• Low VCC write inhibit is equal to or less than 3.2V
• Package type:
- 44-pin SOP
- 48-pin TSOP
• Compatibility with JEDEC standard
- Pinout and software compatible with single-power
supply Flash
GENERAL DESCRIPTION
The MX29F800T/B is a 8-mega bit Flash memory organized as 1M bytes of 8 bits or 512K words of 16 bits .
MXIC's Flash memories offer the most cost-effectiv e and
reliable read/write non-volatile random access memory .
The MX29F800T/B is packaged in 44-pin SOP, 48-pin
TSOP. It is designed to be reprogrammed and erased
in system or in standard EPROM programmers.
The standard MX29F800T/B offers access time as fast
as 70ns, allowing operation of high-speed microprocessors without wait states. To eliminate bus contention,
the MX29F800T/B has separate chip enable (CE) and
output enable (OE) controls.
MXIC's Flash memories augment EPROM functionality
with in-circuit electrical erasure and programming. The
MX29F800T/B uses a command register to manage this
functionality. The command register allows for 100%
P/N:PM0578REV. 1.7, JUL. 24, 2001
TTL level control inputs and fixed power supply levels
during erase and programming, while maintaining maximum EPROM compatibility.
MXIC Flash technology reliably stores memory contents
even after 100,000 erase and prog ram cycles. The MXIC
cell is designed to optimize the erase and programming
mechanisms. In addition, the combination of advanced
tunnel oxide processing and low internal electric fields
for erase and program operations produces reliab le cycling. The MX29F800T/B uses a 5.0V±10% VCC sup-
ply to perform the High Reliability Erase and auto Program/Erase algorithms.
The highest degree of latch-up protection is achieved
with MXIC's proprietary non-epi process. Latch-up protection is proved for stresses up to 100 milliamps on
address and data pin from -1V to VCC + 1V.
Note: Address range is A18:A-1 in byte mode and A18:A0 in word mode.
P/N:PM0578
REV. 1.7, JUL. 24, 2001
3
BLOCK DIAGRAM
MX29F800T/B
CE
OE
WE
A0-A18
CONTROL
INPUT
LOGIC
ADDRESS
LATCH
AND
BUFFER
PROGRAM/ERASE
HIGH VOLT A GE
X-DECODER
MX29F800T/B
FLASH
ARRA Y
Y-DECODER
Y-PASS GATE
SENSE
AMPLIFIER
PGM
DATA
HV
ARRAY
SOURCE
HV
WRITE
STATE
MACHINE
(WSM)
STATE
REGISTER
COMMAND
DATA
DECODER
COMMAND
DATA LATCH
P/N:PM0578
Q0-Q15/A-1
PROGRAM
DATA LATCH
I/O BUFFER
REV. 1.7, JUL. 24, 2001
4
MX29F800T/B
AUTOMATIC PROGRAMMING
The MX29F800T/B is byte programmable using the A utomatic Programming algorithm. The Automatic Programming algorithm makes the e xternal system do not
need to have time out sequence nor to verify the data
programmed. The typical chip programming time at
room temperature of the MX29F800T/B is less than 8
seconds.
AUTOMATIC CHIP ERASE
The entire chip is bulk erased using 10 ms erase pulses
according to MXIC's Automatic Chip Erase algorithm.
Typical erasure at room temperature is accomplished
in less than 8 second. The Automatic Erase algorithm
automatically programs the entire array prior to electrical erase. The timing and v erification of electrical erase
are controlled internally within the device.
AUTOMATIC SECTOR ERASE
The MX29F800T/B is sector(s) erasable using MXIC's
Auto Sector Erase algorithm. Sector erase modes allow sectors of the array to be erased in one er ase cycle.
The Automatic Sector Erase algorithm automatically
programs the specified sector(s) prior to electrical erase.
The timing and verification of electrical erase are controlled internally within the device.
AUTOMATIC PROGRAMMING ALGORITHM
MXIC's Automatic Programming algorithm requires the
user to only write program set-up commands (including
2 unlock write cycle and A0H) and a program command
(program data and address). The device automatically
times the programming pulse width, provides the program verification, and counts the number of sequences.
A status bit similar to DAT A polling and a status bit toggling between consecutive read cycles, provide feedback to the user as to the status of the programming
operation.
AUTOMATIC ERASE ALGORITHM
MXIC's Automatic Erase algorithm requires the user to
write commands to the command register using standard microprocessor write timings. The device will automatically pre-program and verify the entire arra y . Then
the device automatically times the erase pulse width,
provides the erase verification, and counts the number
of sequences. A status bit toggling between consecutive read cycles provides feedbac k to the user as to the
status of the programming operation.
Register contents serve as inputs to an internal statemachine which controls the erase and programming circuitry . During write cycles, the command register internally latches address and data needed for the programming and erase operations. During a system write cycle,
addresses are latched on the falling edge, and data are
latched on the rising edge of WE or CE, whichev er happens first.
MXIC's Flash technology combines years of EPROM
experience to produce the highest lev els of quality, reliability , and cost eff ectiveness . The MX29F800T/B electrically erases all bits simultaneously using FowlerNordheim tunneling. The bytes are prog rammed by using the EPROM programming mechanism of hot electron injection.
During a program cycle, the state-machine will control
the program sequences and command register will not
respond to any command set. During a Sector Erase
cycle, the command register will only respond to Erase
Suspend command. After Erase Suspend is completed,
the device stays in read mode . After the state machine
has completed its task, it will allow the command register to respond to its full command set.
P/N:PM0578
REV. 1.7, JUL. 24, 2001
5
MX29F800T/B
TABLE1. SOFTWARE COMMAND DEFINITIONS
First BusSecond BusThird BusFourth BusFifth BusSixth Bus
CommandBusCycleCycleCycleCycleCycleCycle
Cycle AddrData AddrData AddrData AddrDataAddr Data Addr Data
Reset 1XXXH F0H
Read1RARD
Read Silicon ID Word4555H AAH 2AAH 55H555H90H ADIDDI
1. ADI = Address of Device identifier; A1=0, A0 = 0 for manufacture code,A1=0, A0 = 1 for device code. A2-A18=do not care.
(Refer to table 3)
DDI = Data of Device identifier : C2H for manufacture code, D6H/58H (x8) and 22D6H/2258H (x16) for device code.
X = X can be VIL or VIH
RA=Address of memory location to be read.
RD=Data to be read at location RA.
2.PA = Address of memory location to be programmed.
PD = Data to be programmed at location PA.
SA = Address to the sector to be erased.
3.The system should generate the following address patterns: 555H or 2AAH to Address A10~A0 in word mode/AAAH or 555H
to Address A10~A-1 in byte mode.
Address bit A11~A18=X=Don't care for all address commands except for Program Address (PA) and Sector
Address (SA). Write Sequence may be initiated with A11~A18 in either state.
4. For Sector Protect Verify operation:If read out data is 01H, it means the sector has been protected. If read out data is 00H,
it means the sector is still not being protected.
P/N:PM0578
REV. 1.7, JUL. 24, 2001
6
COMMAND DEFINITIONS
MX29F800T/B
Device operations are selected by writing specific address and data sequences into the command register.
Writing incorrect address and data values or writing them
in the improper sequence will reset the device to the
read mode. Table 1 defines the valid register command
sequences. Note that the Erase Suspend (B0H) and
Erase Resume (30H) commands are valid only while
the Sector Erase operation is in progress. Either of the
two reset command sequences will reset the
device(when applicable).
TABLE 2. MX29F800T/B BUS OPERATION
PinsCEOEWEA0A1A6A9Q0 ~ Q15
Mode
Read Silicon IDLLHLLXVID(2)C2H (Byte mode)
Manfacturer Code(1)00C2H (Word mode)
Read Silicon IDLLHHLXVID(2)D6H/58H (Byte mode)
Device Code(1)22D6H/2258H (Word mode)
ReadLLHA0A1A6A9D
StandbyHXXXXXX HIGH Z
Output DisableLHHXXXX HIGH Z
WriteL H L A0A1A6A9 DIN(3)
Sector Protect(6)LVID(2) LXXLVID(2)X
Chip UnprotectLVID(2) LXXHVID(2)X
Verify Sector Protect(6)LLHXHXVID(2)Code(5)
ResetXXXXXXX HIGH Z
OUT
NOTES:
1. Manufacturer and device codes may also be accessed via a command register write sequence. Refer to Table 1.
2. VID is the Silicon-ID-Read high voltage, 11.5V to 12.5V.
3. Refer to Table 1 for valid Data-In during a write operation.
4. X can be VIL or VIH.
5. Code=00H/0000H means unprotected.
Code=01H/0001H means protected.
6. A18~A12=Sector address for sector protect.
P/N:PM0578
REV. 1.7, JUL. 24, 2001
7
MX29F800T/B
READ/RESET COMMAND
The read or reset operation is initiated by writing the
read/reset command sequence into the command register. Microprocessor read cycles retrieve array data.
The device remains enabled for reads until the command register contents are altered.
If program-fail or erase-f ail happen, the write of F0H will
reset the device to abort the operation. A valid command must then be written to place the device in the
desired state.
SILICON-ID-READ COMMAND
Flash memories are intended for use in applications
where the local CPU alters memory contents. As such,
manufacturer and device codes m ust be accessible while
the device resides in the target system. PROM programmers typically access signature codes by raising
A9 to a high voltage(VID). However, multiplexing high
voltage onto address lines is not generally desired system design practice.
The MX29F800T/B contains a Silicon-ID-Read operation to supplement traditional PROM programming methodology. The operation is initiated by writing the read
silicon ID command sequence into the command register. Following the command write, a read cycle with
A1=VIL, A0=VIL retrieves the manuf acturer code of C2H/
00C2H. A read cycle with A1=VIL, A0=VIH returns the
device code of D6H/22D6H f or MX29F800T , 58H/2258H
for MX29F800B.
SET-UP AUTOMATIC CHIP/SECT OR ERASE
COMMANDS
Chip erase is a six-bus cycle operation. There are two
"unlock" write cycles. These are followed b y writing the
"set-up" command 80H. Two more "unlock" write cycles are then followed by the chip er ase command 10H.
The Automatic Chip Erase does not require the device
to be entirely pre-programmed prior to executing the
Automatic Chip Erase. Upon executing the Automatic
Chip Erase, the device will automatically program and
verify the entire memory for an all-zero data pattern.
When the device is automatically verified to contain an
all-zero pattern, a self-timed chip erase and verify begin. The erase and ve rify operations are completed when
the data on Q7 is "1" at which time the device returns to
the Read mode. The system is not required to provide
any control or timing during these operations.
When using the Automatic Chip Erase algorithm, note
that the erase automatically terminates when adequate
erase margin has been achieved for the memory
array(no erase v erification command is required).
If the Erase operation was unsuccessful, the data on
Q5 is "1"(see Table 4), indicating the erase operation
exceed internal timing limit.
The automatic erase begins on the rising edge of the
last WE or CE, whichever happens first pulse in the
command sequence and terminates when the data on
Q7 is "1" and the data on Q6 stops toggling for two consecutive read cycles, at which time the device returns
to the Read mode.
TABLE 3. EXPANDED SILICON ID CODE
PinsA0A1Q15~Q8 Q7Q6Q5Q4 Q3Q2 Q1Q0 Code(Hex)
Manufacture codeWord VILVIL00H1100001000C2H
ByteVILVILX11000010C2 H
Device codeWord VIHVIL22H1101011022D6H
for MX29F800TByteVIHVILX11010110D6 H
Device codeWord VIHVIL22H010110002258H
for MX29F800BByteVIHVILX0101100058H
Sector ProtectionXVIH X0000000101H (Protected)
VerificationXVIH X0000000000H (Unprotected)
P/N:PM0578
8
REV. 1.7, JUL. 24, 2001
SECTOR ERASE COMMANDS
MX29F800T/B
The Automatic Sector Erase does not require the device to be entirely pre-programmed prior to executing
the Automatic Set-up Sector Erase command and Automatic Sector Erase command. Upon executing the
Automatic Sector Erase command, the de vice will automatically program and verify the sector(s) memory for
an all-zero data pattern. The system is not required to
provide any control or timing during these operations.
When the sector(s) is automatically verified to contain
an all-zero pattern, a self-timed sector erase and verify
begin. The erase and verify operations are complete
when the data on Q7 is "1" and the data on Q6 stops
toggling for two consecutiv e read cycles , at which time
the device returns to the Read mode. The system is not
required to provide any control or timing during these
operations.
When using the Automatic sector Erase algorithm, note
that the erase automatically terminates when adequate
erase margin has been achieved for the memory array
T able 4. Write Operation Status
(no erase verification command is required). Sector
erase is a six-bus cycle operation. There are two "unlock" write cycles. These are followed by writing the
set-up command 80H. Two more "unlock" write cycles
are then followed by the sector erase command 30H.
The sector address is latched on the falling edge of WE
or CE, whichever happens later , while the command(data)
is latched on the rising edge of WE or CE, whichever
happens first. Sector addresses selected are loaded
into internal register on the sixth falling edge of WE or
CE, whichever happens later. Each successive sector
load cycle started by the falling edge of WE or CE,
whichever happens later must begin within 30us from
the rising edge of the preceding WE or CE, whichever
happens first. Otherwise, the loading period ends and
internal auto sector erase cycle starts. (Monitor Q3 to
determine if the sector erase timer window is still open,
see section Q3, Sector Erase Timer .) Any command other
than Sector Erase(30H) or Erase Suspend(B0H) during
the time-out period resets the device to read mode.
StatusQ7Q6Q5Q3Q2RY/BY
Note1Note2
Byte Program in Auto Program AlgorithmQ7Toggle0N/AN o0
Byte Program in Auto Program AlgorithmQ7Toggle1N/AN o0
Exceeded
Time Limits Auto Erase Algorithm0Toggle11Toggle0
Erase Suspend ProgramQ7Toggle1N/AN/A0
Toggle
Toggle
Note:
1. Q7 and Q2 require a valid address when reading status information. Refer to the appropriate subsection for further
details.
2. Q5 switches to '1' when an Auto Program or Auto Erase operation has exceeded the maximum timing limits.
See "Q5:Exceeded Timing Limits " for more information.
P/N:PM0578
REV. 1.7, JUL. 24, 2001
9
MX29F800T/B
ERASE SUSPEND
This command only has meaning while the state machine is executing Automatic Sector Erase operation,
and therefore will only be responded during Automatic
Sector Erase operation. When the Erase Suspend command is written during a sector erase operation, the device requires a maximum of 100us to suspend the erase
operations. However , When the Erase Suspend command
is written during the sector erase time-out, the device
immediately terminates the time-out period and suspends
the erase operation. After this command has been executed, the command register will initiate erase suspend
mode. The state machine will return to read mode automatically after suspend is ready . At this time, state machine only allows the command register to respond to
the Read Memory Array, Erase Resume and program
commands.
The system can determine the status of the program
operation using the Q7 or Q6 status bits, just as in the
standard program operation. After an erase-suspend
program operation is complete, the system can once
again read array data within non-suspended sectors.
ERASE RESUME
This command will cause the command register to clear
the suspend state and return back to Sector Erase mode
but only if an Erase Suspend command was pre viously
issued. Erase Resume will not have any effect in all
other conditions.Another Erase Suspend command can
be written after the chip has resumed erasing.
If the program opetation was unsuccessful, the data on
Q5 is "1"(see Table 4), indicating the program operation
exceed internal timing limit. The automatic programming
operation is completed when the data read on Q6 stops
toggling for two consecutive read cycles and the data
on Q7 and Q6 are equivalent to data written to these
two bits, at which time the device returns to the Read
mode(no program verify command is required).
DATA POLLING-Q7
The MX29F800T/B also features Data Polling as a
method to indicate to the host system that the Automatic Program or Erase algorithms are either in progress
or completed.
While the Automatic Programming algorithm is in operation, an attempt to read the device will produce the
complement data of the data last written to Q7. Upon
completion of the Automatic Program Algorithm an attempt to read the device will produce the true data last
written to Q7. The Data P olling f eature is valid after the
rising edge of the fourth WE or CE, whichev er happens
first pulse of the four write pulse sequences for automatic program.
While the Automatic Erase algorithm is in operation, Q7
will read "0" until the erase operation is competed. Upon
completion of the erase operation, the data on Q7 will
read "1". The Data P olling feature is valid after the rising edge of the sixth WE or CE, whichev er happens first
pulse of six write pulse sequences for automatic chip/
sector erase.
SET-UP AUTOMATIC PROGRAM COMMANDS
T o initiate Automatic Progr am mode, A three-cycle command sequence is required. There are two "unlock" write
cycles. These are f ollowed by writing the Automatic Program command A0H.
Once the Automatic Program command is initiated, the
next WE pulse causes a tr ansition to an active programming operation. Addresses are latched on the falling
edge, and data are internally latched on the rising
edge of the WE or CE, whichever happens first. The
rising edge of WE or CE, whichev er happens first, also
begins the programming operation. The system is not
required to provide further controls or timings. The device will automatically provide an adequate internally generated program pulse and verify margin.
P/N:PM0578
The Data Polling f eature is active during Automatic Program/Erase algorithm or sector erase time-out.(see section Q3 Sector Erase Timer)
RY/BY:Ready/Busy
The RY/BY is a dedicated, open-drain output pin that
indicates whether an Automatic Erase/Program algorithm is in progress or complete. The RY/BY status is
valid after the rising edge of the final WE or CE, whichever happens first pulse in the command sequence.
Since RY/BY is an open-drain output, several RY/BY
pins can be tied together in parallel with a pull-up resistor to Vcc.
If the output is low (Busy), the device is activ ely erasing
or programming. (This includes programming in the
Erase Suspend mode.)If the output is high (Ready), the
REV. 1.7, JUL. 24, 2001
10
MX29F800T/B
device is ready to read array data (including during the
Erase Suspend mode), or is in the standby mode.
Table 4 shows the outputs f or RY/BY.
Q6:Toggle BIT I
Toggle Bit I on Q6 indicates whether an Automatic Program or Erase algorithm is in progress or complete, or
whether the device has entered the Erase Suspend
mode. Toggle Bit I may be read at any address, and is
valid after the rising edge of the final WE or CE, whichever happens first, in the command sequence(prior to
the program or erase operation), and during the sector
time-out.
During an Automatic Program or Erase algorithm operation, successive read cycles to any address cause
Q6 to toggle. The system may use either OE or CE to
control the read cycles. When the operation is complete,
Q6 stops toggling.
After an erase command sequence is written, if all sectors selected for erasing are protected, Q6 toggles and
returns to reading array data. If not all selected sectors
are protected, the Automatic Erase algorithm erases the
unprotected sectors, and ignores the selected sectors
that are protected.
The system can use Q6 and Q2 together to determine
whether a sector is actively erasing or is erase suspended. When the de vice is actively erasing (that is, the
Automatic Erase algorithm is in progress), Q6 toggling.
When the device enters the Erase Suspend mode, Q6
stops toggling. Ho wever, the system m ust also use Q2
to determine which sectors are erasing or erase-suspended. Alternatively, the system can use Q7.
If a program address falls within a protected sector, Q6
toggles for approximately 2 us after the program command sequence is written, then returns to reading array
data.
Q2:Toggle Bit II
The "T oggle Bit II" on Q2, when used with Q6, indicates
whether a particular sector is actively eraseing (that is,
the Automatic Erase alorithm is in process), or whether
that sector is erase-suspended. Toggle Bit II is valid
after the rising edge of the final WE or CE, whichever
happens first, in the command sequence.
Q2 toggles when the system reads at addresses within
those sectors that have been selected f or erasure. (The
system may use either OE or CE to control the read
cycles.) But Q2 cannot distinguish whether the sector
is actively erasing or is erase-suspended. Q6, b y comparison, indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which
sectors are selected for erasure. Thus , both status bits
are required for sectors and mode inf ormation. Refer to
Table 4 to compare outputs for Q2 and Q6.
Reading Toggle Bits Q6/ Q2
Whenev er the system initially begins reading toggle bit
status, it must read Q7-Q0 at least twice in a row to
determine whether a toggle bit is toggling. T ypically, the
system would note and store the value of the toggle bit
after the first read. After the second read, the system
would compare the new value of the toggle bit with the
first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can
read array data on Q7-Q0 on the f ollo wing read cycle.
Howe v e r, if after the initial two read cycles, the system
determines that the toggle bit is still toggling, the system also should note whether the value of Q5 is high
(see the section on Q5). If it is, the system should then
determine again whether the toggle bit is toggling, since
the toggle bit may hav e stopped toggling just as Q5 went
high. If the toggle bit is no longer toggling, the device
has successfuly completed the program or erase operation. If it is still toggling, the device did not complete
the operation successfully, and the system must write
the reset command to return to reading array data.
Q6 also toggles during the erase-suspend-program
mode, and stops toggling once the Automatic Program
algorithm is complete.
Table 4 shows the outputs f or Toggle Bit I on Q6.
P/N:PM0578
The remaining scenario is that system initially determines that the toggle bit is toggling and Q5 has not gone
high. The system may contin ue to monitor the toggle bit
and Q5 through successive read cycles, determining
the status as described in the previous paragraph. Alternatively , it may choose to perf orm other system tasks.
In this case, the system must start at the beginning of
the algorithm when it returns to determine the status of
the operation.
REV. 1.7, JUL. 24, 2001
11
MX29F800T/B
Q5
Exceeded Timing Limits
Q5 will indicate if the program or erase time has exceeded the specified limits(internal pulse count). Under these conditions Q5 will produce a "1". This timeout condition indicates that the program or erase cycle
was not successfully completed. Data Polling and T oggle
Bit are the only operating functions of the device under
this condition.
If this time-out condition occurs during sector erase operation, it specifies that a particular sector is bad and it
may not be reused. Howe ver , other sectors are still functional and may be used for the prog ram or erase operation. The device must be reset to use other sectors.
Write the Reset command sequence to the device, and
then execute program or erase command sequence.
This allows the system to continue to use the other active sectors in the device .
If this time-out condition occurs during the chip erase
operation, it specifies that the entire chip is bad or combination of sectors are bad.
If this time-out condition occurs during the byte programming operation, it specifies that the entire sector containing that byte is bad and this sector maynot be reused, (other sectors are still functional and can be reused).
The time-out condition may also appear if a user tries to
program a non blank location without erasing. In this
case the device locks out and ne v er completes the A utomatic Algorithm operation. Hence , the system ne v er
reads a valid data on Q7 bit and Q6 never stops toggling. Once the Device has e xceeded timing limits, the
Q5 bit will indicate a "1". Please note that this is not a
device failure condition since the de vice was incorrectly
used.
TEMPORARY SECT OR UNPR OTECT
This feature allows temporary unprotection of previously
protected sector to change data in-system. The T emporary Sector Unprotect mode is activated by setting the
RESET pin to VID(11.5V-12.5V). During this mode, formerly protected sectors can be programmed or erased
as un-protected sector. Once VID is remove from the
RESET pin,all the previously protected sectors are protected again.
Q3
Sector Erase Timer
After the completion of the initial sector erase command
sequence, the sector erase time-out will begin. Q3 will
remain low until the time-out is complete. Data Polling
and Toggle Bit are valid after the initial sector erase command sequence.
If Data Polling or the Toggle Bit indicates the device has
been written with a valid erase command, Q3 may be
used to determine if the sector erase timer window is
still open. If Q3 is high ("1") the inter nally controlled
erase cycle has begun; attempts to write subsequent
commands to the device will be ignored until the erase
operation is completed as indicated by Data Polling or
T oggle Bit. If Q3 is low ("0"), the device will accept additional sector erase commands. T o insure the command
has been accepted, the system software should check
the status of Q3 prior to and following each subsequent
sector erase command. If Q3 were high on the second
status check, the command may not have been accepted.
WRITE PULSE "GLITCH" PROTECTION
Noise pulses of less than 5ns(typical) on CE or WE will
not initiate a write cycle.
DATA PROTECTION
The MX29F800T/B is designed to offer protection
against accidental erasure or programming caused by
spurious system level signals that may exist during
power transition. During power up the de vice automatically resets the state machine in the Read mode. In
addition, with its control register architecture, alteration
of the memory contents only occurs after successful
completion of specific command sequences. The device also incorporates several f eatures to prev ent inadvertent write cycles resulting from VCC power-up and
power-down transition or system noise .
P/N:PM0578
LOGICAL INHIBIT
Writing is inhibited by holding any one of OE = VIL, CE
= VIH or WE = VIH. T o initiate a write cycle CE and WE
must be a logical zero while OE is a logical one.
POWER SUPPLY DECOUPLING
In order to reduce power switching effect, each device
should have a 0.1uF cer amic capacitor connected between its VCC and GND.
REV. 1.7, JUL. 24, 2001
12
MX29F800T/B
SECTOR PROTECTION
The MX29F800T/B features hardware sector protection.
This feature will disable both program and erase oper ations for these sectors protected. T o activ ate this mode,
the programming equipment must force VID on address
pin A9 and control pin OE, (suggest VID = 12V) A6 =
VIL and CE = VIL.(see Table 2) Programming of the
protection circuitry begins on the falling edge of the WE
pulse and is terminated on the rising edge. Please ref er
to sector protect algorithm and wavef orm.
T o v erify programming of the protection circuitry , the programming equipment must force VID on address pin A9
( with CE and OE at VIL and WE at VIH). When A1=1, it
will produce a logical "1" code at device output Q0 f or a
protected sector. Otherwise the device will produce 00H
for the unprotected sector. In this mode, the
addresses,except f or A1, are don't care. Address locations with A1 = VIL are reserved to read manufacturer
and device codes.(Read Silicon ID)
It is also possible to determine if the sector is protected
in the system by writing a Read Silicon ID command.
Performing a read operation with A1=VIH, it will produce a logical "1" at Q0 for the protected sector.
POWER-UP SEQUENCE
The MX29F800T/B powers up in the Read only mode.
In addition, the memory contents may only be altered
after successful completion of the predefined command
sequences.
ABSOLUTE MAXIMUM RATINGS
RATINGVALUE
Ambient Operating Temperature-40oC to 85oC
Storage T emperature-65oC to 125oC
Applied Input Voltage-0.5V to 7.0V
Applied Output Voltage-0.5V to 7.0V
VCC to Ground Potential-0.5V to 7.0V
A9 & OE-0.5V to 13.5V
NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operational
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may
affect reliability.
CHIP UNPROTECT
The MX29F800T/B also features the chip unprotect
mode, so that all sectors are unprotected after chip
unprotect is completed to incorporate any changes in
the code. It is recommended to protect all sectors before
activating chip unprotect mode.
To activate this mode, the programming equipment
must force VID on control pin OE and address pin A9.
The CE pins must be set at VIL. Pins A6 must be set to
VIH.(see Table 2) Refer to chip unprotect algorithm and
waveform for the chip unprotect algorithm. The
unprotection mechanism begins on the falling edge of
the WE pulse and is terminated on the rising edge.
It is also possible to determine if the chip is unprotected
in the system by writing the Read Silicon ID command.
Performing a read operation with A1=VIH, it will produce
00H at data outputs(Q0-Q7) for an unprotected sector.
It is noted that all sectors are unprotected after the chip
unprotect algorithm is completed.
NOTICE:
Specifications contained within the following tables are subject to change.
P/N:PM0578
REV. 1.7, JUL. 24, 2001
13
Loading...
+ 29 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.