_DECAY_RATEPK_DECAY_RATEMax Time to track decay
0001.3ms
0012.6ms
0105.3ms
01110.6ms
10021.3ms
10142.6.3ms
11085.5ms
1112.73 secs
Time between gain steps (μs)
LM49350
65www.national.com
TABLE 52. ADC_ALC_6 (0x86h)
LM49350
BitsFieldDescription
4:0HOLD_TIME This sets how long the ALC circuit waits before
increasing the gain.
HOLD_TIMETime (ms)
000001
000011.25
000101.6
000112
001002.5
001013.2
001104
001115
010006.25
010018
0101010
0101112.5
0110016
0110120
0111025
0111132
1000040
1000150
1001064
1001180
10100100
10101125
10110160
10111200
11000250
11001320
11010400
11011500
11100640
11101800
111101000
111111250
TABLE 53. ADC_ALC_7 (0x87h)
BitsFieldDescription
5:0MAX_LEVELThis sets the maximum allowed gain of the volume control to the output
amplifier. If the volume control is less than 6 bits the relevant LSBs are used
as the limit and the MSBs are ignored.
TABLE 54. ADC_ALC_8 (0x88h)
BitsFieldDescription
5:0MIN_LEVELThis sets the minimum allowed gain of the volume control to the output
amplifier. If the volume control is less than 6 bits the relevant LSBs are used
as the limit and the MSBs are ignored.
www.national.com66
TABLE 55. ADC_L_LEVEL (0x89h)
BitsFieldDescription
5:0ADC_L_LEVEL This sets the post ADC digital gain of the left channel.
ADC_L_LEVELLevelADC_L_LEVELLevel
000000-76.5dB100000-28.5dB
000001-75dB100001-27dB
000010-73.5dB100010-25.5dB
000011-72dB100011-24dB
000100-70.5dB100100-22.5dB
000101-69dB100101-21dB
000110-67.5dB100110-20.5dB
000111-66dB100111-18dB
001000-64.5dB101000-16.5dB
001001-63dB101001-15dB
001010-61.5dB101010-13.5dB
001011-60dB101011-12dB
001100-58.5dB101100-10.5dB
001101-57dB101101-9dB
001110-55.5dB101110-7.5dB
001111-54dB101111-6dB
010000-52.5dB110000-4.5dB
010001-51dB110001-3dB
010010-49.5dB110010-1.5dB
010011-48dB1100110dB
010100-46.5dB1101001.5dB
010101-45dB1101013dB
010110-43.5dB1101104.5dB
010111-42dB1101116dB
011000-40.5dB1110007.5dB
011001-39dB1110019dB
011010-37.5dB11101010.5dB
011011-36dB11101112dB
011100-34.5dB11110013.5dB
011101-33dB11110115dB
011110-31.5dB11111016.5dB
011111-30dB11111118dB
LM49350
67www.national.com
TABLE 56. ADC_R_LEVEL (0x8Ah)
LM49350
BitsFieldDescription
5:0ADC_R_LEVEL This sets the post ADC digital gain of the right channel.
ADC_R_LEVELLevelADC_R_LEVELLevel
000000-76.5dB100000-28.5dB
000001-75dB100001-27dB
000010-73.5dB100010-25.5dB
000011-72dB100011-24dB
000100-70.5dB100100-22.5dB
000101-69dB100101-21dB
000110-67.5dB100110-20.5dB
000111-66dB100111-18dB
001000-64.5dB101000-16.5dB
001001-63dB101001-15dB
001010-61.5dB101010-13.5dB
001011-60dB101011-12dB
001100-58.5dB101100-10.5dB
001101-57dB101101-9dB
001110-55.5dB101110-7.5dB
001111-54dB101111-6dB
010000-52.5dB110000-4.5dB
010001-51dB110001-3dB
010010-49.5dB110010-1.5dB
010011-48dB1100110dB
010100-46.5dB1101001.5dB
010101-45dB1101013dB
010110-43.5dB1101104.5dB
010111-42dB1101116dB
011000-40.5dB1110007.5dB
011001-39dB1110019dB
011010-37.5dB11101010.5dB
011011-36dB11101112dB
011100-34.5dB11110013.5dB
011101-33dB11110115dB
011110-31.5dB11111016.5dB
011111-30dB11111118dB
www.national.com68
TABLE 57. EQ_BAND_1 (0x8Bh)
BitsFieldDescription
1:0FREQThis sets the Sub-bass shelving filter's
cut-off frequency.
FREQFrequency (Hz)
0060
0180
10100
11120
6:2LEVELThis sets the gain at fc.
LEVELEffect
00000Off (0dB)
00001-15dB
00010-14dB
00011-13dB
00100-12dB
00101-11dB
00110-10dB
00111-9dB
01000-8dB
01001-7dB
01010-6dB
01011-5dB
01100-4dB
01101-3dB
01110-2dB
01111-1dB
100000dB
100011dB
100102dB
100113dB
101004dB
101015dB
101106dB
101117dB
110008dB
110019dB
1101010dB
1101111dB
1110012dB
1110113dB
1111014dB
1111115dB
LM49350
69www.national.com
TABLE 58. EQ_BAND_2 (0x8Ch)
LM49350
BitsFieldDescription
1:0FREQThis sets the Bass peak filter's center
frequency.
FREQFrequency (Hz)
100150
101200
110250
111300
6:2LEVELThis sets the gain at fc.
LEVELEffect
100000Off (0dB)
100001-15dB
100010-14dB
100011-13dB
100100-12dB
100101-11dB
100110-10dB
100111-9dB
101000-8dB
101001-7dB
101010-6dB
101011-5dB
101100-4dB
101101-3dB
101110-2dB
101111-1dB
1100000dB
1100011dB
1100102dB
1100113dB
1101004dB
1101015dB
1101106dB
1101117dB
1110008dB
1110019dB
11101010dB
11101111dB
11110012dB
11110113dB
11111014dB
11111115dB
7QPrograms the width of the peak filter.
QBandwidth
02/3 Octave
14/3 Octave
www.national.com70
TABLE 59. EQ_BAND_3 (0x8Dh)
BitsFieldDescription
1:0FREQThis sets the Mid peak filter's center
frequency.
FREQFrequency (Hz)
100600
101800
1101k
1111.2k
6:2LEVELThis sets the gain at fc.
LEVELEffect
00000Off (0dB)
00001-15dB
00010-14dB
00011-13dB
00100-12dB
00101-11dB
00110-10dB
00111-9dB
01000-8dB
01001-7dB
01010-6dB
01011-5dB
01100-4dB
01101-3dB
01110-2dB
01111-1dB
100000dB
100011dB
100102dB
100113dB
101004dB
101015dB
101106dB
101117dB
110008dB
110019dB
1101010dB
1101111dB
1110012dB
1110113dB
1111014dB
1111115dB
7QThis programs the width of the peak
filter.
QBandwidth
02/3 Octave
14/3 Octave
LM49350
71www.national.com
TABLE 60. EQ_BAND_4 (0x8Eh)
LM49350
BitsFieldDescription
1:0FREQThis sets the Treble peak filter's center
frequency.
FREQFrequency (Hz)
002k
012.7k
103.4k
114.1k
6:2LEVELThis sets the gain at fc.
LEVELEffect
00000Off (0dB)
00001-15dB
00010-14dB
00011-13dB
00100-12dB
00101-11dB
00110-10dB
00111-9dB
01000-8dB
01001-7dB
01010-6dB
01011-5dB
01100-4dB
01101-3dB
01110-2dB
01111-1dB
100000dB
100011dB
100102dB
100113dB
101004dB
101015dB
101106dB
101117dB
110008dB
110019dB
1101010dB
1101111dB
1110012dB
1110113dB
1111014dB
1111115dB
7QThis programs the width of the peak
filter.
QBandwidth
02/3 Octave
14/3 Octave
www.national.com72
TABLE 61. EQ_BAND_5 (0x8Fh)
BitsFieldDescription
1:0FREQThis sets the presence shelving filter's
cut-off frequency.
FREQFrequency (Hz)
007k
019k
1011k
1120k
6:2LEVELThis sets the gain at fc.
LEVELEffect
00000Off (0dB)
00001-15dB
00010-14dB
00011-13dB
00100-12dB
00101-11dB
00110-10dB
00111-9dB
01000-8dB
01001-7dB
01010-6dB
01011-5dB
01100-4dB
01101-3dB
01110-2dB
01111-1dB
100000dB
100011dB
100102dB
100113dB
101004dB
101015dB
101106dB
101117dB
110008dB
110019dB
1101010dB
1101111dB
1110012dB
1110113dB
1111014dB
1111115dB
LM49350
73www.national.com
TABLE 62. SOFTCLIP1 (0x90h)
LM49350
BitsFieldDescription
3:0THRESHOLDThis sets the threshold level of the
audio compressor. Audio signals
above the threshold will be
compressed.
THRESHOLDThreshold Level
(dB)
0000-36dB
0001-30dB
0010-24dB
0011-20dB
0100-18dB
0101-17dB
0110-16dB
0111-15dB
1000-14dB
1001-12dB
1010-10dB
1011-8dB
1100-6dB
1101-4dB
1110-2.5dB
1111-1dB
4SOFT_KNEEIf set, the audio compressor will
automatically apply higher
compression ratios to audio signals
higher than the threshold level. As the
audio signal approaches levels higher
than the threshold, SOFT_KNEE will
increase the compression RATIO. The
highest compression that the
SOFT_KNEE algorithm will apply is the
compression that is set by RATIO.
www.national.com74
TABLE 63. SOFTCLIP2 (0x91h)
BitsFieldDescription
4:0RATIOThis sets the ratio at which the audio is
compressed to when it passes beyond
the threshold. In SOFT_KNEE mode
this is the final level of compression.
RATIORatio
000001:1 (Bypass)
000011:1.2
000101:1.4
000111:1.7
001001:2.0
001011:2.4
001101:2.8
001111:3.4
010001:4.0
010011:4.7
010101:5.7
010111:6.7
011001:8.0
011011:9.5
011101:11.3
011111:13.5
100001:16.0
100011:19.0
100101:22.8
100111:27.0
101001:32.0
101011:37.9
101101:45.5
101111:53.9
110001:64.0
110011:75.0
110101:91.0
110111:108
111001:128
111011:152
111101:182
111111:215
LM49350
75www.national.com
TABLE 64. SOFTCLIP3 (0x92h)
LM49350
BitsFieldDescription
4:0LEVELThis sets the post compressor gain
level.
LEVELLevel (dB)
00000-22.5dB
00001-21dB
00010-19.5dB
00011-18dB
00100-16.5dB
00101-15dB
00110-13.5dB
00111-12dB
01000-10.5dB
01001-9dB
01010-7.5dB
01011-6dB
01100-4.5dB
01101-3dB
01110-1.5dB
011110dB
100001.5dB
100013dB
100104.5dB
100116dB
101007.5dB
101019dB
1011010.5dB
1011112dB
1100013.5dB
1100115dB
1101016.5dB
1101118dB
1110019.5dB
1110121dB
1111022.5dB
1111124dB
www.national.com76
26.0 DAC Effects Registers
BitsFieldDescription
2:0SAMPLE_ RATE This programs the timers on the ALC
3LIMITERIf set, the circuit will never apply gain to
4STEREO LINKIf set, the ALC circuit uses the stereo
LM49350
TABLE 65. DAC_ALC_1 (0xA0h)
with the closest DAC sample rate.
SAMPLE_ RATEDAC Fs
0008kHz
00112kHz
01016kHz
01124kHz
10032kHz
10148kHz
11096kHz
111192kHz
the signal, no matter how small, but it
will attenuate the signal as soon as it
reaches target and release it at the
decay rate, once signal level reduces
below target. The I2C gain setting (at
the time the LIMITER is enabled) is the
maximum gain that the ALC will apply.
Care should be taken when choosing
the optimum I2C gain setting whenever
enabling the Limiter.
average of the input signals to control
the gain of the stereo output. This
maintains stereo imaging. If this bit is
cleared, then both channels operate as
dual mono.
77www.national.com
TABLE 66. DAC_ALC_2 (0xA1h)
LM49350
BitsFieldDescription
3:0NOISE_FLOOR This sets the anticipated noise floor.
Signals lower than the specified noise
floor will be gated from the ALC to
avoid noise pumping.
NOISE_FLOORNoise Floor (dB)
0000-39
0001-42
0010-45
0011-48
0100-51
0101-54
0110-57
0111-60
1000-63
1001-66
1010-69
1011-72
1100-75
1101-78
1110-81
1111-84
4NG_ENBThis enables the Noise Gate
www.national.com78
TABLE 67. DAC_ALC_3 (0xA2h)
BitsFieldDescription
4:0TARGET_LEVEL This sets the desired output level.
Signals lower than this will be amplified
and signals larger than this will be
attenuated.
TARGET_LEVEL Target Level (dB)
00000-1.5
00001-3
00010-4.5
00011-6
00100-7.5
00101-9
00110-10.5
00111-12
01000-13.5
01001-15
01010-16.5
01011-18
01100-19.5
01101-21
01110-22.5
01111-24
10000-25.5
10001-27
10010-28.5
10011-30
10100-31.5
10101-33
10110-34.5
10111-36
11000-37.5
11001-39
11010-40.5
11011-42
11100-43.5
11101-45
11110-46.5
11111-48
LM49350
79www.national.com
TABLE 68. DAC_ALC_4 (0xA3h)
LM49350
BitsFieldDescription
4:0ATTACK_RATE This sets the rate at which the ALC will
reduce gain if it detects the input signal
is too large.
ATTACK_RATETime between
gain steps(us)
0000021
0000142
0001083
00011167
00100250
00101333
00110417
00111542
01000729
01001958
010101250
010111604
011001896
011012208
011102792
011113708
100004792
100015688
100106563
100118396
1010011000
1010114167
1011017083
1011120000
1100025000
1100132000
1101045000
1101160000
1110075000
1110187500
11110100000
11111114583
www.national.com80
TABLE 69. DAC_ALC_5 (0xA4h)
BitsFieldDescription
4:0DECAY_RATEThis sets the rate at which the ALC will
increase gain if it detects the input signal
is too small.
DECAY_RATETime between
gain steps(us)
00000104
00001125
00010167
00011250
00100292
00101396
00110500
00111708
01000896
010011250
010101396
010112000
011002708
011013500
011104750
011116250
100008000
1000111000
1001014000
1001118500
1010025000
1010132000
1011042000
1011155000
1100072500
11001100000
11010125000
11011160000
11100225000
11101300000
11110375000
11111500000 (0.5s)
LM49350
81www.national.com
LM49350
BitsFieldDescription
7:5PK_DECAY_RATE This sets how precise the ALC will track
amplitude reductions of the audio input.
The shorter the length of time for
PK_DECAY_RATE, the more responsive
the ALC will be when applying gain
increases whenever the audio falls below
target level.
PK_DECAY_RATETime
0001.3ms
0012.6ms
0105.3ms
01110.6ms
10021.3ms
10142.6ms
11085.5ms
1112.73secs
www.national.com82
TABLE 70. DAC_ALC_6 (0xA5h)
BitsFieldDescription
4:0HOLD_TIMEThis sets how long the ALC circuit
waits before increasing the gain.
HOLDTIMETime (ms)
000001
000011.25
000101.6
000112
001002.5
001013.2
001104
001115
010006.25
010018
0101010
0101112.5
0110016
0110120
0111025
0111132
1000040
1000150
1001064
1001180
10100100
10101125
10110160
10111200
11000250
11001320
11010400
11011500
11100640
11101800
111101000
111111250
LM49350
TABLE 71. DAC_ALC_7 (0xA6h)
BitsFieldDescription
5:0MAX_LEVELThis sets the maximum allowed gain to
the digital level control when the ALC
is used.
TABLE 72. DAC_ALC_8 (0xA7h)
BitsFieldDescription
5:0MIN_LEVELThis sets the minimum allowed gain
to the digital level control when the
ALC is used.
83www.national.com
TABLE 73. DAC_L_LEVEL (0xA8h)
LM49350
BitsFieldDescription
5:0DAC_L_LEVEL This sets the pre DAC digital gain.
DAC_L_LEVELLevelDAC_L_LEVELLevel
000000-76.5dB100000-28.5dB
000001-75dB100001-27dB
000010-73.5dB100010-25.5dB
000011-72dB100011-24dB
000100-70.5dB100100-22.5dB
000101-69dB100101-21dB
000110-67.5dB100110-20.5dB
000111-66dB100111-18dB
001000-64.5dB101000-16.5dB
001001-63dB101001-15dB
001010-61.5dB101010-13.5dB
001011-60dB101011-12dB
001100-58.5dB101100-10.5dB
001101-57dB101101-9dB
001110-55.5dB101110-7.5dB
001111-54dB101111-6dB
010000-52.5dB110000-4.5dB
010001-51dB110001-3dB
010010-49.5dB110010-1.5dB
010011-48dB1100110dB
010100-46.5dB1101001.5dB
010101-45dB1101013dB
010110-43.5dB1101104.5dB
010111-42dB1101116dB
011000-40.5dB1110007.5dB
011001-39dB1110019dB
011010-37.5dB11101010.5dB
011011-36dB11101112dB
011100-34.5dB11110013.5dB
011101-33dB11110115dB
011110-31.5dB11111016.5dB
011111-30dB11111118dB
www.national.com84
TABLE 74. DAC_R_LEVEL (0xA9h)
BitsFieldDescription
5:0DAC_R_LEVEL This sets the pre DAC digital gain.
DAC_R_LEVELLevelDAC_R_LEVELLevel
000000-76.5dB100000-28.5dB
000001-75dB100001-27dB
000010-73.5dB100010-25.5dB
000011-72dB100011-24dB
000100-70.5dB100100-22.5dB
000101-69dB100101-21dB
000110-67.5dB100110-20.5dB
000111-66dB100111-18dB
001000-64.5dB101000-16.5dB
001001-63dB101001-15dB
001010-61.5dB101010-13.5dB
001011-60dB101011-12dB
001100-58.5dB101100-10.5dB
001101-57dB101101-9dB
001110-55.5dB101110-7.5dB
001111-54dB101111-6dB
010000-52.5dB110000-4.5dB
010001-51dB110001-3dB
010010-49.5dB110010-1.5dB
010011-48dB1100110dB
010100-46.5dB1101001.5dB
010101-45dB1101013dB
010110-43.5dB1101104.5dB
010111-42dB1101116dB
011000-40.5dB1110007.5dB
011001-39dB1110019dB
011010-37.5dB11101010.5dB
011011-36dB11101112dB
011100-34.5dB11110013.5dB
011101-33dB11110115dB
011110-31.5dB11111016.5dB
011111-30dB11111118dB
LM49350
85www.national.com
TABLE 75. DAC_3D (0xAAh)
LM49350
BitsFieldDescription
0EFFECT_MODE This sets the digital 3D stereo
enhancement mode.
EFFECT_MODEType
0Loudspeaker
1Headphone
2:1EFFECT_LEVEL This sets the applied level of 3D effect.
EFFECT_LEVELLevel
0025%
0137.50%
1050%
1175%
6:3FILTER_TYPEThis sets the 3D effect filter response.
FILTER_TYPEResponse
0000200Hz HPF
0001300Hz HPF
0010600Hz HPF
0011900Hz HPF
0100200Hz-500Hz
BPF
0101200Hz-1kHz BPF
0110200Hz-1.6kHz
BPF
0111200Hz-2.5kHz
BPF
1000300Hz-1kHz BPF
1001300Hz-1.6kHz
BPF
1010300Hz-2.5kHz
BPF
1011600Hz-1kHz BPF
1100600Hz-1.6kHz
BPF
1101600Hz-2.5kHz
BPF
1110900Hz-1.6kHz
BPF
1111900Hz-2.5kHz
BPF
7ATTENUATEIf set, the inputs are reduced by 6dB
before 3D effects are applied in order
to avoid clipping.
www.national.com86
TABLE 76. EQ_BAND_1 (0xABh)
BitsFieldDescription
1:0FREQThis sets the Sub-bass shelving filter's
cut-off frequency.
FREQFrequency (Hz)
0060
0180
10100
11120
6:2LEVELThis sets the gain at fc.
LEVELEffect
00000Off (0dB)
00001-15dB
00010-14dB
00011-13dB
00100-12dB
00101-11dB
00110-10dB
00111-9dB
01000-8dB
01001-7dB
01010-6dB
01011-5dB
01100-4dB
01101-3dB
01110-2dB
01111-1dB
100000dB
100011dB
100102dB
100113dB
101004dB
101015dB
101106dB
101117dB
110008dB
110019dB
1101010dB
1101111dB
1110012dB
1110113dB
1111014dB
1111115dB
LM49350
87www.national.com
TABLE 77. EQ_BAND_2 (0xACh)
LM49350
BitsFieldDescription
1:0FREQThis sets the Bass peak filter's center
frequency.
FREQFrequency (Hz)
00150
01200
10250
11300
6:2LEVELThis sets the gain at fc.
LEVELEffect
00000Off (0dB)
00001-15dB
00010-14dB
00011-13dB
00100-12dB
00101-11dB
00110-10dB
00111-9dB
01000-8dB
01001-7dB
01010-6dB
01011-5dB
01100-4dB
01101-3dB
01110-2dB
01111-1dB
100000dB
100011dB
100102dB
100113dB
101004dB
101015dB
101106dB
101117dB
110008dB
110019dB
1101010dB
1101111dB
1110012dB
1110113dB
1111014dB
1111115dB
7QThis programs the width of the peak
filter.
QBandwidth
02/3 Octave
14/3 Octave
www.national.com88
TABLE 78. EQ_BAND_3 (0xADh)
BitsFieldDescription
1:0FREQThis sets the Mid peak filter's center
frequency.
FREQFrequency (Hz)
00600
01800
101k
111.2k
6:2LEVELThis sets the gain at fc.
LEVELEffect
00000Off (0dB)
00001-15dB
00010-14dB
00011-13dB
00100-12dB
00101-11dB
00110-10dB
00111-9dB
01000-8dB
01001-7dB
01010-6dB
01011-5dB
01100-4dB
01101-3dB
01110-2dB
01111-1dB
100000dB
100011dB
100102dB
100113dB
101004dB
101015dB
101106dB
101117dB
110008dB
110019dB
1101010dB
1101111dB
1110012dB
1110113dB
1111014dB
1111115dB
7QThis programs the width of the peak
filter.
QBandwidth
02/3 Octave
14/3 Octave
LM49350
89www.national.com
TABLE 79. EQ_BAND_4 (0xAEh)
LM49350
BitsFieldDescription
1:0FREQThis sets the Treble peak filter's center
frequency.
FREQFrequency (Hz)
002k
012.7k
103.4k
114.1k
6:2LEVELThis sets the gain at fc.
LEVELEffect
00000Off (0dB)
00001-15dB
00010-14dB
00011-13dB
00100-12dB
00101-11dB
00110-10dB
00111-9dB
01000-8dB
01001-7dB
01010-6dB
01011-5dB
01100-4dB
01101-3dB
01110-2dB
01111-1dB
100000dB
100011dB
100102dB
100113dB
101004dB
101015dB
101106dB
101117dB
110008dB
110019dB
1101010dB
1101111dB
1110012dB
1110113dB
1111014dB
1111115dB
7QThis programs the width of the peak
filter.
QBandwidth
02/3 Octave
14/3 Octave
www.national.com90
TABLE 80. EQ_BAND_5 (0xAFh)
BitsFieldDescription
1:0FREQThis sets the presence shelving filter's
cut-off frequency.
FREQFrequency (Hz)
007k
019k
1011k
1120k
6:2LEVELThis sets the gain at fC.
LEVELEffect
00000Off (0dB)
00001-15dB
00010-14dB
00011-13dB
00100-12dB
00101-11dB
00110-10dB
00111-9dB
01000-8dB
01001-7dB
01010-6dB
01011-5dB
01100-4dB
01101-3dB
01110-2dB
01111-1dB
100000dB
100011dB
100102dB
100113dB
101004dB
101015dB
101106dB
101117dB
110008dB
110019dB
1101010dB
1101111dB
1110012dB
1110113dB
1111014dB
1111115dB
LM49350
91www.national.com
TABLE 81. SOFTCLIP1 (0xB0h)
LM49350
BitsFieldDescription
3:0TRESHOLDThis sets the threshold level of the
audio compressor. Audio signals
above the threshold will be
compressed.
THRESHOLDThreshold Level
(dB)
0000-36dB
0001-30dB
0010-24dB
0011-20dB
0100-18dB
0101-17dB
0110-16dB
0111-15dB
1000-14dB
1001-12dB
1010-10dB
1011-8dB
1100-6dB
1101-4dB
1110-2.5dB
1111-1dB
4SOFT_KNEEIf set, the audio compressor will
automatically apply higher
compression ratios to audio signals
higher than the threshold level. As the
audio signal approaches levels higher
than the threshold, SOFT_KNEE will
increase the compression RATIO. The
highest compression that the
SOFT_KNEE algorithm will apply is the
compression that is set by RATIO.
www.national.com92
TABLE 82. SOFTCLIP2 (0xB1h)
BitsFieldDescription
4:0RATIOThis sets the ratio at which the audio is
compressed to when it passes beyond
the threshold. In soft clip mode this is
the final level of compression.
RATIORatio
000001:1 (Bypass)
000011:1.2
000101:1.4
000111:1.7
001001:2.0
001011:2.4
001101:2.8
001111:3.4
010001:4.0
010011:4.7
010101:5.7
010111:6.7
011001:8.0
011011:9.5
011101:11.3
011111:13.5
100001:16.0
100011:19.0
100101:22.8
100111:27.0
101001:32.0
101011:37.9
101101:45.5
101111:53.9
110001:64
110011:75.9
110101:91.0
110111:108
111001:128
111011:152
111101:182
111111:215
LM49350
93www.national.com
TABLE 83. SOFTCLIP3 (0xB2h)
LM49350
Table 40:
BitsFieldDescription
4:0LEVELThis sets the post compressor gain
level.
LEVELLevel (dB)
00000-22.5dB
00001-21dB
00010-19.5dB
00011-18dB
00100-16.5dB
00101-15dB
00110-13.5dB
00111-12dB
01000-10.5dB
01001-9dB
01010-7.5dB
01011-6dB
01100-4.5dB
01101-3dB
01110-1.5dB
011110dB
100001.5dB
100013dB
100104.5dB
100116dB
101007.5dB
101019dB
1011010.5dB
1011112dB
1100013.5dB
1100115dB
1101016.5dB
1101118dB
1110019.5dB
1110121dB
1111022.5dB
1111124dB
www.national.com94
27.0 GPIO Registers
BitsFieldDescription
3:0GPIO_MODEThis sets the mode of the GPIO Pin.
4GPIO_TXIf set, the GPIO pin will transmit a logic
5GPIO_RXThis bit reports what logic level is present
6SHORT_CCTIf set, the GPIO records that a short circuit
7THERMAL_EVENT If set records that a temperature event has
LM49350
TABLE 84. GPIO (0xE0h)
GPIO_MODEGPIO Function
0000OFF (input disabled)
0001GPIO_RX
0010GPIO_TX
0011HP_ENB (out)
0100HP_ENB (out)
0101LS_ENB (out)
0110LS_ENB (out)
0111SHORT_CCT or
THERMAL (out)
1000SHORT_CCT or
THERMAL or CLIP
(out)
1001CLIP (out)
1010ADC_NG_ACTIVE
(out)
1011ADC_NG_ACTIVE
(out)
1100MIC_MUTE (in)
1101MIC_MUTE (in)
1110CHIP_ENB (in)
1111CHIP_ENB (in)
high whenever GPIO_MODE is set to
'0010'.
on the GPIO pin.
event has occurred on the class D
outputs.
occurred on the die. Clear on Write (1).
TABLE 85. Spread Spectrum (0xF1h)
BitsFieldDescription
1:0RSVDReserved
2SS_DISABLEIf this bit is set, Spread Spectrum mode
will be disabled from the Class D amplifier.
TABLE 86. ADC Compensation Filter C0 LSBs (0xF8h)
BitsFieldDescription
7:0ADC_CO_LSBBits 7:0 of C0[15:0]
TABLE 87. ADC Compensation Filter C0 MSBs (0xF9h)
BitsFieldDescription
7:0ADC_CO_MSBBits 15:0 of C0[15:0]
95www.national.com
TABLE 88. ADC Compensation Filter C1 LSBs (0xFAh)
LM49350
BitsFieldDescription
7:0ADC_C1_LSBBits 7:0 of C1[15:0]
TABLE 89. ADC Compensation Filter C1 MSBs (0xFBh)
BitsFieldDescription
7:0ADC_C1_MSBBits 15:0 of C1[15:0]
TABLE 90. ADC Compensation Filter C2 LSBs (0xFCh)
BitsFieldDescription
7:0ADC_C2_LSBBits 7:0 of C2[15:0]
TABLE 91. ADC Compensation Filter C2 MSBs (0xFDh)
BitsFieldDescription
7:0ADC_C2_MSBBits 15:0 of C2[15:0]
TABLE 92. AUX_LINEOUT (0xFE)
BitsFieldDescription
4:0RSVDReserved
5AUX_LINE_OUTIf set, the earpiece amplifier operates in a
low current drive mode for line out
applications in order to reduce power
consumption.
www.national.com96
28.0 Schematic Diagram
LM49350
20194119
FIGURE 23: Demo Board Schematic
97www.national.com
29.0 Demonstration Board Layout
LM49350
FIGURE 24: Top Silkscreen Layer
20194114
FIGURE 25: Top Layer
www.national.com98
20194115
LM49350
FIGURE 26: Inner Layer 1
20194116
FIGURE 27: Inner Layer 2
99www.national.com
20194117
LM49350
FIGURE 28: Bottom Silkscreen Layer
20194120
FIGURE 29: Bottom Layer
www.national.com100
20194118
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.