National Semiconductor LM2595 Technical data

查询LM2595供应商查询LM2595供应商
LM2595 SIMPLE SWITCHER 1A Step-Down Voltage Regulator
®
Power Converter 150 kHz
LM2595 SIMPLE SWITCHER Power Converter 150 kHz 1A Step-Down Voltage Regulator
May 1999
General Description
The LM2595 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 1A load with excellent line and load regulation. These devices are avail­able in fixed output voltages of 3.3V, 5V, 12V, and an adjust­able output version.
The LM2595 series operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regu­lators. Available in a standard 5-lead TO-220 package with several different lead bend options, and a 5-lead TO-263 surface mount package. Typically, for output voltages less than 12V, and ambient temperatures less than 50˚C, no heat sink is required.
A standard series of inductors are available from several dif­ferent manufacturers optimized for use with the LM2595 se­ries. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed put voltage under specified input voltage and output load conditions, and shutdown is included, featuring typically 85 µAstand-by cur­rent. Self protection features include a two stage frequency reducing current limit for the output switch and an over tem­perature shutdown for complete protection under fault condi­tions.
, and a fixed-frequency oscillator.
±
4%tolerance on out-
±
15%on the oscillator frequency. External
Features
n 3.3V, 5V, 12V, and adjustable output versions n Adjustable version output voltage range, 1.2V to 37V
n Available in TO-220 and TO-263 (surface mount)
n Guaranteed 1A output load current n Input voltage range up to 40V n Requires only 4 external components n Excellent line and load regulation specifications n 150 kHz fixed frequency internal oscillator n TTL shutdown capability n Low power standby mode, I n High efficiency n Uses readily available standard inductors n Thermal shutdown and current limit protection
Applications
n Simple high-efficiency step-down (buck) regulator n Efficient pre-regulator for linear regulators n On-card switching regulators n Positive to negative converter
Typical Application (Fixed Output Voltage Versions)
±
4%max over line and load conditions
packages
typically 85 µA
Q
Note:†Patent Number 5,382,918.
DS012565-1
SIMPLE SWITCHER®and
© 1999 National Semiconductor Corporation DS012565 www.national.com
Switchers Made Simple
®
are registered trademarks of National Semiconductor Corporation.
Connection Diagrams and Ordering Information
Bent and Staggered Leads, Through Hole Package
5–Lead TO-220 (T)
DS012565-2
Order Number LM2595T-3.3, LM2595T-5.0,
LM2595T-12 or LM2595T-ADJ
See NS Package Number T05D
Order Number LM2595S-3.3, LM2595S-5.0,
Surface Mount Package
5-Lead TO-263 (S)
DS012565-3
LM2595S-12 or LM2595S-ADJ
See NS Package Number TS5B
16-Lead Ceramic Dual-in-Line Package (J)
DS012565-57
Order Number LM2595J-3.3-QML (5962-9687901QEA),
LM2595J-5.0-QML (5962-9650301QEA), LM2595J-12-QML (5962-9650201QEA),
or LM2595J-ADJ-QML (5962-9650401QEA)
See NS Package Number J16A
For specifications and information about Military-Aerospace products, please see the Mil-Aero web page at
http://www.national.com/appinfo/milaero/index.html.
www.national.com 2
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Maximum Supply Voltage 45V ON /OFF Pin Input Voltage Feedback Pin Voltage −0.3 V +25V Output Voltage to Ground
(Steady State) −1V Power Dissipation Internally limited Storage Temperature Range −65˚C to +150˚C
−0.3 V +25V
Human Body Model (Note 2) 2 kV Lead Temperature S Package
Vapor Phase (60 sec.) +215˚C
Infrared (10 sec.) +245˚C T Package (Soldering, 10 sec.) +260˚C Maximum Junction Temperature +150˚C
Operating Conditions
Temperature Range −40˚C TJ≤ +125˚C Supply Voltage 4.5V to 40V
ESD Susceptibility
LM2595-3.3 Electrical Characteristics
12V, I
=
25˚C, and those with boldface type apply over full Operating Tempera-
J
Typ Limit
(Note 3) (Note 4)
Figure 1
1A 3.3 V
LOAD
3.168/3.135 V(min)
3.432/3.465 V(max)
=
1A 78
LOAD
(Limits)
%
Specifications with standard type face are for T
ture Range.
Symbol Parameter Conditions LM2595-3.3 Units
SYSTEM PARAMETERS (Note 5) Test Circuit
V
OUT
η Efficiency V
Output Voltage 4.75V VIN≤ 40V, 0.1A ≤ I
=
IN
LM2595-5.0 Electrical Characteristics
12V, I
=
25˚C, and those with boldface type apply over full Operating Tempera-
J
Typ Limit
(Note 3) (Note 4)
Figure 1
1A 5.0 V
LOAD
4.800/4.750 V(min)
5.200/5.250 V(max)
=
1A 82
LOAD
(Limits)
%
Specifications with standard type face are for T
ture Range.
Symbol Parameter Conditions LM2595-5.0 Units
SYSTEM PARAMETERS (Note 5) Test Circuit
V
OUT
η Efficiency V
Output Voltage 7V VIN≤ 40V, 0.1A ≤ I
=
IN
LM2595-12 Electrical Characteristics
25V, I
=
25˚C, and those with boldface type apply over full Operating Tempera-
J
Typ Limit
(Note 3) (Note 4)
Figure 1
1A 12.0 V
LOAD
11.52/11.40 V(min)
12.48/12.60 V(max)
=
1A 90
LOAD
(Limits)
%
www.national.com3
Specifications with standard type face are for T
ture Range.
Symbol Parameter Conditions LM2595-12 Units
SYSTEM PARAMETERS (Note 5) Test Circuit
V
OUT
η Efficiency V
Output Voltage 15V VIN≤ 40V, 0.1A ≤ I
=
IN
LM2595-ADJ Electrical Characteristics
12V, V
=
25˚C, and those with boldface type apply over full Operating Tempera-
J
Typ Limit
(Note 3) (Note 4)
Figure 1
1A 1.230 V
LOAD
Figure 1
1.193/1.180 V(min)
1.267/1.280 V(max)
OUT
=
3V, I
=
1A 78
LOAD
(Limits)
%
Specifications with standard type face are for T
ture Range.
Symbol Parameter Conditions LM2595-ADJ Units
SYSTEM PARAMETERS (Note 5) Test Circuit
V
FB
η Efficiency V
Feedback Voltage 4.5V VIN≤ 40V, 0.1A ≤ I
V
programmed for 3V. Circuit of
OUT
=
IN
All Output Voltage Versions Electrical Characteristics
Specifications with standard type face are for T ture Range. Unless otherwise specified, V sion. I
LOAD
=
200 mA.
Symbol Parameter Conditions LM2595-XX Units
DEVICE PARAMETERS
I
b
f
O
V
SAT
Feedback Bias Current Adjustable Version Only,V
Oscillator Frequency (Note 6) 150 kHz
Saturation Voltage I
DC Max Duty Cycle (ON) (Note 8) 100
Min Duty Cycle (OFF) (Note 9) 0
I
I
I
I
CL
L
Q
STBY
Current Limit Peak Current (Notes 7, 8) 1.5 A
Output Leakage Current Output=0V (Notes 7, 9) and (Note 10) 50 µA(max)
Quiescent Current (Note 9) 5 mA
Standby Quiescent ON/OFF pin=5V (OFF) (Note 10) 85 µA Current 200/250 µA(max)
θ
JC
θ
JA
θ
JA
θ
JA
θ
JA
ON/OFF CONTROL Test Circuit
Thermal Resistance TO-220 or TO-263 Package, Junction to Case 2 ˚C/W
Figure 1
ON /OFF Pin Logic Input 1.3 V
V
IH
V
IL
Threshold Voltage Low (Regulator ON) 0.6 V(max)
=
25˚C, and those with boldface type apply over full Operating Tempera-
J
=
12V for the 3.3V, 5V, and Adjustable version and V
IN
=
24V for the 12V ver-
IN
Typ Limit
(Limits)
(Note 3) (Note 4)
=
1.3V 10 nA
FB
50/100 nA (max)
127/110 kHz(min) 173/173 kHz(max)
=
1A (Notes 7, 8) 1 V
OUT
1.2/1.3 V(max) %
1.2/1.15 A(min)
2.4/2.6 A(max)
Output=−1V 2 mA
15 mA(max)
10 mA(max)
TO-220 Package, Junction to Ambient (Note 11) 50 ˚C/W TO-263 Package, Junction to Ambient (Note 12) 50 ˚C/W TO-263 Package, Junction to Ambient (Note 13) 30 ˚C/W TO-263 Package, Junction to Ambient (Note 14) 20 ˚C/W
High (Regulator OFF) 2.0 V(min)
www.national.com 4
All Output Voltage Versions Electrical Characteristics
Specifications with standard type face are for T ture Range. Unless otherwise specified, V sion. I
Symbol Parameter Conditions LM2595-XX Units
ON/OFF CONTROL Test Circuit
I
H
I
L
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is in­tended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: The human body model is a 100 pF capacitor discharged through a 1.5k resistor into each pin. Note 3: Typical numbers are at 25˚C and represent the most likely norm. Note 4: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100%produc-
tion tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
Note 5: External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator sys­tem performance. When the LM2595 is used as shown in the Characteristics.
Note 6: The switching frequency is reduced when the second stage current limit is activated. The amount of reduction is determined by the severity of current over­load.
Note 7: No diode, inductor or capacitor connected to output pin. Note 8: Feedback pin removed from output and connected to 0V to force the output transistor switch ON. Note 9: Feedback pin removed from output and connected to 12V for the 3.3V, 5V, and the ADJ. version, and 15V for the 12V version, to force the output transistor
switch OFF.
Note 10: V Note 11: Junction to ambient thermal resistance (no external heat sink) for the TO-220 package mounted vertically, with the leads soldered to a printed circuit board
with (1 oz.) copper area of approximately 1 in
Note 12: Junction to ambient thermal resistance with the TO-263 package tab soldered to a single printed circuit board with 0.5 in Note 13: Junction to ambient thermal resistance with the TO-263 package tab soldered to a single sided printed circuit board with 2.5 in Note 14: Junction to ambient thermal resistance with the TO-263 package tab soldered to a double sided printed circuit board with 3 in
the LM2595S side of the board, and approximately 16 in model in
=
200 mA.
LOAD
ON/OFF Pin Input Current
=
40V.
IN
Switchers Made Simple
Figure 1
®
version 4.3 software.
(Continued)
=
25˚C, and those with boldface type apply over full Operating Tempera-
J
=
12V for the 3.3V, 5V, and Adjustable version and V
IN
=
24V for the 12V ver-
IN
Typ Limit
(Note 3) (Note 4)
=
V
V
2
.
2.5V (Regulator OFF) 5 µA
LOGIC
=
0.5V (Regulator ON) 0.02 µA
LOGIC
Figure 1
test circuit, system performance will be as shown in system parameters section of Electrical
2
of (1 oz.) copper area.
2
of copper on the other side of the p-c board. SeeApplication Information in this data sheet and the thermal
2
(Limits)
15 µA(max)
5 µA(max)
2
of (1 oz.) copper area.
of (1 oz.) copper area on
Typical Performance Characteristics (Circuit of
Normalized Output Voltage
DS012565-11
Line Regulation
Figure 1
DS012565-12
)
Efficiency
DS012565-13
www.national.com5
Typical Performance Characteristics (Circuit of
Figure 1
) (Continued)
Switch Saturation Voltage
Operating Quiescent Current
ON /OFF Threshold Voltage
DS012565-14
DS012565-4
Switch Current Limit
Shutdown Quiescent Current
ON /OFF Pin Current (Sinking)
DS012565-15
DS012565-5
Dropout Voltage
DS012565-16
Minimum Operating Supply Voltage
DS012565-6
Switching Frequency
DS012565-7
www.national.com 6
DS012565-8
DS012565-9
Typical Performance Characteristics (Circuit of
Feedback Pin Bias Current
DS012565-10
Figure 1
) (Continued)
Continuous Mode Switching Waveforms
=
V
20V, V
IN
L=68 µH, C
A: Output Pin Voltage, 10V/div. B: Inductor Current 0.5A/div. C: Output Ripple Voltage, 50 mV/div.
OUT
OUT
=
5V, I
=
120 µF, C
LOAD
=
1A
ESR=100 m
OUT
Horizontal Time Base: 2 µs/div.
Load Transient Response for Continuous Mode
=
V
20V, V
IN
L=68 µH, C
OUT
OUT
=
5V, I
=
120 µF, C
=
250 mA to 750 mA
LOAD
OUT
ESR=100 m
DS012565-17
Discontinuous Mode Switching Waveforms
=
V
20V, V
IN
L=22 µH, C
A: Output Pin Voltage, 10V/div. B: Inductor Current 0.5A/div. C: Output Ripple Voltage, 50 mV/div.
OUT
OUT
=
5V, I
=
220 µF, C
LOAD
=
600 mA
ESR=50 m
OUT
DS012565-18
Horizontal Time Base: 2 µs/div.
Load Transient Response for Discontinuous Mode
=
V
20V, V
IN
L=22 µH, C
OUT
OUT
=
5V, I
=
220 µF, C
=
250 mA to 750 mA
LOAD
OUT
ESR=50 m
A: Output Voltage, 100 mV/div. (AC) B: 250 mA to 750 mA Load Pulse
Horizontal Time Base: 100 µs/div.
DS012565-19
A: Output Voltage, 100 mV/div. (AC) B: 250 mA to 750 mA Load Pulse
Horizontal Time Base: 200 µs/div.
DS012565-20
www.national.com7
Test Circuit and Layout Guidelines
Fixed Output Voltage Versions
CIN— 120 µF, 50V,Aluminum Electrolytic Nichicon “PL Series”
— 120 µF, 25V Aluminum Electrolytic, Nichicon “PL Series”
C
OUT
D1— 3A, 40V Schottky Rectifier, 1N5822 L1— 100 µH, L29
Adjustable Output Voltage Versions
CIN— 120 µF, 50V,Aluminum Electrolytic Nichicon “PL Series”
— 120 µF, 25V Aluminum Electrolytic, Nichicon “PL Series”
C
OUT
D1— 3A, 40V Schottky Rectifier, 1N5822 L1— 100 µH, L29 R C
%
—1kΩ,1
1
— See Application Information Section
FF
FIGURE 1. Standard Test Circuits and Layout Guides
As in any switching regulator, layout is very important. Rap­idly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by
heavy lines should be wide printed circuit traces and should be kept as short as possible. For best results, ex-
ternal components should be located as close to the switcher lC as possible using ground plane construction or single point grounding.
DS012565-22
DS012565-23
If open core inductors are used, special care must be taken as to the location and positioning of this type of induc­tor.Allowing the inductor flux to intersect sensitive feedback, lC groundpath and C
wiring can cause problems.
OUT
When using the adjustable version, special care must be taken as to the location of the feedback resistors and the as­sociated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor. (See application section for more information.)
www.national.com 8
LM2595 Series Buck Regulator Design Procedure (Fixed Output)
PROCEDURE (Fixed Output Voltage Version) EXAMPLE (Fixed Output Voltage Version)
Given:
=
V
Regulated Output Voltage (3.3V, 5V or 12V)
OUT
(max)=Maximum DC Input Voltage
V
IN
(max)=Maximum Load Current
I
LOAD
1. Inductor Selection (L1) A. Select the correct inductor value selection guide from
ure 4
,
Figure 5
,or
Figure 6
. (Output voltages of 3.3V, 5V, or
Fig-
12V respectively.) For all other voltages, see the design pro­cedure for the adjustable version.
B. From the inductor value selectionguide, identify the induc­tance region intersected by the Maximum Input Voltage line and the Maximum Load Current line. Each region isidentified by an inductance value and an inductor code (LXX).
C. Select an appropriate inductor from the four manufactur­er’s part numbers listed in
2. Output Capacitor Selection (C
Figure 8
OUT
.
)
A. In the majority of applications, low ESR (Equivalent Series
Resistance) electrolytic capacitors between 47 µF and 330 µF and low ESR solid tantalum capacitors between 56 µF and 270 µF provide the best results.This capacitor should be located close to the IC using short capacitor leads and short copper traces. Do not use capacitors larger than 330 µF.
For additional information, see section on output capaci­tors in application information section.
B. To simplify the capacitor selection procedure, refer to the
quick design component selection table shown in
Figure 2
This table contains different input voltages, output voltages, and load currents, and lists various inductors and output ca­pacitors that will provide the best design solutions.
C. The capacitor voltage rating for electrolytic capacitors should be at least 1.5 times greater than the output voltage, and often much higher voltage ratings are needed to satisfy the low ESR requirements for low output ripple voltage.
D. For computer aided design software, see
Made Simple
®
version 4.2 or later.
Switchers
Procedure continued on next page. Example continued on next page.
Given:
=
V
5V
OUT
(max)=12V
V
IN
(max)=1A
I
LOAD
1. Inductor Selection (L1) A. Use the inductor selection guide for the 5V version shown
in
Figure 5
.
B. From the inductor value selection guide shownin the inductance region intersected by the 12V horizontal line and the 1A vertical line is 68 µH, and the inductor code is L30.
C. The inductance value required is 68 µH. From the table in
Figure 8
, go to the L30 line and choose an inductor part num­ber from any of the four manufacturers shown. (In most in­stance, both through hole and surface mount inductors are available.)
2. Output Capacitor Selection (C
OUT
)
A. See section on output capacitors in application infor­mation section.
B. From the quick design component selection table shown
in
Figure 2
, locate the 5V output voltage section. In the load current column, choose the load current line that is closest to the current needed in your application, for this example, use the 1A line. In the maximum input voltage column, select the line that covers the input voltage needed in your application, in this example, use the 15V line. Continuing on this line are recommended inductors and capacitors that will provide the
.
best overall performance. The capacitor list contains both through hole electrolytic and
surface mount tantalum capacitors from four different capaci­tor manufacturers. It is recommended that both the manufac­turers and the manufacturer’s series that are listed in the table be used.
In this example aluminum electrolytic capacitors from several different manufacturers are available with the range of ESR numbers needed.
220 µF 25V Panasonic HFQ Series 220 µF 25V Nichicon PL Series
C. For a 5V output, a capacitor voltage rating at least 7.5V or more is needed. But, in this example, even a low ESR, switching grade, 220 µF 10V aluminum electrolytic capacitor would exhibit approximately 225 mof ESR (see the curve in
Figure 14
for the ESR vs voltage rating). This amount of ESR would result in relatively high output ripple voltage. To reduce the ripple to 1%of the output voltage, or less, a ca­pacitor with a higher voltage rating (lower ESR)should be se­lected. A 16V or 25V capacitor will reduce the ripple voltage by approximately half.
Figure 5
,
www.national.com9
Loading...
+ 20 hidden pages