Motorola MRF137 Datasheet

1
MRF137MOTOROLA RF DEVICE DATA
The RF MOSFET Line
   
N–Channel Enhancement–Mode
. . . designed for wideband large–signal output and driver stages up to 400 MHz range.
Guaranteed 28 Volt, 150 MHz Performance Output Power = 30 Watts Minimum Gain = 13 dB Efficiency — 60% (Typical)
Small–Signal and Large–Signal Characterization
Typical Performance at 400 MHz, 28 Vdc, 30 W
Output = 7.7 dB Gain
100% Tested For Load Mismatch At All Phase Angles
With 30:1 VSWR
Low Noise Figure — 1.5 dB (Typ) at 1.0 A, 150 MHz
Excellent Thermal Stability, Ideally Suited For Class A
Operation
Facilitates Manual Gain Control, ALC and Modulation
Techniques
MAXIMUM RATINGS
Rating Symbol Value Unit
Drain–Source Voltage V
DSS
65 Vdc
Drain–Gate Voltage
(RGS = 1.0 M)
V
DGR
65 Vdc
Gate–Source Voltage V
GS
±40 Vdc
Drain Current — Continuous I
D
5.0 Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
P
D
100
0.571
Watts
W/°C
Storage Temperature Range T
stg
–65 to +150 °C
Operating Junction Temperature T
J
200 °C
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Case R
θJC
1.75 °C/W
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
Order this document
by MRF137/D

SEMICONDUCTOR TECHNICAL DATA
30 W, to 400 MHz
N–CHANNEL MOS
BROADBAND RF POWER
FET
CASE 211–07, STYLE 2
Motorola, Inc. 1994
D
G
S
REV 6
MRF137 2
MOTOROLA RF DEVICE DATA
ELECTRICAL CHARACTERISTICS (T
C
= 25°C unless otherwise noted.)
Characteristic
Symbol Min Typ Max Unit
OFF CHARACTERISTICS
Drain–Source Breakdown Voltage (VGS = 0, ID = 10 mA) V
(BR)DSS
65 Vdc
Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0) I
DSS
4.0 mAdc
Gate–Source Leakage Current (VGS = 20 V, VDS = 0) I
GSS
1.0 µAdc
ON CHARACTERISTICS
Gate Threshold Voltage (VDS = 10 V, ID = 25 mA) V
GS(th)
1.0 3.0 6.0 Vdc
Forward Transconductance (VDS = 10 V, ID = 500 mA) g
fs
500 750 mmhos
DYNAMIC CHARACTERISTICS
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) C
iss
48 pF
Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) C
oss
54 pF
Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) C
rss
11 pF
FUNCTIONAL CHARACTERISTICS
Noise Figure
(VDS = 28 Vdc, ID = 1.0 A, f = 150 MHz)
NF 1.5 dB
Common Source Power Gain
(VDD = 28 Vdc, P
out
= 30 W, f = 150 MHz (Figure 1)
IDQ = 25 mA) f = 400 MHz (Figure 14)
G
ps
13 —
16
7.7
— —
dB
Drain Efficiency (Figure 1)
(VDD = 28 Vdc, P
out
= 30 W, f = 150 MHz, IDQ = 25 mA)
η 50 60 %
Electrical Ruggedness (Figure 1)
(VDD = 28 Vdc, P
out
= 30 W, f = 150 MHz, IDQ = 25 mA,
VSWR 30:1 at All Phase Angles)
ψ
No Degradation in Output Power
Figure 1. 150 MHz Test Circuit
C1 — Arco 403, 3.0–35 pF, or equivalent C2 — Arco 406, 15–115 pF, or equivalent C3 — 56 pF Mini–Unelco, or equivalent C4 — Arco 404, 8.0–60 pF, or equivalent C5 — 680 pF, 100 Mils Chip C6 — 0.01 µF, 100 V, Disc Ceramic C7 — 100 µF, 40 V C8 — 0.1 µF, 50 V, Disc Ceramic C9, C10 — 680 pF Feedthru D1 — 1N5925A Motorola Zener
L1 — 2 Turns, 0.29 ID, #18 AWG Enamel, Closewound L2 — 1–1/4 Turns, 0.2 ID, #18 AWG Enamel, Closewound L3 — 2 Turns, 0.2 ID, #18 AWG Enamel, Closewound RFC1 — 20 Turns, 0.30 ID, #20 AWG Enamel, Closewound RFC2 — Ferroxcube VK–200 — 19/4B R1 — 10 k, 1/2 W Thin Film R2 — 10 k, 1/4 W R3 — 10 Turns, 10 k R4 — 1.8 k, 1/2 W Board — G10, 62 Mils
BIAS
ADJUST
R2
C6
D1
R4
C7
+ –
C8
RFC1
C9
RFC2
C10
+ VDD = 28 V
RF
INPUT
RF
OUTPUT
C2
C1
L1
R1
DUT
L2 L3
C5
C4
C3
R3
3
MRF137MOTOROLA RF DEVICE DATA
Figure 2. Output Power versus Input Power Figure 3. Output Power versus Input Power
Figure 4. Output Power versus Input Power Figure 5. Output Power versus Supply Voltage
Figure 6. Output Power versus Supply Voltage Figure 7. Output Power versus Supply Voltage
50
40
30
20
10
0
0.50 Pin, INPUT POWER (WATTS)
P , OUTPUT POWER (WATTS)
out
1 1.5 2
150 MHz
f = 100 MHz
200 MHz
VDD = 28 V IDQ = 25 mA
20
15
10
5
0
0
Pin, INPUT POWER (WATTS)
P , OUTPUT POWER (WATTS)
out
1 2 3 4
VDD = 13.5 V IDQ = 25 mA
f = 100 MHz
150 MHz
200 MHz
40
30
20
10
0
20
Pin, INPUT POWER (WATTS)
P , OUTPUT POWER (WATTS)
out
4 6 8 10
f = 400 MHz IDQ = 25 mA
VDD = 28 V
VDD = 13.5 V
50
40
30
20
10
0
1612
VDD, SUPPLY VOLTAGE (VOLTS)
P , OUTPUT POWER (WATTS)
out
20 24 28
Pin = 1 W
IDQ = 25 mA f = 100 MHz
0.25 W
0.5 W
50
40
30
20
10
0
1612
VDD, SUPPLY VOLTAGE (VOLTS)
P , OUTPUT POWER (WATTS)
out
20 24 28
Pin = 1.5 W
0.75 W
0.5 W
IDQ = 25 mA f = 150 MHz
50
40
30
20
10
0
1612
VDD, SUPPLY VOLTAGE (VOLTS)
P , OUTPUT POWER (WATTS)
out
20 24 28
Pin = 2 W
1.5 W
0.75 W
IDQ = 25 mA f = 200 MHz
Loading...
+ 7 hidden pages