Motorola MRF136Y, MRF136 Datasheet

1
MRF136 MRF136YMOTOROLA RF DEVICE DATA
The RF MOSFET Line
 !   
   
. . . designed for wideband large–signal amplifier and oscillator applications up to 400 MHz range, in either single ended or push–pull configuration.
MRF136 MRF136Y
Output Power = 15 Watts Output Power = 30 Watts Narrowband Gain = 16 dB (Typ) Broadband Gain = 14 dB (Typ) Efficiency = 60% (Typical) Efficiency = 54% (Typical)
Small–Signal and Large–Signal Characterization
100% Tested For Load Mismatch At All Phase
Angles With 30:1 VSWR
Space Saving Package For Push–Pull Circuit Applications — MRF136Y
Excellent Thermal Stability, Ideally Suited For Class A Operation
Facilitates Manual Gain Control, ALC and Modulation Techniques
MAXIMUM RATINGS
Value
Rating
Symbol
MRF136 MRF136Y
Unit
Drain–Source Voltage V
DSS
65 65 Vdc
Drain–Gate Voltage (RGS = 1.0 M) V
DGR
65 65 Vdc
Gate–Source Voltage V
GS
±40 Vdc
Drain Current — Continuous I
D
2.5 5.0 Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
P
D
55
0.314
100
0.571
Watts
W/°C
Storage Temperature Range T
stg
–65 to +150 °C
Operating Junction Temperature T
J
200 °C
THERMAL CHARACTERISTICS
Max
Characteristic
Symbol
MRF136 MRF136Y
Unit
Thermal Resistance, Junction to Case R
θJC
3.2 1.75 °C/W
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
Order this document
by MRF136/D

SEMICONDUCTOR TECHNICAL DATA

15 W, 30 W, to 400 MHz
N–CHANNEL
MOS BROADBAND
RF POWER FETs
CASE 211–07, STYLE 2
MRF136
CASE 319B–02, STYLE 1
MRF136Y
Motorola, Inc. 1994
D
G
S
D
G
S
(FLANGE)
MRF136
MRF136Y
D
G
REV 6
MRF136 MRF136Y 2
MOTOROLA RF DEVICE DATA
ELECTRICAL CHARACTERISTICS (T
C
= 25°C unless otherwise noted.)
Characteristic
Symbol Min Typ Max Unit
OFF CHARACTERISTICS (1)
Drain–Source Breakdown Voltage
(VGS = 0, ID = 5.0 mA)
V
(BR)DSS
65 Vdc
Zero–Gate Voltage Drain Current
(VDS = 28 V, VGS = 0)
I
DSS
2.0 mAdc
Gate–Source Leakage Current
(VGS = 40 V, VDS = 0)
I
GSS
1.0 µAdc
ON CHARACTERISTICS (1)
Gate Threshold Voltage
(VDS = 10 V, ID = 25 mA)
V
GS(th)
1.0 3.0 6.0 Vdc
Forward Transconductance
(VDS = 10 V, ID = 250 mA)
g
fs
250 400 mmhos
DYNAMIC CHARACTERISTICS (1)
Input Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz)
C
iss
24 pF
Output Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz)
C
oss
27 pF
Reverse Transfer Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz)
C
rss
5.5 pF
FUNCTIONAL CHARACTERISTICS (2)
Noise Figure MRF136
(VDS = 28 Vdc, ID = 500 mA, f = 150 MHz)
NF 1.0 dB
Common Source Power Gain (Figure 1) MRF136
(VDD = 28 Vdc, P
out
= 15 W, f = 150 MHz, IDQ = 25 mA)
G
ps
13 16 dB
Common Source Power Gain (Figure 2) MRF136Y
(VDD = 28 Vdc, P
out
= 30 W, f = 150 MHz, IDQ = 100 mA)
G
ps
12 14 dB
Drain Efficiency (Figure 1) MRF136
(VDD = 28 Vdc, P
out
= 15 W, f = 150 MHz, IDQ = 25 mA)
η 50 60 %
Drain Efficiency (Figure 2) MRF136Y
(VDD = 28 Vdc, P
out
= 30 W, f = 150 MHz, IDQ = 100 mA)
η 50 54 %
Electrical Ruggedness (Figure 1) MRF136
(VDD = 28 Vdc, P
out
= 15 W, f = 150 MHz, IDQ = 25 mA,
VSWR 30:1 at all Phase Angles)
ψ
No Degradation in Output Power
Electrical Ruggedness (Figure 2) MRF136Y
(VDD = 28 Vdc, P
out
= 30 W, f = 150 MHz, IDQ = 100 mA,
VSWR 30:1 at all Phase Angles)
ψ
No Degradation in Output Power
NOTES:
1. For MRF136Y, each side measured separately.
2. For MRF136Y measured in push–pull configuration.
3
MRF136 MRF136YMOTOROLA RF DEVICE DATA
Figure 1. 150 MHz Test Circuit (MRF136)
Figure 2. 30–150 MHz Test Circuit (MRF136Y)
C1, C2 — Arco 406, 15–115 pF or Equivalent C3 — Arco 404, 8–60 pF or Equivalent C4 — 43 pF Mini–Unelco or Equivalent C5 — 24 pF Mini–Unelco or Equivalent C6 — 680 pF, 100 Mils Chip C7 — 0.01 µF Ceramic C8 — 100 µF, 40 V C9 — 0.1 µF Ceramic C10, C11 — 680 pF Feedthru D1 — 1N5925A Motorola Zener
L1 — 2 Turns, 0.29 ID, #18 AWG, 0.10 Long L2 — 2 Turns, 0.23 ID, #18 AWG, 0.10 Long L3 — 2–1/4 Turns, 0.29 ID, #18 AWG, 0.125 Long RFC1 — 20 Turns, 0.30 ID, #20 AWG Enamel Closewound RFC2 — Ferroxcube VK–200 — 19/4B R1 — 27 , 1 W Thin Film R2 — 10 k, 1/4 W R3 — 10 Turns, 10 k R4 — 1.8 k, 1/2 W Board Material — 0.062 G10, 1 oz. Cu Clad, Double Sided
C1 — 5.0 pF C2, C3, C4, C6, C7, C9, C11 — 0.1 µF Ceramic C5, C8 — 680 pF Feedthru C10 — 15 pF D1 — 1N4740 Motorola Zener RFC1 — 17 Turns, #24 AWG Wound on R5 RFC2 — Ferroxcube VK–200–19/4B or Equivalent R1 — 10 k, 1/4 W R2, R3 — 560 , 1/2 W R4 — 10 Turns, 10 k
R5 — 56 k, 1 W R6 — 1.6 k, 1/4 W T1 — Primary Winding — 3 Turns #28 Enameled Wire.
T1 — Secondary Winding — 2 Turns #28 Enameled Wire. T1 — Both windings wound through a Fair/Rite Balun 65 core. T1 — Part #2865002402.
T2 — 1:1 Transformer Wound Bifilar — 2 Turns Twisted Pair
T1 — #24 Enameled Wire through a Indiana General Balun Q1 T1 — core. Part #18006–1–Q1. Primary winding center tapped.
Board Material — 0.062 G10, 1 oz. Cu Clad, Double Sided
R4
C10
D1
C8
+
RFC1
C7
C1
L1
R2
R1
C9
C4
C3
C2
RF INPUT
L2
RFC2
L3
DUT
RF OUTPUT
C6
C5
C11
VDD = +28 V
RF OUTPUT
VDD = +28 V
RFC2
C8
C5
C7
R4
D1
C11
RFC1
R6
R5
R2
C3
R3
C6
C10C9
C4
DUT
R3
C1
R1
C2
D
T2T1
S
D
G
G
BA
BIAS ADJUST
BIAS
ADJUST
RF INPUT
MRF136 MRF136Y 4
MOTOROLA RF DEVICE DATA
400
Figure 3. Output Power versus Input Power Figure 4. Output Power versus Input Power
Figure 5. Output Power versus Input Power Figure 6. Output Power versus Supply Voltage
Figure 7. Output Power versus Supply Voltage Figure 8. Output Power versus Supply Voltage
2020 18 16 14 12 10
8 6 4
2 0
0 200 600 800 1000
f = 100 MHz
f = 400 MHz IDQ = 25 mA
150 MHz 200 MHz
f = 100 MHz
VDD = 13.5 V IDQ = 25 mA
Pin, INPUT POWER (MILLWATTS)
P
out
, OUTPUT POWER (WATTS)
20 18 16 14 12 10
8 6 4
2 0
0 1 2 3 4
Pin, INPUT POWER (WATTS)
P
out
, OUTPUT POWER (WATTS)
10
9 8 7 6 5 4 3 2
1 0
0 200 400 600 800 1000
Pin, INPUT POWER (MILLWATTS)
P
out
, OUTPUT POWER (WATTS)
200 MHz
150 MHz
24 21 18 15 12
9 6 3
0
12 16 20 24 28
VDD, SUPPLY VOLTAGE (VOLTS)
P
out
, OUTPUT POWER (WATTS)
14 18 22 26
400 mW
200 mW
0.7 W
VDD = 28 V
VDD = 13.5 V
IDQ = 25 mA f = 100 MHz
Pin = 600 mW
12 16 20 24 28
VDD, SUPPLY VOLTAGE (VOLTS)
P
out
, OUTPUT POWER (WATTS)
14 18 22 26
600 mW
300 mW
IDQ = 25 mA f = 150 MHz
Pin = 900 mW
24 21 18 15 12
9 6 3
0
12 16 20 24 28
VDD, SUPPLY VOLTAGE (VOLTS)
P
out
, OUTPUT POWER (WATTS)
14 18 22 26
0.4 W
Pin = 1 W
IDQ = 25 mA f = 200 MHz
VDD = 28 V IDQ = 25 mA
24 21 18 15 12
9 6 3
0
Loading...
+ 8 hidden pages