13
SHARK - the FUN • yer!
As inventors of the world-famous EasyStar, we decided
that our next aeroplane would be a modern, user-friendly
design which would guarantee a one hundred percent
FUN factor. We wanted to create a model which could
grow as the owner’s skills developed, and would never
become boring.
The outcome is something very special - the MULTIPLEX
SHARK!
The SHARK looks terrifi c in its unusual colour scheme,
and it fl ies fantastically well. In its standard form the model
is controlled using rudder and elevator, but it is prepared
for the aileron option. With the recommend Li-BATT FX
3/1-950 fl ight battery a minimum fl ying time of 10 min is
possible!
It takes just a few moments to fi t an undercarriage to
the aeroplane, and with a further “click” it is transformed
into a fl oat-plane which provides loads of fun - on snow
as well as water. We think every MULTIPLEX SHARK
owner should have this optional accessory. And for the
aesthetically demanding modeller we can supply a stylish
protective landing skid.
When all the fl ying fun’s over, the SHARK can very easily
be dismantled and packed back into the original carton.
Highly practical!
• Benign fl ying qualities, ideal for the beginner;
very robust construction
• Powerful brushless motor
• Clear canopy with racing-style pilot
• Wide range of optional upgrades (protective
landing skid, undercarriage, fl oats, aileron
upgrade, MULTIlight)
• Original carton doubles as transport box
Set contents, RR:
ELAPOR® model, 100% factory-assembled, including
PERMAX BL-O 2816-1450 electric motor, MULTIcont
BL-12 SD speed controller, 5.5 x 4.5” propeller, two MS-
12015 servos, painted fi nish, decals already applied,
comprehensive instructions
RR+
As above, plus: RX-5 M-LINK ID 9 receiver and Li-BATT
FX 3/1-950 (M6) battery.
RTF:
As above, plus: RX-5 M-LINK ID 9 receiver, Li-BATT FX
3/1-950 (M6) battery, SMART-SX transmitter, 3 AA-size
dry cells, MULTIcharger L-703 EQU battery charger.
Please check that all components are present by referring
to the Parts List on page 16 (pic 01 & 02).
1. Fitting the tailplane (pic. 03-05):
Insert the left-hand tailplane panel 5 into the opening in the
rear end of the fuselage / fi n, then push in the right-hand
tailplane panel 6 until it snaps into place.
The tailplane can be removed from the fuselage for transport as follows: press the outboard end of the locking lever
on the underside of the right-hand tailplane, and withdraw
the panels. It is important to check that the tailplane is
correctly engaged before every fl ight.
2. Installing the receiver (pic. 06&07):
è The following step is only necessary for the
RR version.
Open the canopy 1 on the fuselage 2, and place it to one
side.
Now connect the servos and the speed controller to the
receiver. Ensure that the connectors are inserted the right
way round, and that they are in the appropriate sockets:
the rudder servo is the right-hand one as seen from the
tail; the elevator servo is the left-hand one.
The standard channel arrangement (socket sequence)
of MULTIPLEX radio control systems (e.g. SMART SX‚
15300 / 15301) is as follows:
1. L.H. aileron
2. Elevator
3. Rudder
4. Motor (throttle)
5. R.H. aileron
3. Adjusting the servos (pic. 08-11b):
Before you connect the # ight battery for the " rst time, it
is important to check that the model’s propeller is free to
spin, and that the model is securely held. The thrust generated by the propeller should not be under-estimated; it
is quite strong enough to suck loose items into the air# ow.
If you do not have prior experience with powered model
aircraft, we recommend that you ask a friend to help you
at this stage.
Connect the # ight battery, and check the direction of
rotation of the servos. If your model is the RR+ / RTF
version, the servos are already correctly set up for Mode
1 / 3 or 2 / 4.
The following functions must work as follows if the " rst
# ight is to be successful:
• Pull elevator stick back (towards you)
--> trailing edge of elevator must de# ect up
• Push elevator stick forward (away from you)
--> trailing edge of elevator must de# ect down
• Move rudder stick right --> rudder must de# ect to the right