Moxa PT-7728-PTP User Manual

PT-7728-PTP Communication Redundancy
User’s Manual
Edition 1.0, June 2016
www.moxa.com/product
© 2016 Moxa Inc. All rights reserved.
Communication Redundancy
Moxa Americas
Toll
Tel:
Fax:
Moxa China (Shanghai office)
Toll
Tel:
Fax:
Moxa Europe
Tel:
Fax:
Moxa Asia
Tel:
Fax:
Moxa India
Tel:
Fax:
User’s Manual
the terms of that agreement.
Copyright Notice
© 2016 Moxa Inc. All rights reserved.
Trademarks
The MOXA logo is a registered trademark of Moxa Inc.
All other trademarks or registered marks in this manual belong to their respective manufacturers.
Disclaimer
Information in this document is subject to change without notice and does not represent a commitment on the part of
Moxa.
Moxa provides this document as is, without warranty of any kind, either expressed or implied, including, but not limited
to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the
products and/or the programs described in this manual, at any time.
Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for
its use, or for any infringements on the rights of third parties that may result from its use.
This product might include unintentional technical or typographical errors. Changes are periodically made to the
information herein to correct such errors, and these changes are incorporated into new editions of the publication.
Technical Support Contact Information
www.moxa.com/support
-free: 1-888-669-2872
+1-714-528-6777
+1-714-528-6778
+49-89-3 70 03 99-0
+49-89-3 70 03 99-99
+91-80-4172-9088
+91-80-4132-1045
-free: 800-820-5036
+86-21-5258-9955
+86-21-5258-5505
+886-2-8919-1230
-Pacific
+886-2-8919-1231
Table of Contents
1. Introduction to Communication Redundancy .................................................................................... 1-1
2. Turbo Ring ........................................................................................................................................ 2-1
The Turbo Ring Concept ...................................................................................................................... 2-2
Setting up “Turbo Ring” or “Turbo Ring V2” ............................................................................................ 2-2
Determining the Redundant Path of a “Turbo Ring” Ring................................................................... 2-2
Determining the Redundant Path of a “Turbo Ring V2” Ring .............................................................. 2-3
Ring Coupling Configuration .......................................................................................................... 2-3
Dynamic Ring Coupling (DRC) Configuration (applies only to “Turbo Ring V2”) .................................... 2-5
Dual-Ring Configuration (applies only to “Turbo Ring V2”) ................................................................ 2-6
Dual-Homing Configuration (applies only to “Turbo Ring V2”) ........................................................... 2-7
Configuring “Turbo Ring” and “Turbo Ring V2” ........................................................................................ 2-7
Configuring “Turbo Ring” .............................................................................................................. 2-7
Configuring “Turbo Ring V2” ....................................................................................................... 2-10
Configuring “Turbo Ring V2” with Dynamic Ring Coupling (DRC) ..................................................... 2-14
3. Turbo Chain ....................................................................................................................................... 3-1
The Turbo Chain Concept ..................................................................................................................... 3-2
Setting Up Turbo Chain ....................................................................................................................... 3-2
Configuring “Turbo Chain”.................................................................................................................... 3-3
Head Switch Configuration ............................................................................................................ 3-3
Member Switch Configuration ....................................................................................................... 3-3
Tail Switch Configuration .............................................................................................................. 3-3
4. STP/RSTP/MSTP ............................................................................................................................... 4-1
The STP/RSTP/MSTP Concept ............................................................................................................... 4-2
What is STP? .............................................................................................................................. 4-2
How STP Works ........................................................................................................................... 4-3
Differences between STP, RSTP, and MSTP ..................................................................................... 4-4
STP Example ...................................................................................................................................... 4-5
Using STP on a Network with Multiple VLANs .......................................................................................... 4-6
Configuring STP/RSTP ......................................................................................................................... 4-6
Configuring MSTP ............................................................................................................................... 4-8
Configuration Limits of STP/RSTP ........................................................................................................ 4-11
5. IEC 62439-3 Protocol ........................................................................................................................ 5-1
IEC 62439-3 Protocol .......................................................................................................................... 5-2
RSTP Grouping ............................................................................................................................ 5-2
1
NOTE
Most of Moxa’s managed switches now support three proprietary Turbo Ring protocols
Fast
you to construct any
Fast Ethernet ports and under 50
In this manual, we use the terminology
configured for one or the other of these protocols.
1. Introduction to Communication
Redundancy
Setting up Communication Redundancy on your network helps protect critical links against failure, protects
against network loops, and keeps network downtime at a minimum.
Communication Redundancy allows you to set up redundant loops in the network to provide a backup data
transmission route in the event that a cable is inadvertently disconnected or damaged. This is a particularly
important feature for industrial applications, since it could take several minutes to locate the disconnected or
severed cable. For example, if the Moxa switch is used as a key communications component of a production line,
several minutes of downtime could cause a big loss in production and revenue. The Moxa switch supports three
different protocols to support this communication redundancy function:
Turbo Ring and Turbo Ring V2
• Turbo Chain
Rapid Spanning Tree and Spanning Tree Protocols (IEEE 802.1W/802.1D-2004)
When configuring a redundant ring, all switches on the same ring must be configured to use the same
redundancy protocol. You cannot mix the Turbo Ring, Turbo Ring V2, and STP/RSTP protocols on the same ring.
The following table lists the key differences between the features of each protocol. Use this information to
evaluate the benefits of each, and then determine which features are most suitable for your network.
Turbo Ring Turbo Ring V2 Turbo Chain STP RSTP
Topology Ring Ring Chain Ring, Mesh Ring, Mesh
Fast Ethernet
Recovery Time
Gigabit Ethernet
Recovery Time
Turbo Ring refers to the original version of Moxa’s proprietary redundant ring protocol, which has a
recovery time of under 300 ms.
Turbo Ring V2 refers to the new generation Turbo Ring, which has a recovery time of under 20 ms for
Ethernet ports and under 50 ms for Gigabit Ethernet ports.
Turbo Chain is a new Moxa proprietary protocol with unlimited flexibility that allows
type of redundant network topology. The recovery time is under 20 ms for
ms for Gigabit Ethernet ports. To achieve a recovery time under 50 ms in a Gigabit Turbo Chain, we
recommend using a Gigabit fiber port as Head port.
< 300 ms < 20 ms < 20 ms Up to 30 sec. Up to 5 sec.
< 50 ms < 50 ms
Turbo Ring and Turbo Ring V2 to differentiate between rings
:
Communication Redundancy Introduction to Communication Redundancy
1-2
Ethernet has become the defa
medium for industrial automation applications. In fact,
Ethernet i
high
network.
G
Gigabit Turbo Ring, if any segm
disconnected, your automation system will be back to
normal in less than
Ring V2)
NOTE
Port trunking and Turbo
bandwidth of the backbone, and also provide redundancy. For example, suppose that two physical ports, 1 and
2, are trunked to form trunk group Trk1, and then Trk1 is set as o
disconnected, the remaining trunked port, port 2, will share the traffic. If ports 1 and 2 are both disconnected,
the
Gigabit Ethernet Redundant Ring Capability (< 50 ms)
ult data communications
s often used to integrate video, voice, and
-rate industrial application data transfers into one
Moxa switches come equipped with a redundant
igabit Ethernet protocol called Gigabit Turbo Ring. With
ent of the network gets
300 ms (Turbo Ring) or 50 ms (Turbo
.
Turbo Ring will create a backup path within 300 ms.
Ring can be enabled simultaneously to form a backbone. Doing so will increase the
ne Turbo Ring path. If port 1 gets
2
2. Turbo Ring
The following topics are covered in this chapter:
The Turbo Ring Concept
Setting up “Turbo Ring” or “Turbo Ring V2”
Determining the Redundant Path of a “Turbo Ring” Ring
Determining the Redundant Path of a “Turbo Ring V2” Ring
Ring Coupling Configuration
Dynamic Ring Coupling (DRC) Configuration (applies only to “Turbo Ring V2”)
Dual-Ring Configuration (applies only to “Turbo Ring V2”)
Dual-Homing Configuration (applies only to “Turbo Ring V2”)
Configuring “Turbo Ring” and “Turbo Ring V2”
Configuring “Turbo Ring”
Configuring “Turbo Ring V2”
Configuring “Turbo Ring V2” with Dynamic Ring Coupling (DRC)
Communication Redundancy Turbo Ring
2-2
If there are 2N
Ring”
segments connected to the (N+1)
directly opposite the
The Turbo Ring Concept
Moxa developed the proprietary Turbo Ring protocol to optimize communication redundancy and achieve a
faster recovery time on the network.
The Turbo Ring and Turbo Ring V2 protocols identify one switch as the master of the network, and then
automatically block packets from traveling through any of the network’s redundant loops. In the event that one
branch of the ring gets disconnected from the rest of the network, the protocol automatically readjusts the ring
so that the part of the network that was disconnected can reestablish contact with the rest of the network.
Setting up “Turbo Ring” or “Turbo Ring V2”
Select any two ports as redundant ports.
Connect the redundant ports to form the Turbo Ring.
The user does not need to configure any of the switches as the master to use Turbo Ring or Turbo Ring V2. If
none of the switches in the ring is configured as the master, then the protocol will automatically assign master
status to one of the switches. In fact, the master is only used to identify which segment in the redundant ring
acts as the backup path. In the following subsections, we explain how the redundant path is selected for rings
configured for Turbo Ring, and Turbo Ring V2.
Determining the Redundant Path of a “Turbo Ring” Ring
In this case, the redundant segment (i.e., the segment that will be blocked during normal operation) is
determined by the number of switches in the ring, and where the ring master is located.
When the Number of Switches in the Turbo Ring is Even
switches (an even number) in the “Turbo
ring, then the backup segment is one of the two
st switch (i.e., the switch
master).
Communication Redundancy Turbo Ring
2-3
If there are 2N+1
(an odd number) in the “Turbo
Ring”
counterclockwise, then segment N+1 will serve as the
backup path.
For the example shown here, N=1, so that N+1=2.
For a
segment connected to the 2nd redundant port on the
master.
See
Configuring “Turbo
Ring” and “Turbo Ring V2”
ATTENTION
In
to
join all VLANs,
switches
When the Number of Switches in the Turbo Ring is Odd
switches
ring, with switches and segments labeled
Determining the Redundant Path of a “Turbo Ring V2” Ring
“Turbo Ring V2” ring, the backup segment is the
Configuring “Turbo Ring V2” in the
section below.
Ring Coupling Configuration
For some systems, it may not be convenient to connect all devices in the system to create one BIG redundant
ring, since some devices could be located in a remote area. For these systems, Ring Coupling can be used to
separate the devices into different smaller redundant rings, but in such a way that they can still communicate
with each other.
a VLAN environment, the user must set Redundant Port, Coupling Port, and Coupling Control Port
since these ports act as the backbone to transmit all packets of different VLANs to different
.
Communication Redundancy Turbo Ring
2-4
ATTENTION
Ring Coupling only needs to be enabled on one of the switches serving as the Ring Coupler. The Coupler must
designate different ports as the two Turbo Ring ports and the coupling port.
Ring Coupling for a “Turbo Ring” Ring
To configure the Ring Coupling function for a Turbo Ring” ring, select two switches (e.g., Switch A and B in the
above figure) in the ring, and another two switches in the adjacent ring (e.g., Switch C and D). Decide which
two ports in each switch are appropriate to be used as coupling ports, and then link them together. Next, assign
one switch (e.g., Switch A) to be the coupler and connect the coupler’s coupling control port with Switch B (for
this example).
The coupler switch (i.e., Switch A) will monitor switch B through the coupling control port to determine whether
or not the coupling port’s backup path should be recovered.
Ring Coupling for a “Turbo Ring V2” Ring
Note that the ring coupling settings for a “Turbo Ring V2” ring are different from a “Turbo Ring” ring. For Turbo
Ring V2, Ring Coupling is enabled by configuring the Coupling Port (Primary) on Switch B, and the Coupling
Port (Backup) on Switch A only. You do not need to set up a coupling control port, so that a “Turbo Ring V2”
ring does not use a coupling control line.
The Coupling Port (Backup) on Switch A is used for the backup path, and connects directly to an extra
network port on Switch C. The Coupling Port (Primary) on Switch B monitors the status of the main path,
and connects directly to an extra network port on Switch D. With ring coupling established, Switch A can
activate the backup path as soon as it detects a problem with the main path.
Communication Redundancy Turbo Ring
2-5
NOTE
You do not need to use the same
switch for both Ring Coupling and Ring Master.
Dynamic Ring Coupling (DRC) Configuration (applies only to
“Turbo Ring V2”)
Moxa’s switch supports Turbo Ring V2 with Dynamic Ring Coupling (DRC), which is an innovative inter-consist
network redundancy technology. It not only supports Ring Coupling (RC), which enables fast network recovery
during link failures, but also automatically assigns the active coupler switch on each train consist when train
consist sequences are changed, added, or removed. This not only prevents looping and broadcast storms, but
also reduces additional configuration time and possible errors caused by user configuration, enhancing network
communication reliability and efficiency.
Turbo Ring V2 with DRC (Dyanmic Ring Coupling)
DRC
A
Active
DRC
group 2
B
DR
Active
DRC
DRC
group 1
C
Active
DRC
DRC
DRC
A
DRC
Active
DRC
group 2
DRC
DRC
Note that the dynamic ring coupling settings are only supported by “Turbo Ring V2”.
(1) DRC Group 1 requires one or two switches as members of a ring (Diagram 1: Left side of ring A, B, C;
or Diagram 2: Left side of ring A, C, and right side of ring B).
(2) DRC Group 2 requires one or two switches as members of a ring (Diagram 1: Right side of ring A, B, C;
or Diagram 2: Right side of ring A, C and left side of ring B).
DRC
DR
DRC
B
Active
Turbo Ring V2 with DRC Diagram 1
Turbo Ring V2 with DRC Diagram 2
DRC
DRC
DRC
DRC
group 1
DRC
group 1
DRC
group 1
C
DRC
Active
DRC
DRC
(3) Ring Coupler – Scenario 1:
Linking all members of DRC group 1 to the member of the another ring DRC group 2 (Diagram 1: The
left side DRC group 1 of ring C coupled to right side DRC group 2 of ring B); or
linking all members of DRC group 1 to the member of the another ring DRC group 1 (Diagram 2: The
right side of DRC group 1 of ring B coupled to the left side of DRC group 1 of ring C); or
no connection to DRC group 1 (Diagram 1: The left side DRC group 1 of ring A).
Communication Redundancy Turbo Ring
2-6
ATTENTION
The
Ring, Turbo Ring v2, Turbo Ring V2 with DRC (Dyanmic Ring Coupling) and Turbo Chain
NOTE
Bypass function is used to apply on linear topology only.
(4) Ring Coupler – Scenario 2:
By linking all members of DRC group 2 to the member of the another ring DRC group 1 (Diagram 1: The
right side DRC group 2 of ring A coupler to left side DRC group 1 of ring B)
or by linking all members of DRC group 2 to the member of the another ring DRC group 2 (Diagram 2:
The right side DRC group 2 of ring A coupler to left side DRC group 2 of ring B)
or no connection of the DRC group 2 (Diagram 2: The right side DRC group 2 of ring C)
(5) After all cable connections complete, the DRC protocol will start convergence and automatically assign
one DRC group of the ring as Active DRC group.
ports which support bypass function cannot be used in redundant protocol like STP, RSTP, MSTP, Turbo
.
Dual-Ring Configuration (applies only to “Turbo Ring V2”)
The dual-ring option provides another ring coupling configuration, in which two adjacent rings share one
switch. This type of configuration is ideal for applications that have inherent cabling difficulties.
Dual-Ring for a “Turbo Ring V2” Ring
Communication Redundancy Turbo Ring
2-7
Dual-Homing Configuration (applies only to “Turbo Ring V2”)
The dual-homing option uses a single Ethernet switch to connect two networks. The primary path is the
operating connection, and the backup path is a back-up connection that is activated in the event that the
primary path connection fails.
Dual-Homing for a “Turbo Ring V2” Ring
Configuring “Turbo Ring” and “Turbo Ring V2”
Use the Communication Redundancy page to select Turbo Ring, Turbo Ring V2, or Turbo Chain. Note
that configuration pages for these three protocols are different.
Configuring “Turbo Ring”
Loading...
+ 27 hidden pages