Mutable Instruments Braids User Manual

Mutable Instruments | Braids
Note: Braids continuously receives upgrades that add new synthesis models or features. This user
manual documents the version 1.8 of the firmware. If the settings and menus of your unit look a bit different, it’s likely that an older firmware revision is installed. You can find out which version is installed by clicking on the encoder and scrolling to the end of the menu. If an older version is installed, Please
upgrade!
Braids is a voltage-controlled digital sound source. It features 45 waveform synthesis models, which cover techniques such as FM, wavetable synthesis, waveguide synthesis or analog emulation. Most synthesis models are built with one or several oscillators connected through crossfaders, modulators, filters, or delay lines. Each synthesis model is controlled by 2 parameters, called Timbre and Color. Most of the time, Timbre will impact the brightness of the sound.
Braids is designed for Eurorack synthesizer systems and occupies 16 HP of space.
Boards manufactured prior to july 2015 require a -12V / +12V / +5V supply (2x8 connector), and draw 15mA from the -12V / +12V rails and 85mA from the +5V rail.
Boards manufactured after july 2015 require a -12V / +12V (2x5 connector), and draw 15mA from the -12V rail and 100mA from the +12V rail.
In any case, the red stripe of the ribbon cable must be oriented on the same side as the “Red stripe” marking on the printed circuit board.
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
This device meets the requirements of the following standards: EN55032, EN55103-2, EN61000-3-2, EN61000-3-3, EN62311.
1 of 9
Mutable Instruments | Braids
A: LED display and rotary encoder. When the module starts, the LED display shows the name of the
active synthesis model, and the encoder can be used to select a model. Click the encoder to display a list of additional settings and options. Click the encoder to select an option and modify its value. Once the value has been modified to your liking, click the encoder to get back to the list of options. Selecting the first option (“WAVE”), saves to memory the current setup and brings you back in model selection mode.
B, C: Fine and coarse frequency control.
D: Frequency modulation attenuverter. This knob controls the amount and polarity of modulation applied to
frequency, from the FM CV input jack.
E: Timbre. This parameter controls the main evolution and motion of the timbre - for example pulse width
for a square oscillator or modulation index for a FM model.
F: Modulation attenuverter. This knob controls the amount and polarity of modulation applied to the TIMBRE parameter, from the TIMBRE CV input jack.
G: Color. This knob controls a second dimension of sound, for example the symmetry of an oscillator or
the modulation frequency for a FM model.
TRIG: This trigger input serves three purposes. 1/ Braids’ physical models need to be “excited” by an
impulse on this input to give birth to a sound. 2/ The other models will treat the trigger as a reset signal, bringing the phase of the oscillator(s) to 0. 3/ This input can also be used to trigger an internal AD envelope applied to the parameters of your choice, to create sound animation and attacks without an external envelope module.
V/OCT: 1V/Oct frequency CV input.
FM: Frequency modulation CV input - the scale and polarity of this signal is set by the FM attenuverter.
TIMBRE and COLOR: Control voltages for the Timbre and Color parameters. A value of 0V corresponds
to the minimum position of the knob. A value of +5V corresponds to the maximum position of the knob. This CV is offset by the current position of the knob.
OUT: Signal output. Loudness is model-dependent - for example a pure sine wave is always at maximum
amplitude; while a ring-modulated sine-wave will have peaks and valleys due to amplitude modulation, and will thus sound quieter.
2 of 9
Mutable Instruments | Braids
This model is inspired by a quirk/defect of the Yamaha CS80 sawtooth wave shape, consisting of a fixed­width “notch” after the raising edge. The width of the notch can be controlled by TIMBRE; and its depth and polarity can be controlled by COLOR - producing phasing effects.
This model produces the classic waveform trajectory from triangle to sawtooth to square to pulse found in synthesizers such as the RSF Kobol or the Moog Voyager. TIMBRE sweeps through the waveforms.
COLOR morphs from several tonal characters by increasingly removing the high-frequencies with a 1-pole
filter, and recreating them with a waveshaper.
This model blends a sawtooth wave with dephasing control, with a square wave with PWM. TIMBRE controls the dephasing amount or pulse width, and COLOR morphs the waveshape from sawtooth to square.
This model is built with sine and triangle oscillators sent into a wavefolder. TIMBRE controls the wavefolder strength, and COLOR controls the balance between the sine and triangle signals sent to it.
This digital synthesis algorithm generates a smooth sequence of waveforms, transitioning from a sine wave to a Dirac comb, as controlled by TIMBRE. The intermediary steps are reminiscent of a single formant. Two such waveshapes are blended together, with the detuning amount controlled by COLOR.
These model synthesize the classic 2-oscillator hardsync patch, with both oscillators emitting square or saw waves. The main oscillator frequency controls the master frequency. The interval between master and slave is controlled by TIMBRE. COLOR controls the balance between the two oscillators.
Three sawtooth (or square, triangle, sine) oscillators which can be individually tuned. COLOR and
TIMBRE control the relative frequency of the second and third oscillator with respect to the main oscillator.
These two controls are quantized to “snap” on musical intervals like octaves or fifths.
Three sine wave oscillators are ring-modulated together, and colored by a waveshaper. The main oscillator frequency controls the frequency of the first sine wave, and TIMBRE and COLOR control the relative frequency of the second and third sine waves.
This model simulates a swarm of 7 sawtooth waves. TIMBRE controls their detuning, and COLOR applies a high-pass filter to the resulting sound.
This model generates a sawtooth waveform, and sends it into a comb filter (tuned delay line). The
3 of 9
Loading...
+ 6 hidden pages