These JFET input operational amplifiers are designed for low power
applications. They feature high input impedance, low input bias current and
low input offset current. Advanced design techniques allow for higher slew
rates, gain bandwidth products and output swing.
The commercial and vehicular devices are available in Plastic dual in–line
and SOIC packages.
• Low Supply Current: 200 µA/Amplifier
• Low Input Bias Current: 5.0 pA
• High Gain Bandwidth: 2.0 MHz
• High Slew Rate: 6.0 V/µs
• High Input Impedance: 10
12
Ω
• Large Output Voltage Swing:±14 V
• Output Short Circuit Protection
Representative Schematic Diagram
Inputs
(Each Amplifier)
Q7
–
J1
+
Q3
R1
J2
D2
R3
+
Q4
C1
D1
C2
Q2Q1
R2
R5
Q5
Q6
R4
V
CC
Output
V
EE
LOW POWER JFET INPUT
OPERATIONAL AMPLIFIERS
SEMICONDUCTOR
TECHNICAL DATA
DUAL
8
1
P SUFFIX
PLASTIC PACKAGE
CASE 626
PIN CONNECTIONS
1
Output 1
Inputs 1
14
1
N SUFFIX
PLASTIC PACKAGE
CASE 646
2
3
4
V
EE
–
+
(Top View)
QUAD
8
1
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
8
V
CC
7
Output 2
6
–
Inputs 2
+
5
14
1
D SUFFIX
PLASTIC PACKAGE
CASE 751A
(SO–14)
ORDERING INFORMATION
Op Amp
Function
TL062CD, ACD
TL062CP, ACP
DualTL062VD
TL062VP
TL064CD, ACD
TL064CN, ACN
QuadTL064VD
TL064VN
Device
Operating
Temperature Range
TA = 0° to +70°C
TA = –40° to +85°C
TA = 0° to +70°C
TA = –40° to +85°C
MOTOROLA ANALOG IC DEVICE DATA
Package
SO–8
Plastic DIP
SO–8
Plastic DIP
SO–14
Plastic DIP
SO–14
Plastic DIP
PIN CONNECTIONS
Output 1
Inputs 1
Inputs 2
Output 2
1
2
1
*
+
3
4
V
CC
5
23
+
–
6
78
(Top View)
Motorola, Inc. 1996Rev 5
14
Output 4
13
4
*
+
12
11
V
EE
10
+
–
9
Output 3
Inputs 4
Inputs 3
1
TL062 TL064
MAXIMUM RATINGS
RatingSymbolValueUnit
Supply Voltage (from VCC to VEE)V
Input Differential V oltage Range (Note 1)V
Input Voltage Range (Notes 1 and 2)V
Output Short Circuit Duration (Note 3)t
Operating Junction TemperatureT
Storage Temperature RangeT
NOTES: 1. Differential voltages are at the noninverting input terminal with respect to the inverting input
terminal.
2.The magnitude of the input voltage must never exceed the magnitude of the supply or 15 V,
whichever is less.
3.Power dissipation must be considered to ensure maximum junction temperature (TJ) is not
exceeded. (See Figure 1.)
S
IDR
IR
SC
J
stg
+36V
±30V
±15V
Indefinitesec
+150°C
–60 to +150°C
ELECTRICAL CHARACTERISTICS (V
CharacteristicsSymbolMinTypMaxMinTypMaxUnit
Input Offset Voltage (RS = 50 Ω, VO = 0V)
TA = 25°C
TA = 0° to +70°C
Average Temperature Coefficient for Offset V oltage
(RS = 50 Ω, VO = 0 V)
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = 25°C
TA = 0° to +70°C
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = 25°C
TA = 0° to +70°C
Input Common Mode Voltage Range
TA = 25°C
Large Signal Voltage Gain (RL = 10 kΩ, VO = ±10 V)
TA = 25°C
TA = 0° to +70°C
Output Voltage Swing (RL = 10 kΩ, VID = 1.0 V)
TA = 25°C
TA = 0° to +70°CVO+
Common Mode Rejection
(RS = 50 Ω, VCM = V
Power Supply Rejection
(RS = 50 Ω, VCM = 0 V, VO = 0, TA = 25°C)
Power Supply Current (each amplifier)
(No Load, VO = 0 V, TA = 25°C)
Total Power Dissipation (each amplifier)
(No Load, VO = 0 V, TA = 25°C)
min, VO = 0 V, TA = 25°C)
ICR
= +15 V, VEE = –15 V, TA = 0° to +70°C, unless otherwise noted.)
CC
TL062AC
TL064AC
V
IO
∆VIO/∆T—10——10—µV/°C
I
IO
I
IB
V
ICR
A
VOL
VO+
VO–
VO–
CMR8084—7084—dB
PSR8086—7086—dB
I
D
P
D
—
3.0—6.0
—
—
—
—
—
—
+14.5
–11.5
–12.0
4.0
4.0
+10—+14
–14—–10
+10——
—200250—200250µA
—6.07.5—6.07.5mW
7.5
0.5—100
2.0
3.0—200
2.0
+11.5——
58
—
—
—
——–10
TL062C
TL064C
—
3.0—15
—
—
0.5—200
—
—
3.0—200
—
+14.5
–11
–12.0
3.0
3.058—
+10—+14
–14—–10
+10——
——–10
20
2.0
10
+11
—
—
—
mV
pA
nA
pA
nA
V
V/mV
V
2
MOTOROLA ANALOG IC DEVICE DATA
TL062 TL064
DC ELECTRICAL CHARACTERISTICS (V
CharacteristicsSymbolMinTypMaxMinTypMaxUnit
Input Offset Voltage (RS = 50 Ω, VO = 0V)
TA = 25°C
TA = T
Average Temperature Coefficient for Offset V oltage
(RS = 50 Ω, VO = 0 V)
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = 25°C
TA = T
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = 25°C
TA = T
Input Common Mode Voltage Range (TA = 25°C)V
Large Signal Voltage Gain (RL = 10 kΩ, VO = ±10 V)
TA = 25°C
TA = T
Output Voltage Swing (RL = 10 kΩ, VID = 1.0 V)
TA = 25°C
TA = T
Common Mode Rejection
(RS = 50 Ω, VCM = V
Power Supply Rejection
(RS = 50 Ω, VCM = 0 V, VO = 0, TA = 25°C)
Power Supply Current (each amplifier)
(No Load, VO = 0 V, TA = 25°C)
Total Power Dissipation (each amplifier)
(No Load, VO = 0 V, TA = 25°C)
NOTE: 4.T
to T
low
high
to T
low
high
to T
low
high
to T
low
high
to T
low
high
ICR
= –40°CT
low
min, VO = 0, TA = 25°C)
= +85°C for TL062,4V
high
= +15 V, VEE = –15 V, TA = T
CC
V
IO
∆VIO/∆T
I
IO
I
IB
ICR
A
VOL
VO+
VO–
VO+
VO–
CMR
PSR
I
D
P
D
to T
low
—
—
—10——10—
—
—
—
—
—
–11.5
4.0
4.0
+10
—
+10
—
8084—8084—
8086—8086—
—200
—6.07.5—6.07.5
[Note 4], unless otherwise noted.)
high
TL062VTL064V
3.0—6.0
9.0
5.0—10020—
30—20050—
+14.5
–12.0
58
—
+14
–14
—
—
+11.5——
–10
–10
250—200250
—
—
—
—
—
—
—
—
–11.5
4.0
4.058—
+10
—
+10
—
3.0—9.0
5.0—100
30—200
+14.5
–12.0
+14
–14
—
—
15
20
50
+11.5
—
—
—
—
–10
—
–10
mV
µV/°C
pA
nA
pA
nA
V
V/mV
V
dB
dB
µA
mW
AC ELECTRICAL CHARACTERISTICS (V
CharacteristicsSymbolMinTypMaxUnit
Slew Rate (V
Rise Time (Vin = 20 mV, RL = 10 kΩ, CL = 100 pF, AV = +1.0)t
Overshoot (Vin = 20 mV, RL = 10 kΩ, CL = 100 pF, AV = +1.0)OS—10—%
Settling Time
(VCC = +15 V, VEE = –15 V, AV = –1.0,To within 10 mV
RL = 10 kΩ, VO = 0 V to +10 V step)To within 1.0 mV
Gain Bandwidth Product (f = 200 kHz)GBW—2.0—MHz
Equivalent Input Noise (RS = 100 Ω, f = 1.0 kHz)e
Input ResistanceR
Channel Separation (f = 10 kHz)CS—120—dB
= –10 V to +10 V, RL = 10 kΩ, CL = 100 pF, AV = +1.0)
in
= +15 V, VEE = –15 V, TA = +25°C, unless otherwise noted.)
CC
SR2.06.0—V/µs
r
t
S
n
i
—0.1—µs
—
—
—47—
—10
1.6
2.2
12
—
—
nV/ Hz√
—W
MOTOROLA ANALOG IC DEVICE DATA
µs
3
TL062 TL064
Figure 1. Maximum Power Dissipation versus
T emperature for Package Variations
2400
2000
1600
SO–14
1200
SO–8
800
400
D
P , MAXIMUM POWER DISSIPATION (mW)
0
–55 –40 –20020406080100 120 140 160
TA, AMBIENT TEMPERATURE (°C)
Figure 3. Output Voltage Swing
versus T emperature
40
)
35
pp
30
25
20
15
VCC = +15 V
10
, OUTPUT VOL TAGE SWING (V
O
V
VEE = –15 V
5.0
0
–75–50–250255075100125
RL = 10 k
Ω
TA, AMBIENT TEMPERATURE (°C)
Figure 2. Output Voltage Swing
versus Supply V oltage
40
)
pp
35
30
25
20
15
10
, OUTPUT VOL TAGE SWING (V
O
5.0
V
RL = 10 k
Ω
TA = 25°C
0
02.04.06.08.010121416
VCC, |VEE|, SUPPLY VOLTAGE (V)
Figure 4. Output Voltage Swing
versus Load Resistance
30
)
pp
, OUTPUT VOL TAGE SWING (V
O
V
VCC = +15 V
VEE = –15 V
24
18
12
6.0
0
0.10.20.30.5 0.7 1.02.03.05.0 7.0 10
TA = 25
°
C
RL, LOAD RESISTANCE (kΩ)
Figure 5. Output Voltage Swing
versus Frequency
35
)
pp
30
VCC = +15 V, VEE = –15 V
25
VCC = +12 V, VEE = –12 V
20
15
10
, OUTPUT VOL TAGE SWING (V
O
V
5.0
VCC = +5.0 V, VEE = –5.0 V
VCC = +2.5 V, VEE = –2.5 V
0
1001.0 k10 k100 k1.0 M10 M
f, FREQUENCY (Hz)
RL = 10 k
TA = 25°C
4
Figure 6. Large Signal V oltage Gain
versus T emperature
100
Ω
VCC = +15 V
VEE = –15 V
70
50
40
30
20
, LARGE SIGNAL VOL TAGE GAIN (V/mV)
VOL
10
A
–75–50–250257550100125
RL = 10 k
Ω
TA, AMBIENT TEMPERATURE (°C)
MOTOROLA ANALOG IC DEVICE DATA
TL062 TL064
Figure 7. Open Loop Voltage Gain
and Phase versus Frequency
100
VCC = +15 V
80
60
Gain
Phase
VEE = –15 V
VO = 0 V
RL = 10 k
CL = 0 pF
TA = 25
40
20
VOL
A, OPEN LOOP VOLTAGE GAIN (dB)
0
1.0101001.0 k10 k1.0 M10 M
100 k
f, FREQUENCY (Hz)
Figure 9. Supply Current per Amplifier
versus T emperature
250
/A)
200
µ
150
Figure 8. Supply Current per Amplifier
versus Supply V oltage
250
A)
0
200
µ
Ω
°
C
45
90
, EXCESS PHASE (DEGREES)
135
φ
180
100 M
150
100
50
TA = 25°C
VO = 0 V
∞Ω
RL =
, SUPPLY CURRENT (
I
CC
0
02.04.06.08.0101214161820
VCC, |VEE|, SUPPLY VOLTAGE (V)
Figure 10. T otal Power Dissipation
versus T emperature
25
TL064
TL062
20
15
VCC = +15 V
VEE = –15 V
VO = 0 V
∞Ω
RL =
100
50
VCC = +15 V
VEE = –15 V
VO = 0 V
∞Ω
RL =
, SUPPLY CURRENT (
I
CC
0
–75–50–250255075100125
TA, AMBIENT TEMPERATURE (
°
C)
Figure 11. Common Mode Rejection
versus T emperature
88
VCC = +15 V
87
VEE = –15 V
VO = 0 V
86
85
84
83
82
81
CMR, COMMON MODE REJECTION (dB)
80
RL = 10 k
Ω
TA, AMBIENT TEMPERATURE (
°
C)
10
5.0
, TOT AL POWER DISSIPA TION (MW)
D
P
0
1251007550250–25–50–75
TA, AMBIENT TEMPERATURE (°C)
Figure 12. Common Mode Rejection
versus Frequency
140
VCC = +15 V
120
100
80
VEE = –15 V
∆
VCM = ±1.5 V
°
C
TA = 25
∆
V
CM
CMR = 20 Log
60
40
20
CMR, COMMON MODE REJECTION (dB)
0
1251007550250–25–50–75
1001 k10 k100 k1 M
f, FREQUENCY (Hz)
–
A
DM
+
∆
∆
∆
V
O
V
CM
X A
DM
V
O
MOTOROLA ANALOG IC DEVICE DATA
5
TL062 TL064
Figure 13. Power Supply Rejection
versus Frequency
140
V
CC
–
A
DM
+
V
EE
+PSR = 20Log
–PSR = 20Log
∆
V
O
120
+PSR (∆VCC = ±1.5 V)
100
80
60
40
20
PSR, POWER SUPPLY REJECTION (dB)
00.6
1001.0 k10 k100 k1.0 M
∆
VEE = ±1.5 V)
–PSR (
VCC = +15 V
VEE = –15 V
°
C
TA = 25
f, FREQUENCY (Hz)
∆
VO/A
∆
∆
VO/A
∆
DM
V
CC
DM
V
EE
Figure 14. Normalized Gain Bandwidth
Product, Slew Rate and Phase
Margin versus T emperature
1.4
1.3
1.2
1.1
Slew Rate
1.0
0.9
0.8
PRODUCT AND SLEW RATE
NORMALIZED GAIN BANDWIDTH
0.7
–75–50–250255075100125
GBW
Phase Margin
TA, AMBIENT TEMPERATURE (
VCC = +15 V
VEE = –15 V
RL = 10 k
CL = 0 pF
°
C)
1.08
1.06
Ω
1.04
1.02
1.0
0.98
0.96
, NORMALIZED PHASE MARGIN
m
0.94
φ
0.92
Figure 15. Input Bias Current
versus T emperature
1000
VCC = +15 V
100
VEE = –15 V
VCM = 0 V
10
1.0
0.1
, INPUT BIAS CURRENT (pA)
IB
0.01
I
0.001
–55–250255075100125
TA, AMBIENT TEMPERATURE (
°
C)
Figure 17. Small Signal ResponseFigure 18. Large Signal Response
VCC = +15 V
VEE = –15 V
RL = 10 k
CL = 0 pF
AV = +1.0
Figure 16. Input Noise V oltage
versus Frequency
70
)
√
60
nV/ Hz
50
40
VCC = +15 V
30
VEE = –15 V
20
10
, INPUT NOISE VOL TAGE (
n
e
0
101001.0 k10 k100 k
Ω
RS = 100
TA = 25°C
Ω
f, FREQUENCY (Hz)
VCC = +15 V
VEE = –15 V
RL = 10 k
CL = 0 pF
AV = +1.0
Ω
, OUTPUT VOLTAGE (10 mV/DIV)
O
V
6
t, TIME (0.5 µs/DIV)
, OUTPUT VOLTAGE (5.0 V/DIV)
O
V
µ
t, TIME (2.0
s/DIV)
MOTOROLA ANALOG IC DEVICE DATA
Inputs
50
0.1 µF
Ω
TL062 TL064
Figure 19. AC AmplifierFigure 20. High–Q Notch Filter
V
CC
V
–
1/2
R2R1
TL062
+
R1 = R2 = 2R3 = 1.5 M
C1 = C2 == 110 pF
fo == 1.0 kHz
π
R1 C1
2
Output
V
1
10 k
0.1 µF
Ω
10 k
Input A
Input B
10 k
Ω
–
1/2
TL062
+
5
250 k
1
Ω
Ω
1.0 M
Output
Ω
Input
C3
R3
C2C1
Figure 21. Instrumentation Amplifier
V
100 k
100 k
CC
–
TL064
Ω
+
V
EE
Ω
TL064
–
V
CC
V
EE
10 k
0.1%
–
+
10 k
0.1%
Ω
TL064
Ω
V
V
CC
EE
10 k
0.1%
10 k
0.1%
Ω
Ω
Ω
V
V
100 k
CC
TL064
EE
1.0
Ω
M
–+
100
+
Ω
CC
Output
EE
Ω
C3
2
Figure 22. 0.5 Hz Square–Wave OscillatorFigure 23. Audio Distribution Amplifier
V
–
TL064
+
–
TL064
+
–
TL064
+
CC
V
CC
V
CC
CF = 3.3 µF
f =
2
π
RF C
–
1/2
TL062
+
+15 V
–15 V
3.3 k
Ω
Ω
1.0 M
V
CC
–
1.0
µ
100 k
100
F
Ω
µ
F
1.0 k
Ω
Input
Ω
9.1 k
Ω
TL064
+
100 k
100 k
100 k
Ω
V
CC
Ω
Ω
RF = 100 k
3.3 k
Ω
1
F
MOTOROLA ANALOG IC DEVICE DATA
Output A
Output B
Output C
7
NOTE 2
–T–
SEATING
PLANE
H
58
–B–
14
F
–A–
C
N
D
K
G
0.13 (0.005)B
M
T
TL062 TL064
OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
L
J
M
M
A
M
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
MILLIMETERS
DIMMINMAX
A1.351.75
A10.100.25
B0.350.49
C0.180.25
D4.805.00
E
3.804.00
1.27 BSCe
H5.806.20
h
0.250.50
L0.401.25
0 7
q
__
8
MOTOROLA ANALOG IC DEVICE DATA
TL062 TL064
OUTLINE DIMENSIONS
N SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
148
B
17
A
F
N
SEATING
HGD
PLANE
C
K
L
J
M
D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
(SO–14)
ISSUE F
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE
POSITION AT SEATING PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
–B–
71
M
7 PL
P
M
0.25 (0.010)B
X 45
C
R
K
S
B
T
S
M
_
M
J
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–54543–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: RMF AX0@email.sps.mot.com – TOUCHT ONE 602–244–6609ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
12
◊
MOTOROLA ANALOG IC DEVICE DATA
TL062/D
*TL062/D*
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.