MOTOROLA MPC850EC, MPC850ED Technical data

This document contains detailed information on power considerations, AC/DC electrical characteristics, and AC timing specifications for revision A,B, and C of the MPC850.
This document contains the following topics:
Topic Page
Part I, “Overview” 1 Part II, “Features” 3 Part III, “Electrical and Thermal Characteristics” 7 Part IV, “Thermal Characteristics” 8 Part V, “Power Considerations” 9 Part VI, “Bus Signal Timing” 10 Part VII, “IEEE 1149.1 Electrical Specifications” 37 Part VIII, “CPM Electrical Characteristics” 39 Part IX, “Mechanical Data and Ordering Information” 61 Part X, “Document Revision History” 67
Part I Overview
The MPC850 is a versatile, one-chip integrated microprocessor and peripheral combination that can be used in a variety of controller applications, excelling particularly in communications and networking products. The MPC850, which includes support for Ethernet, is specifically designed for cost-sensitive, remote-access, and telecommunications applications. It is provides functions similar to the MPC860, with system enhancements such as universal serial bus (USB) support and a larger (8-Kbyte) dual-port RAM.
In addition to a high-performance embedded MPC8xx core, the MPC850 integrates system functions, such as a versatile memory controller and a communications processor module (CPM) that incorporates a specialized, independent RISC communications processor (referred to as the CP). This separate processor off-loads peripheral tasks from the embedded MPC8xx core.
The CPM of the MPC850 supports up to seven serial channels, as follows:
One or two serial communications controllers (SCCs). The SCCs support Ethernet, ATM (MPC850SAR), HDLC and a number of other protocols, along with a transparent mode of operation.
Ad vance Information
MPC850EC/D Rev. 0.2, 04/2002
MPC850 (Rev. A/B/C) Communications Controller Hardware Specifications
查询XPC850CZT66B供应商
2
MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
One USB channel
Two serial management controllers (SMCs)
One I
2
C port
One serial peripheral interface (SPI).
Table 1 shows the functionality supported by the members of the MPC850 family.
Additional documentation may be provided for parts listed in Table 1.
Table 1. MPC850 Functionality Matrix
Part
Number of
SCCs
Supported
Ethernet
Support
ATM Support USB Support
Multi-channel
HDLC Support
Number of
PCMCIA Slots
Supported
MPC850 1 Yes - Yes - 1 MPC850DE 2 Yes - Yes - 1 MPC850SAR 2 Yes Yes Yes Yes 1
MOTOROLA
MPC850 (Rev . A/B/C) Har dware Specifications 3
Part II Features
Figure 1 is a block diagram of the MPC850, showing its major components and the relationships among those components:
Figure 1. MPC850 Microprocessor Block Diagram
The following list summarizes the main features of the MPC850:
Embedded single-issue, 32-bit MPC8xx core (implementing the PowerPC architecture) with thirty-two 32-bit general-purpose registers (GPRs)
— Performs branch folding and branch prediction with conditional prefetch, but without
conditional execution
System Interface Unit
Memory Controller
Bus Interface Unit
System Functions
Real-Time Clock
PCMCIA Interface
Bus
Embedded
2-Kbyte I-Cache
MMU
1-Kbyte
D-Cache
Data
MMU
Load/Store
Instruction
Bus
Parallel I/O
Baud Rate
Generators
Dual-Port
RAM
Interrupt
Controller
Four
Timers
20 Virtual
2 Virtual
32-Bit RISC Communications
Processor (CP) and Program ROM
SCC2
USB
SPI
Timer
Non-Multiplexed Serial Interface
MPC8xx
Core
Instruction
IDMA
Channels
Serial DMA
and
Channels
Unified Bus
Communications
Processor
Module
Peripheral Bus
SCC3
I
2
C
UTOPIA
Ports
(850SAR)
SMC1 SMC2
Time Slot Assigner
TDMa
4
MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
— 2-Kbyte instruction cache and 1-Kbyte data cache (Harvard architecture)
– Caches are two-way, set-associative – Physically addressed – Cache blocks can be updated with a 4-word line burst – Least-recently used (LRU) replacement algorithm – Lockable one-line granularity
— Memory management units (MMUs) with 8-entry translation lookaside buffers (TLBs) and
fully-associative instruction and data TLBs
— MMUs support multiple page sizes of 4 Kbytes, 16 Kbytes, 256 Kbytes, 512 Kbytes, and
8 Mbytes; 16 virtual address spaces and eight protection groups
Advanced on-chip emulation debug mode
Data bus dynamic bus sizing for 8, 16, and 32-bit buses — Supports traditional 68000 big-endian, traditional x86 little-endian and modified little-endian
memory systems
— Twenty-six external address lines
Completely static design (0–80 MHz operation)
System integration unit (SIU) — Hardware bus monitor — Spurious interrupt monitor — Software watchdog — Periodic interrupt timer — Low-power stop mode — Clock synthesizer — Decrementer, time base, and real-time clock (RTC) from the PowerPC architecture — Reset controller — IEEE 1149.1 test access port (JTAG)
Memory controller (eight banks) — Glueless interface to DRAM single in-line memory modules (SIMMs), synchronous DRAM
(SDRAM), static random-access memory (SRAM), electrically programmable read-only
memory (EPROM), flash EPROM, etc. — Memory controller programmable to support most size and speed memory interfaces — Boot chip-select available at reset (options for 8, 16, or 32-bit memory) — Variable block sizes, 32 Kbytes to 256 Mbytes — Selectable write protection — On-chip bus arbiter supports one external bus master — Special features for burst mode support
General-purpose timers — Four 16-bit timers or two 32-bit timers — Gate mode can enable/disable counting
MOTOROLA
MPC850 (Rev . A/B/C) Har dware Specifications 5
— Interrupt can be masked on reference match and event capture
Interrupts — Eight external interrupt request (IRQ) lines — Twelve port pins with interrupt capability — Fifteen internal interrupt sources — Programmable priority among SCCs and USB — Programmable highest-priority request
Single socket PCMCIA-ATA interface — Master (socket) interface, release 2.1 compliant — Single PCMCIA socket — Supports eight memory or I/O windows
Communications processor module (CPM) — 32-bit, Harvard architecture, scalar RISC communications processor (CP) — Protocol-specific command sets (for example,
GRACEFUL
STOP
TRANSMIT
stops transmission
after the current frame is finished or immediately if no frame is being sent and
CLOSE
RXBD
closes the receive buffer descriptor) — Supports continuous mode transmission and reception on all serial channels — Up to 8 Kbytes of dual-port RAM — Twenty serial DMA (SDMA) channels for the serial controllers, including eight for the four
USB endpoints — Three parallel I/O registers with open-drain capability
Four independent baud-rate generators (BRGs) — Can be connected to any SCC, SMC, or USB — Allow changes during operation — Autobaud support option
Two SCCs (serial communications controllers) — Ethernet/IEEE 802.3, supporting full 10-Mbps operation — HDLC/SDLC™
(all channels supported at 2 Mbps) — HDLC bus (implements an HDLC-based local area network (LAN)) — Asynchronous HDLC to support PPP (point-to-point protocol) — AppleTalk
®
— Universal asynchronous receiver transmitter (UART) — Synchronous UART — Serial infrared (IrDA) — Totally transparent (bit streams) — Totally transparent (frame based with optional cyclic redundancy check (CRC))
QUICC multichannel controller (QMC) microcode features — Up to 64 independent communication channels on a single SCC — Arbitrary mapping of 0–31 channels to any of 0–31 TDM time slots
6
MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
— Supports either transparent or HDLC protocols for each channel — Independent TxBDs/Rx and event/interrupt reporting for each channel
One universal serial bus controller (USB) — Supports host controller and slave modes at 1.5 Mbps and 12 Mbps
Two serial management controllers (SMCs) — UART — Transparent — General circuit interface (GCI) controller — Can be connected to the time-division-multiplexed (TDM) channel
One serial peripheral interface (SPI) — Supports master and slave modes — Supports multimaster operation on the same bus
One I
2
C
®
(interprocessor-integrated circuit) port — Supports master and slave modes — Supports multimaster environment
Time slot assigner — Allows SCCs and SMCs to run in multiplexed operation — Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined — 1- or 8-bit resolution — Allows independent transmit and receive routing, frame syncs, clocking — Allows dynamic changes — Can be internally connected to four serial channels (two SCCs and two SMCs)
Low-power support — Full high: all units fully powered at high clock frequency — Full low: all units fully powered at low clock frequency — Doze: core functional units disabled except time base, decrementer, PLL, memory controller,
real-time clock, and CPM in low-power standby
— Sleep: all units disabled except real-time clock and periodic interrupt timer. PLL is active for
fast wake-up
— Deep sleep: all units disabled including PLL, except the real-time clock and periodic interrupt
timer — Low-power stop: to provide lower power dissipation — Separate power supply input to operate internal logic at 2.2 V when operating at or below
25 MHz — Can be dynamically shifted between high frequency (3.3 V internal) and low frequency (2.2 V
internal) operation
Debug interface — Eight comparators: four operate on instruction address, two operate on data address, and two
operate on data
MOTOROLA
MPC850 (Rev . A/B/C) Har dware Specifications 7
— The MPC850 can compare using the =, ≠ , <, and > conditions to generate watchpoints — Each watchpoint can generate a breakpoint internally
3.3-V operation with 5-V TTL compatibility on all general purpose I/O pins.
Part III Electrical and Thermal Characteristics
This section provides the AC and DC electrical specifications and thermal characteristics for the MPC850. Table 2 provides the maximum ratings.
This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for e xample, either GND or V
CC
). Table 3 provides the
package thermal characteristics for the MPC850.
Table 2. Maximum Ratings
(GND = 0V)
Rating Symbol Value Unit
Supply voltage VDDH -0.3 to 4.0 V
VDDL -0.3 to 4.0 V KAPWR -0.3 to 4.0 V VDDSYN -0.3 to 4.0 V
Input voltage
1
1
Functional operating conditions are provided with the DC electrical specifications in Table 5. Absolute maximum ratings are stress ratings only; functional oper ation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device. CAUTION: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage. This restriction applies to power-up and normal operation (that is, if the MPC850 is unpowered, v oltage greater than 2.5 V must not be applied to its inputs).
V
in
GND-0.3 to VDDH + 2.5 V V
Junction temperature
2
2
The MPC850, a high-frequency device in a BGA package, does not provide a guaranteed maximum ambient temperature. Only maximum junction temperature is guaranteed. It is the responsibility of the user to consider power dissipation and thermal management. Junction temperature ratings are the same regardless of frequency rating of the device.
T
j
0 to 95 (standard)
-40 to 95 (extended)
˚C
Storage temperature range T
stg
-55 to +150 ˚C
8
MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Part IV Thermal Characteristics
Table 3 shows the thermal characteristics for the MPC850.
Table 4 provides power dissipation information.
Table 5 provides the DC electrical characteristics for the MPC850.
Table 3. Thermal Characteristics
Characteristic Symbol Value Unit
Thermal resistance for BGA
1
1
For more information on the design of thermal vias on multilayer boards and BGA layout considerations in general, refer to AN-1231/D,
Plastic Ball Grid Array Application Note
available from y our local Motorola sales
office.
θ
JA
40
2
2
Assumes natural convection and a single layer board (no thermal vias).
°
C/W
θ
JA
31
3
3
Assumes natural convection, a multilayer board with thermal vias
4
, 1 watt MPC850 dissipation, and a board
temperature rise of 20 °
C above ambient.
°
C/W
θ
JA
24
4
4
Assumes natural convection, a multilayer board with thermal vias
4
, 1 watt MPC850 dissipation, and a board
temperature rise of 13 °
C above ambient.
T
J
= T
A
+ (P
D
θ
JA
)
P
D
= (V
DD
I
DD
) + P
I/O
where:
P
I/O
is the power dissipation on pins
°
C/W
Thermal Resistance for BGA (junction-to-case)
θ
JC
8
° C/W
Table 4. Power Dissipation (P
D
)
Characteristic Frequency (MHz) Typical
1
1
Typical power dissipation is measured at 3.3V
Maximum
2
2
Maximum power dissipation is measured at 3.65 V
Unit
Power Dissipation All Revisions (1:1) Mode
33 TBD 515 mW 40 TBD 590 mW 50 TBD 725 mW
Table 5. DC Electrical Specifications
Characteristic Symbol Min Max Unit
Operating voltage at 40 MHz or less VDDH, VDDL,
KAPWR, VDDSYN
3.0 3.6 V
Operating voltage at 40 MHz or higher VDDH, VDDL,
KAPWR, VDDSYN
3.135 3.465 V
Input high voltage (address bus, data bus, EXTAL, EXTCLK, and all bus control/status signals)
VIH 2.0 3.6 V
Input high voltage (all general purpose I/O and peripheral pins) VIH 2.0 5.5 V
MOTOROLA
MPC850 (Rev . A/B/C) Har dware Specifications 9
Part V Power Considerations
The average chip-junction temperature
,
T
J
,
in ° C can be obtained from the equation:
T
J
= T
A
+ (P
D
θ
JA
) (1)
where
T
A
= Ambient temperature
,
°
C
θ
JA
= Package thermal resistance
,
junction to ambient
,
°
C/W
P
D
= P
INT
+ P
I/O
P
INT
= I
DD
x V
DD
, watts—chip internal power
P
I/O
= Power dissipation on input and output pins—user determined
Input low voltage VIL GND 0.8 V EXTAL, EXTCLK input high voltage VIHC 0.7*(VCC) VCC+0.3 V Input leakage current, Vin = 5.5 V (Except TMS, TRST
, DSCK
and DSDI pins)
I
in
100 µA
Input leakage current, Vin = 3.6V (Except TMS, TRST
, DSCK
and DSDI pins)
I
In
—10µA
Input leakage current, Vin = 0V (Except TMS, TRST
, DSCK and
DSDI pins)
I
In
—10µA
Input capacitance C
in
—20pF
Output high voltage, IOH = -2.0 mA, VDDH = 3.0V except XTAL, XFC, and open-drain pins
VOH 2.4 V
Output low voltage IOL = 2.0 mA CLKOUT IOL = 3.2 mA
1
IOL = 5.3 mA
2
IOL = 7.0 mA PA[14]/USBOE, PA[12]/TXD2 IOL = 8.9 mA TS
, T A, TEA, BI, BB, HRESET, SRESET
VOL 0.5 V
1
A[6:31], TSIZ0/REG, TSIZ1, D[0:31], DP[0:3]/IRQ[3:6], RD/WR, BURST, RSV/IRQ2, IP_B[0:1]/IWP[0:1]/VFLS[0:1], IP_B2/IOIS16_B
/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3, PA[15]/USBRXD, PA[13]/RXD2, PA[9]/L1TXDA/SMRXD2, PA[8]/L1RXDA/SMTXD2, PA[7]/CLK1/TIN1/L1RCLKA/BRGO1, PA[6]/CLK2/T
OUT1/TIN3, PA[5]/CLK3/TIN2/L1TCLKA/BRGO2,
PA[4]/CLK4/T
OUT2/TIN4, PB[31]/SPISEL, PB[30]/SPICLK/TXD3, PB[29]/SPIMOSI /RXD3, PB[28]/SPIMISO/BRGO3, PB[27]/I2CSDA/BRGO1, PB[26]/I2CSCL/BRGO2, PB[25]/SMTXD1/TXD3, PB[24]/SMRXD1/RXD3, PB[23]/SMSYN1
/SDACK1, PB[22]/SMSYN2/SDACK2, PB[19]/L1ST1,
PB[18]/R
TS2/L1ST2, PB[17]/L1ST3, PB[16]/L1RQa/L1ST4, PC[15]/DREQ0/L1ST5, PC[14]/DREQ1/RTS2/L1ST6,
PC[13]/L1ST7/R
TS3, PC[12]/L1RQa/L1ST8, PC[11]/USBRXP, PC[10]/TGATE1/USBRXN, PC[9]/CTS2,
PC[8]/CD2
/TGATE1, PC[7]/USBTXP, PC[6]/USBTXN, PC[5]/CTS3/L1TSYNCA/SDACK1, PC[4]/CD3/L1RSYNCA,
PD[15], PD[14], PD[13], PD[12], PD[11], PD[10], PD[9], PD[8], PD[7], PD[6], PD[5], PD[4], PD[3]
2
BDIP/GPL_B5, BR, BG, FRZ/IRQ6, CS[0:5], CS6/CE1_B, CS7/CE2_B, WE0/BS_AB0/IORD, WE1/BS_AB1/IOWR, WE2
/BS_AB2/PCOE, WE3/BS_AB3/PCWE, GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1,
GPL_A
[2:3]/GPL_B[2:3]/CS[2:3], UPWAITA/GPL_A4/AS, UPWAITB/GPL_B4, GPL_A5, ALE_B/DSCK/AT1,
OP2/MODCK1/STS
, OP3/MODCK2/DSDO
Table 5. DC Electrical Specifications (continued)
Characteristic Symbol Min Max Unit
10 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Layout Practices
For most applications P
I/O
< 0.3
P
INT
and can be neglected. If P
I/O
is neglected, an approximate relationship
between P
D
and TJ is:
P
D
= K ÷ (T
J
+ 273°C) (2)
Solving equations (1) and (2) for K gives:
K = P
D
(T
A
+ 273°C) + θJA • P
D
2
(3)
where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P
D
(at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving
equations (1) and (2) iteratively for any value of T
A
.
5.1 Layout Practices
Each VCC pin on the MPC850 should be provided with a low-impedance path to the board’s supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V
CC
power supply should be bypassed to ground using at least four 0.1 µF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V
CC
and GND should be kept to less than half an inch
per capacitor lead. A four -layer board is recommended, employing two inner layers as V
CC
and GND planes.
All output pins on the MPC850 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V
CC
and GND circuits. Pull up all unused inputs or signals that will be inputs during reset.
Special care should be taken to minimize the noise levels on the PLL supply pins.
Part VI Bus Signal Timing
Table 6 provides the bus operation timing for the MPC850 at 50 MHz, 66 MHz, and 80 MHz. Timing information for other bus speeds can be interpolated by equation using the MPC850 Electrical Specifications Spreadsheet found at http://www.mot.com/netcomm.
The maximum bus speed supported by the MPC850 is 50 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC850 used at 66 MHz must be configured for a 33 MHz bus).
The timing for the MPC850 bus shown assumes a 50-pF load. This timing can be derated by 1 ns per 10 pF. Derating calculations can also be performed using the MPC850 Electrical Specifications Spreadsheet.
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 11
Layout Practices
Table 6. Bus Operation Timing 1
Num Characteristic
50 MHz 66 MHz 80 MHz
FFACT
Cap Load
(default
50 pF)
Unit
Min Max Min Max Min Max
B1 CLKOUT period 20 30.30 25 ns
B1a EXTCLK to CLKOUT phase
skew (EXTCLK > 15 MHz and MF <= 2)
-0.90 0.90 -0.90 0.90 -0.90 0.90 50.00 ns
B1b EXTCLK to CLKOUT phase
skew (EXTCLK > 10 MHz and MF < 10)
-2.30 2.30 -2.30 2.30 -2.30 2.30 50.00 ns
B1c CLKOUT phase jitter (EXTCLK >
15 MHz and MF <= 2)
2
-0.60 0.60 -0.60 0.60 -0.60 0.60 50.00 ns
B1d CLKOUT phase jitter
2
-2.00 2.00 -2.00 2.00 -2.00 2.00 50.00 ns
B1e CLKOUT frequency jitter (MF <
10)
2
0.50 0.50 0.50 50.00 %
B1f CLKOUT frequency jitter (10 <
MF < 500)
2
2.00 2.00 2.00 50.00 %
B1g CLKOUT frequency jitter (MF >
500)
2
3.00 3.00 3.00 50.00 %
B1h Frequency jitter on EXTCLK
3
0.50 0.50 0.50 50.00 % B2 CLKOUT pulse width low 8.00 12.12 10.00 50.00 ns B3 CLKOUT width high 8.00 12.12 10.00 50.00 ns B4 CLKOUT rise time 4.00 4.00 4.00 50.00 ns B5 CLKOUT fall time 4.00 4.00 4.00 50.00 ns B7 CLKOUT to A[6–31],
RD/WR
, BURST, D[0–31],
DP[0–3] invalid
5.00 7.58 6.25 0.250 50.00 ns
B7a CLKOUT to TSIZ[0–1], REG
,
RSV
, AT[0–3], BDIP, PTR invalid
5.00 7.58 6.25 0.250 50.00 ns
B7b CLKOUT to BR
, BG, FRZ, VFLS[0–1], VF[0–2] IWP[0–2], LWP[0–1], STS
invalid
4
5.00 7.58 6.25 0.250 50.00 ns
B8 CLKOUT to A[6–31],
RD/WR
, BURST, D[0–31],
DP[0–3] valid
5.00 11.75 7.58 14.33 6.25 13.00 0.250 50.00 ns
B8a CLKOUT to TSIZ[0–1], REG
,
RSV
, AT[0–3] BDIP, PTR valid
5.00 11.75 7.58 14.33 6.25 13.00 0.250 50.00 ns
B8b CLKOUT to BR
, BG, VFLS[0–1], VF[0–2], IWP[0–2], FRZ, LWP[0–1], STS
valid
4
5.00 11.74 7.58 14.33 6.25 13.00 0.250 50.00 ns
B9 CLKOUT to A[6–31] RD/WR
,
B
URST, D[0–31], DP[0–3],
TSIZ[0–1], REG
, RSV, AT[0–3],
PTR
high-Z
5.00 11.75 7.58 14.33 6.25 13.00 0.250 50.00 ns
12 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Layout Practices
B11 CLKOUT to TS, BB assertion 5.00 11.00 7.58 13.58 6.25 12.25 0.250 50.00 ns
B11a CLKOUT to T
A, BI assertion, (When driven by the memory controller or PCMCIA interface)
2.50 9.25 2.50 9.25 2.50 9.25 50.00 ns
B12 CLKOUT to TS
, BB negation 5.00 11.75 7.58 14.33 6.25 13.00 0.250 50.00 ns
B12a CLKOUT to T
A, BI negation (when driven by the memory controller or PCMCIA interface)
2.50 11.00 2.50 11.00 2.50 11.00 50.00 ns
B13 CLKOUT to TS
, BB high-Z 5.00 19.00 7.58 21.58 6.25 20.25 0.250 50.00 ns
B13a CLK OUT to T
A, BI high-Z, (when driven by the memory controller or PCMCIA interface)
2.50 15.00 2.50 15.00 2.50 15.00 50.00 ns
B14 CLKOUT to TEA
assertion 2.50 10.00 2.50 10.00 2.50 10.00 50.00 ns
B15 CLKOUT to TEA
high-Z 2.50 15.00 2.50 15.00 2.50 15.00 50.00 ns
B16 T
A, BI valid to CLKOUT(setup
time)
5
9.75 9.75 9.75 50.00 ns
B16a TEA
, KR, RETRY, valid to
CLKOUT (setup time
) 5
10.00 10.00 10.00 50.00 ns
B16b BB
, BG, BR valid to CLKOUT
(setup time)
6
8.50 8.50 8.50 50.00 ns
B17 CLKOUT to T
A, TEA, BI, BB, BG,
BR
valid (Hold time).
5
1.00 1.00 1.00 50.00 ns
B17a CLKOUT to KR
, RETRY, except
TEA
valid (hold time)
2.00 2.00 2.00 50.00 ns
B18 D[0–31], DP[0–3] valid to
CLKOUT rising edge (setup time)
7
6.00 6.00 6.00 50.00 ns
B19 CLKOUT rising edge to D[0–31],
DP[0–3] valid (hold time)
7
1.00 1.00 1.00 50.00 ns
B20 D[0–31], DP[0–3] valid to
CLKOUT falling edge (setup time)
8
4.00 4.00 4.00 50.00 ns
B21 CLKOUT f alling edge to D[0–31],
DP[0–3] valid (hold time)
8
2.00 2.00 2.00
B22 CLKOUT rising edge to CS
asserted GPCM ACS = 00
5.00 11.75 7.58 14.33 6.25 13.00 0.250 50.00 ns
B22a CLKOUT falling edge to CS
asserted GPCM ACS = 10, TRLX = 0,1
8.00 8.00 8.00 50.00 ns
B22b CLKOUT falling edge to CS
asserted GPCM ACS = 11, TRLX = 0, EBDF = 0
5.00 11.75 7.58 14.33 6.25 13.00 0.250 50.00 ns
Table 6. Bus Operation Timing 1 (continued)
Num Characteristic
50 MHz 66 MHz 80 MHz
FFACT
Cap Load
(default
50 pF)
Unit
Min Max Min Max Min Max
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 13
Layout Practices
B22c CLKOUT falling edge to CS
asserted GPCM ACS = 11, TRLX = 0, EBDF = 1
7.00 14.00 11.00 18.00 9.00 16.00 0.375 50.00 ns
B23 CLKOUT rising edge to CS
negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 & CSNT = 0
2.00 8.00 2.00 8.00 2.00 8.00 50.00 ns
B24 A[6–31] to CS
asserted GPCM
ACS = 10, TRLX = 0.
3.00 6.00 4.00 0.250 50.00 ns
B24a A[6–31] to CS
asserted GPCM
ACS = 11, TRLX = 0
8.00 13.00 11.00 0.500 50.00 ns
B25 CLKOUT rising edge to OE
,
WE[0–3]
asserted
9.00 9.00 9.00 50.00 ns
B26 CLKOUT rising edge to OE
negated
2.00 9.00 2.00 9.00 2.00 9.00 50.00 ns
B27 A[6–31] to CS
asserted GPCM
ACS = 10, TRLX = 1
23.00 36.00 29.00 1.250 50.00 ns
B27a A[6–31] to CS
asserted GPCM
ACS = 11, TRLX = 1
28.00 43.00 36.00 1.500 50.00 ns
B28 CLKOUT rising edge to WE[0–3]
negated GPCM write access CSNT = 0
9.00 9.00 9.00 50.00 ns
B28a CLKOUT falling edge to WE[0–3]
negated GPCM write access TRLX = 0,1 CSNT = 1, EBDF = 0
5.00 12.00 8.00 14.00 6.00 13.00 0.250 50.00 ns
B28b CLKOUT falling edge to CS
negated GPCM write access TRLX = 0,1 CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0
12.00 14.00 13.00 0.250 50.00 ns
B28c CLKOUT f alling edge to WE[0–3]
negated GPCM write access TRLX = 0,1 CSNT = 1 write access TRLX = 0, CSNT = 1, EBDF = 1
7.00 14.00 11.00 18.00 9.00 16.00 0.375 50.00 ns
B28d CLKOUT falling edge to CS
negated GPCM write access TRLX = 0,1 CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1
14.00 18.00 16.00 0.375 50.00 ns
B29 WE[0–3]
negated to D[0–31], DP[0–3] high-Z GPCM write access, CSNT = 0
3.00 6.00 4.00 0.250 50.00 ns
B29a WE[0–3]
negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 0 CSNT = 1, EBDF = 0
8.00 13.00 11.00 0.500 50.00 ns
Table 6. Bus Operation Timing 1 (continued)
Num Characteristic
50 MHz 66 MHz 80 MHz
FFACT
Cap Load
(default
50 pF)
Unit
Min Max Min Max Min Max
14 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Layout Practices
B29b CS negated to D[0–31], DP[0–3],
high-Z GPCM write access, ACS = 00, TRLX = 0 & CSNT = 0
3.00 6.00 4.00 0.250 50.00 ns
B29c CS
negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0
8.00 13.00 11.00 0.500 50.00 ns
B29d WE[0–3]
negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0
28.00 43.00 36.00 1.500 50.00 ns
B29e CS
negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0
28.00 43.00 36.00 1.500 50.00 ns
B29f WE[0–3]
negated to D[0–31], DP[0–3] high-Z GPCM write access TRLX = 0, CSNT = 1, EBDF = 1
5.00 9.00 7.00 0.375 50.00 ns
B29g CS
negated to D[0–31], DP[0–3] high-Z GPCM write access TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1
5.00 9.00 7.00 0.375 50.00 ns
B29h WE[0–3]
negated to D[0–31], DP[0–3] high-Z GPCM write access TRLX = 0, CSNT = 1, EBDF = 1
25.00 39.00 31.00 1.375 50.00 ns
B29i CS
negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1
25.00 39.00 31.00 1.375 50.00 ns
B30 CS
, WE[0–3] negated to A[6–31] invalid GPCM write access
9
3.00 6.00 4.00 0.250 50.00 ns
B30a WE[0–3]
negated to A[6–31] invalid GPCM write access, TRLX = 0, CSNT = 1, CS
negated to A[6–31] invalid GPCM write access TRLX = 0, CSNT =1, ACS = 10 or ACS = 11, EBDF = 0
8.00 13.00 11.00 0.500 50.00 ns
Table 6. Bus Operation Timing 1 (continued)
Num Characteristic
50 MHz 66 MHz 80 MHz
FFACT
Cap Load
(default
50 pF)
Unit
Min Max Min Max Min Max
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 15
Layout Practices
B30b WE[0–3] negated to A[6–31]
invalid GPCM write access, TRLX = 1, CSNT = 1. CS
negated to A[6–31] Invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0
28.00 43.00 36.00 1.500 50.00 ns
B30c WE[0–3]
negated to A[6–31] invalid GPCM write access, TRLX = 0, CSNT = 1. CS
negated to A[6–31] invalid GPCM write access, TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1
5.00 8.00 6.00 0.375 50.00 ns
B30d WE[0–3]
negated to A[6–31] invalid GPCM write access TRLX = 1, CSNT =1, CS
negated to A[6–31] invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1
25.00 39.00 31.00 1.375 50.00 ns
B31 CLKOUT f alling edge to CS
valid
- as requested by control bit CST4 in the corresponding word in the UPM
1.50 6.00 1.50 6.00 1.50 6.00 50.00 ns
B31a CLKOUT falling edge to CS
valid
- as requested by control bit CST1 in the corresponding word in the UPM
5.00 12.00 8.00 14.00 6.00 13.00 0.250 50.00 ns
B31b CLKOUT rising edge to CS
valid
- as requested by control bit CST2 in the corresponding word in the UPM
1.50 8.00 1.50 8.00 1.50 8.00 50.00 ns
B31c CLKOUT rising edge to CS
valid
- as requested by control bit CST3 in the corresponding word in the UPM
5.00 12.00 8.00 14.00 6.00 13.00 0.250 50.00 ns
B31d CLKOUT falling edge to CS
valid
- as requested by control bit CST1 in the corresponding word in the UPM EBDF = 1
9.00 14.00 13.00 18.00 11.00 16.00 0.375 50.00 ns
B32 CLKOUT f alling edge to BS
valid
- as requested by control bit BST4 in the corresponding word in the UPM
1.50 6.00 1.50 6.00 1.50 6.00 50.00 ns
B32a CLKOUT falling edge to BS
valid
- as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0
5.00 12.00 8.00 14.00 6.00 13.00 0.250 50.00 ns
Table 6. Bus Operation Timing 1 (continued)
Num Characteristic
50 MHz 66 MHz 80 MHz
FFACT
Cap Load
(default
50 pF)
Unit
Min Max Min Max Min Max
16 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Layout Practices
B32b CLKOUT rising edge to BS valid
- as requested by control bit BST2 in the corresponding word in the UPM
1.50 8.00 1.50 8.00 1.50 8.00 50.00 ns
B32c CLKOUT rising edge to BS
valid
- as requested by control bit BST3 in the corresponding word in the UPM
5.00 12.00 8.00 14.00 6.00 13.00 0.250 50.00 ns
B32d CLKOUT falling edge to BS
valid
- as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1
9.00 14.00 13.00 18.00 11.00 16.00 0.375 50.00 ns
B33 CLKOUT falling edge to GPL
valid - as requested by control bit GxT4 in the corresponding word in the UPM
1.50 6.00 1.50 6.00 1.50 6.00 50.00 ns
B33a CLKOUT rising edge to GPL
valid - as requested by control bit GxT3 in the corresponding word in the UPM
5.00 12.00 8.00 14.00 6.00 13.00 0.250 50.00 ns
B34 A[6–31] and D[0–31] to CS
valid
- as requested by control bit CST4 in the corresponding word in the UPM
3.00 6.00 4.00 0.250 50.00 ns
B34a A[6–31] and D[0–31] to CS
valid
- as requested by control bit CST1 in the corresponding word in the UPM
8.00 13.00 11.00 0.500 50.00 ns
B34b A[6–31] and D[0–31] to CS
valid
- as requested by CST2 in the corresponding word in UPM
13.00 21.00 17.00 0.750 50.00 ns
B35 A[6–31] to CS
valid - as requested by control bit BST4 in the corresponding word in UPM
3.00 6.00 4.00 0.250 50.00 ns
B35a A[6–31] and D[0–31] to BS
valid
- as requested by BST1 in the corresponding word in the UPM
8.00 13.00 11.00 0.500 50.00 ns
B35b A[6–31] and D[0–31] to BS
valid
- as requested by control bit BST2 in the corresponding word in the UPM
13.00 21.00 17.00 0.750 50.00 ns
B36 A[6–31] and D[0–31] to GPL
valid - as requested by control bit GxT4 in the corresponding word in the UPM
3.00 6.00 4.00 0.250 50.00 ns
Table 6. Bus Operation Timing 1 (continued)
Num Characteristic
50 MHz 66 MHz 80 MHz
FFACT
Cap Load
(default
50 pF)
Unit
Min Max Min Max Min Max
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 17
Layout Practices
B37 UPWAIT v alid to CLK OUT falling
edge
10
6.00 6.00 6.00 50.00 ns
B38 CLKOUT f alling edge to UPWAIT
valid
10
1.00 1.00 1.00 50.00 ns
B39 AS
valid to CLK OUT rising edge
11
7.00 7.00 7.00 50.00 ns
B40 A[6–31], TSIZ[0–1], RD/WR
,
B
URST, valid to CLKOUT rising
edge.
7.00 7.00 7.00 50.00 ns
B41 TS
valid to CLKOUT rising edge
(setup time)
7.00 7.00 7.00 50.00 ns
B42 CLKOUT rising edge to TS
valid
(hold time)
2.00 2.00 2.00 50.00 ns
B43 AS
negation to memory
controller signals negation
TBD TBD TBD 50.00 ns
1
The minima provided assume a 0 pF load, whereas maxima assume a 50pF load. F or frequencies not marked on the part, new bus timing must be calculated for all frequency-dependent AC parameters. Frequency-dependent AC parameters are those with an entry in the FFactor column. A C parameters without an FFactor entry do not need to be calculated and can be taken directly from the frequency column corresponding to the frequency marked on the part.
The following equations should be used in these calculations. For a frequency F, the following equations should be applied to each one of the above parameters: For minima:
For maxima:
where: D is the parameter value to the frequency required in ns F is the operation frequency in MHz D
50
is the parameter value defined for 50 MHz CAP LOAD is the capacitance load on the signal in question. FFACTOR is the one defined for each of the parameters in the table.
2
Phase and frequency jitter performance results are valid only if the input jitter is less than the prescribed value.
3
If the rate of change of the frequency of EXTAL is slow (i.e. it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (i.e., it does not stay at an extreme value f or a long time) then the maximum allowed jitter on EXTAL can be up to 2%.
4
The timing for BR output is relev ant when the MPC850 is selected to work with e xternal bus arbiter . The timing for BG output is relevant when the MPC850 is selected to work with internal bus arbiter.
5
The setup times required for TA, TEA, and BI are relevant only when the y are supplied b y an e xternal device (and not when the memory controller or the PCMCIA interface drives them).
6
The timing required for BR input is relevant when the MPC850 is selected to work with the internal bus arbiter. The timing for BG
input is relevant when the MPC850 is selected to work with the external bus arbiter.
7
The D[0–31] and DP[0–3] input timings B20 and B21 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.
Table 6. Bus Operation Timing 1 (continued)
Num Characteristic
50 MHz 66 MHz 80 MHz
FFACT
Cap Load
(default
50 pF)
Unit
Min Max Min Max Min Max
D =
FFACTOR x 1000
F
(D
50
- 20 x FFACTOR)
+
D =
FFACTOR x 1000F(D
50
-20 x FFACTOR)
++
1ns(CAP LOAD - 50) / 10
18 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Layout Practices
Figure 2 is the control timing diagram.
Figure 2. Control Timing
8
The D[0:31] and DP[0:3] input timings B20 and B21 refer to the falling edge of CLKOUT. This timing is valid only for read accesses controlled by chip-selects controlled by the UPM in the memory controller, for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.
9
The timing B30 refers to CS when ACS = '00' and to WE[0:3] when CSNT = '0'.
10
The signal UPWAIT is considered asynchronous to CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals.
11
The AS signal is considered asynchronous to CLKOUT.
CLKOUT
Outputs
A
B
2.0 V
0.8 V
0.8 V
2.0 V
2.0 V
0.8 V
2.0 V
0.8 V
Outputs
2.0 V
0.8 V
2.0 V
0.8 V
B
A
Inputs
2.0 V
0.8 V
2.0 V
0.8 V
D
C
Inputs
2.0 V
0.8 V
2.0 V
0.8 V
C
D
A Maximum output delay specification
B Minimum output hold time
C Minimum input setup time specification
D Minimum input hold time specification
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 19
Layout Practices
Figure 3 provides the timing for the external clock.
Figure 3. External Clock Timing
Figure 4 provides the timing for the synchronous output signals.
Figure 4. Synchronous Output Signals Timing
CLKOUT
B1
B5
B3
B4
B1
B2
CLKOUT
Output
Signals
Output
Signals
Output
Signals
B8
B7 B9
B8a
B9B7a
B8b
B7b
20 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Layout Practices
Figure 5 provides the timing for the synchronous active pull-up and open-drain output signals.
Figure 5. Synchronous Active Pullup and Open-Drain Outputs Signals Timing
Figure 6 provides the timing for the synchronous input signals.
Figure 6. Synchronous Input Signals Timing
CLKOUT
TS
, BB
TA, BI
TEA
B13
B12B11
B11a
B12a
B13a
B15
B14
CLKOUT
T
A, BI
TEA, KR,
RETR
Y
BB, BG, BR
B16
B17
B16a
B17a
B16b
B17
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 21
Layout Practices
Figure 7 provides normal case timing for input data.
Figure 7. Input Data Timing in Normal Case
Figure 8 provides the timing for the input data controlled by the UPM in the memory controller.
Figure 8. Input Data Timing when Controlled by UPM in the Memory Controller
CLKOUT
T
A
D[0:31],
DP[0:3]
B16
B17
B19
B18
CLKOUT
T
A
D[0:31],
DP[0:3]
B20
B21
22 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Layout Practices
Figure 9 through Figure 12 provide the timing for the external bus read controlled by v arious GPCM factors.
Figure 9. External Bus Read Timing (GPCM Controlled—ACS = 00)
CLKOUT
A[6:31]
CSx
OE
WE[0:3]
TS
D[0:31],
DP[0:3]
B11 B12
B23
B8
B22
B26
B19
B18
B25
B28
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 23
Layout Practices
Figure 10. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)
Figure 11. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)
CLKOUT
A[6:31]
CSx
OE
TS
D[0:31],
DP[0:3]
B11 B12
B8
B22a
B23
B26
B19B18
B25B24
CLKOUT
A[6:31]
CSx
OE
TS
D[0:31],
DP[0:3]
B11 B12
B22b
B8
B22c
B23
B24a
B25 B26
B19B18
24 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Layout Practices
Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10, ACS = 11)
CLKOUT
A[6:31]
CSx
OE
TS
D[0:31],
DP[0:3]
B11 B12
B8
B22a
B27
B27a
B22bB22c
B19B18
B26
B23
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 25
Layout Practices
Figure 13 through Figure 15 provide the timing for the external bus write controlled by various GPCM factors.
Figure 13. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)
CLKOUT
A[6:31]
CSx
WE[0:3]
OE
TS
D[0:31],
DP[0:3]
B11
B8
B22 B23
B12
B30
B28B25
B26
B8 B9
B29a
B29
26 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Layout Practices
Figure 14. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)
B23
B30a
B30c
CLKOUT
A[6:31]
CSx
OE
WE[0:3]
TS
D[0:31],
DP[0:3]
B11
B8
B22
B12
B28b
B28d
B25
B26
B8
B28a
B9
B28c
B29c
B29g
B29aB29f
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 27
Layout Practices
Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)
Figure 16 provides the timing for the external bus controlled by the UPM.
B23B22
B8
B12B11
CLKOUT
A[6:31]
CSx
WE[0:3]
TS
OE
D[0:31],
DP[0:3]
B30dB30b
B28b
B28d
B25
B29eB29i
B26
B29d
B28a
B28c
B9B8
B29
28 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Layout Practices
Figure 16. External Bus Timing (UPM Controlled Signals)
Figure 17 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.
Figure 17. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing
CLKOUT
CSx
B31d
B8
B31
B34
B32b
GPL_A[0–5],
GPL_B
[0–5]
BS_A
[0:3],
BS_B
[0:3]
A[6:31]
B31c
B31b
B34a
B32
B32aB32d
B34b
B36
B35b
B35a
B35
B33
B32c
B33a
B31a
CLKOUT
CSx
UPWAIT
GPL_A
[0–5],
GPL_B
[0–5]
BS_A[0:3],
BS_B[0:3]
B37
B38
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 29
Layout Practices
Figure 18 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.
Figure 18. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing
Figure 19 provides the timing for the synchronous external master access controlled by the GPCM.
Figure 19. Synchronous External Master Access Timing (GPCM Handled ACS = 00)
CLKOUT
CSx
UPWAIT
GPL_A
[0–5],
GPL_B
[0–5]
BS_A[0:3],
BS_B
[0:3]
B37
B38
CLKOUT
TS
A[6:31],
TSIZ[0:1],
R/W
, BURST
CSx
B41 B42
B40
B22
30 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Layout Practices
Figure 20 provides the timing for the asynchronous external master memory access controlled by the GPCM.
Figure 20. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)
Figure 21 provides the timing for the asynchronous external master control signals negation.
Figure 21. Asynchronous External Master—Control Signals Negation Timing
Table 7 provides interrupt timing for the MPC850.
Table 7. Interrupt Timing
Num Characteristic
1
1
The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ
lines are synchronized internally and do not have to be asserted or negated with reference
to the CLKOUT.
The timings I41, I42, and I43 are specified to allow the correct function of the IRQ
lines detection circuitry, and has no
direct relation with the total system interrupt latency that the MPC850 is able to support
50 MHz 66MHz 80 MHz
Unit
Min Max Min Max Min Max
I39 IRQx
valid to CLKOUT rising edge (set up time) 6.00 6.00 6.00 ns
I40 IRQx
hold time after CLKOUT. 2.00 2.00 2.00 ns
I41 IRQx
pulse width low 3.00 3.00 3.00 ns
I42 IRQx
pulse width high 3.00 3.00 3.00 ns
I43 IRQx
edge-to-edge time 80.00 121.0 100.0 ns
CLKOUT
AS
A[6:31],
TSIZ[0:1],
R/W
CSx
B39
B40
B22
AS
CSx, WE[0:3],
OE
, GPLx,
BS
[0:3]
B43
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 31
Layout Practices
Figure 22 provides the interrupt detection timing for the external level-sensitive lines.
Figure 22. Interrupt Detection Timing for External Level Sensitive Lines
Figure 23 provides the interrupt detection timing for the external edge-sensitive lines.
Figure 23. Interrupt Detection Timing for External Edge Sensitive Lines
Table 8 shows the PCMCIA timing for the MPC850.
Table 8. PCMCIA Timing
Num Characteristic
50MHz 66MHz 80 MHz
FFACTOR Unit
Min Max Min Max Min Max
P44
A[6–31], REG
valid to PCMCIA strobe
asserted.
1
13.00 21.00 17.00 0.750 ns
P45 A[6–31], REG
valid to ALE negation.
1
18.00 28.00 23.00 1.000 ns
P46 CLKOUT to REG
valid 5.00 13.00 8.00 16.00 6.00 14.00 0.250 ns
P47 CLKOUT to REG
Invalid. 6.00 9.00 7.00 0.250 ns
P48 CLKOUT to CE1
, CE2 asserted. 5.00 13.00 8.00 16.00 6.00 14.00 0.250
P49 CLKOUT to CE1
, CE2 negated. 5.00 13.00 8.00 16.00 6.00 14.00 0.250 ns
P50
CLKOUT to PCOE
, IORD, PCWE, IO WR
assert time.
11.00 11.00 11.00 ns
P51
CLKOUT to PCOE
, IORD, PCWE, IO WR
negate time.
2.00 11.00 2.00 11.00 2.00 11.00 ns
P52 CLKOUT to ALE assert time 5.00 13.00 8.00 16.00 6.00 14.00 0.250 ns
CLKOUT
IRQx
I39
I40
CLKOUT
IRQx
I39
I41 I42
I43
I43
32 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Layout Practices
Figure 24 provides the PCMCIA access cycle timing for the external bus read.
Figure 24. PCMCIA Access Cycles Timing External Bus Read
P53 CLKOUT to ALE negate time 13.00 16.00 14.00 0.250 ns
P54
PCWE
, IOWR negated to D[0–31]
invalid.
1
3.00 6.00 4.00 0.250 ns
P55 W
AIT_B valid to CLKOUT rising edge.18.00 8.00 8.00 ns
P56 CLKOUT rising edge to W
AIT_B invalid.12.00 2.00 2.00 ns
1
PSST = 1. Otherwise add PSST times cycle time. PSHT = 0. Otherwise add PSHT times cycle time.
These synchronous timings define when the W
AIT_B signal is detected in order to freeze (or relieve) the PCMCIA
current cycle. The W
AIT_B assertion will be effective only if it is detected 2 cycles before the PSL timer expiration.
See PCMCIA Interface in the MPC850 PowerQUICC User’s Manual.
Table 8. PCMCIA Timing (continued)
Num Characteristic
50MHz 66MHz 80 MHz
FFACTOR Unit
Min Max Min Max Min Max
CLKOUT
A[6:31]
REG
CE1/CE2
PCOE, IORD
TS
D[0:31]
ALE
B19B18
P53P52 P52
P51P50
P48 P49
P46 P45
P44
P47
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 33
Layout Practices
Figure 25 provides the PCMCIA access cycle timing for the external bus write.
Figure 25. PCMCIA Access Cycles Timing External Bus Write
Figure 26 provides the PCMCIA WAIT signals detection timing.
Figure 26. PCMCIA WAIT Signal Detection Timing
CLKOUT
A[6:31]
REG
CE1/CE2
PCOE, IOWR
TS
D[0:31]
ALE
B9B8
P53P52 P52
P51P50
P48 P49
P46 P45
P44
P47
P54
CLKOUT
W
AIT_B
P55
P56
34 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Layout Practices
Table 9 shows the PCMCIA port timing for the MPC850.
Figure 27 provides the PCMCIA output port timing for the MPC850.
Figure 27. PCMCIA Output Port Timing
Figure 28 provides the PCMCIA output port timing for the MPC850.
Figure 28. PCMCIA Input Port Timing
Table 9. PCMCIA Port Timing
Num Characteristic
50 MHz 66 MHz 80 MHz
Unit
Min Max Min Max Min Max
P57 CLKOUT to OPx valid 19.00 19.00 19.00 ns P58 HRESET
negated to OPx drive
1
1
OP2 and OP3 only.
18.00 26.00 22.00 ns
P59 IP_Xx valid to CLKOUT rising edge 5.00 5.00 5.00 ns P60 CLKOUT rising edge to IP_Xx invalid 1.00 1.00 1.00 ns
CLKOUT
HRESET
Output
Signals
OP2, OP3
P57
P58
CLKOUT
Input
Signals
P59
P60
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 35
Layout Practices
Table 10 shows the debug port timing for the MPC850.
Figure 29 provides the input timing for the debug port clock.
Figure 29. Debug Port Clock Input Timing
Figure 30 provides the timing for the debug port.
Figure 30. Debug Port Timings
Table 10. Debug Port Timing
Num Characteristic
50 MHz 66 MHz 80 MHz
Unit
Min Max Min Max Min Max
D61 DSCK cycle time 60.00 91.00 75.00 ns D62 DSCK clock pulse width 25.00 38.00 31.00 ns D63 DSCK rise and fall times 0.00 3.00 0.00 3.00 0.00 3.00 ns D64 DSDI input data setup time 8.00 8.00 8.00 ns D65 DSDI data hold time 5.00 5.00 5.00 ns D66 DSCK low to DSDO data valid 0.00 15.00 0.00 15.00 0.00 15.00 ns D67 DSCK low to DSDO invalid 0.00 2.00 0.00 2.00 0.00 2.00 ns
DSCK
D61
D63
D62
D62
D63
DSCK
DSDI
DSDO
D64
D65
D66
D67
36 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Layout Practices
Table 11 shows the reset timing for the MPC850.
Figure 31 shows the reset timing for the data bus configuration.
Figure 31. Reset Timing—Configuration from Data Bus
Table 11. Reset Timing
Num Characteristic
50 MHz 66MHz 80 MHz
FFACTOR Unit
Min Max Min Max Min Max
R69 CLKOUT to HRESET
high impedance 20.00 20.00 20.00 ns
R70 CLKOUT to SRESET
high impedance 20.00 20.00 20.00 ns
R71 RSTCONF
pulse width 340.00 515.00 425.00 17.000 ns
R72 —————— —
R73
Configuration data to HRESET
rising
edge set up time
350.00 505.00 425.00 15.000 ns
R74
Configuration data to RSTCONF
rising
edge set up time
350.00 350.00 350.00 ns
R75
Configuration data hold time after RSTCONF
negation
0.00 0.00 0.00 ns
R76
Configuration data hold time after HRESET
negation
0.00 0.00 0.00 ns
R77
HRESET
and RSTCONF asserted to
data out drive
25.00 25.00 25.00 ns
R78
RSTCONF
negated to data out high
impedance.
25.00 25.00 25.00 ns
R79
CLKOUT of last rising edge before chip tristates HRESET
to data out high
impedance.
25.00 25.00 25.00 ns
R80 DSDI, DSCK set up 60.00 90.00 75.00 3.000 ns R81 DSDI, DSCK hold time 0.00 0.00 0.00 ns
R82
SRESET
negated to CLKOUT rising
edge for DSDI and DSCK sample
160.00 242.00 200.00 8.000 ns
HRESET
RSTCONF
D[0:31] (IN)
R71
R74
R73
R75
R76
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 37
Layout Practices
Figure 32 provides the reset timing for the data bus weak drive during configuration.
Figure 32. Reset Timing—Data Bus Weak Drive during Configuration
Figure 33 provides the reset timing for the debug port configuration.
Figure 33. Reset Timing—Debug Port Configuration
Part VII IEEE 1149.1 Electrical Specifications
Table 12 provides the JTAG timings for the MPC850 as shown in Figure 34 to Figure 37.
Table 12. JTAG Timing
Num Characteristic
50 MHz 66MHz 80 MHz
Unit
Min Max Min Max Min Max
J82 TCK cycle time 100.00 100.00 100.00 ns J83 TCK clock pulse width measured at 1.5 V 40.00 40.00 40.00 ns J84 TCK rise and fall times 0.00 10.00 0.00 10.00 0.00 10.00 ns J85 TMS, TDI data setup time 5.00 5.00 5.00 ns
CLKOUT
HRESET
D[0:31] (OUT)
(Weak)
RSTCONF
R69
R79
R77 R78
CLKOUT
SRESET
DSCK, DSDI
R70
R82
R80R80
R81
R81
38 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Layout Practices
Figure 34. JTAG Test Clock Input Timing
Figure 35. JTAG Test Access Port Timing Diagram
J86 TMS, TDI data hold time 25.00 25.00 25.00 ns J87 TCK low to TDO data valid 27.00 27.00 27.00 ns J88 TCK low to TDO data invalid 0.00 0.00 0.00 ns J89 TCK low to TDO high impedance 20.00 20.00 20.00 ns J90 TRST
assert time 100.00 100.00 100.00 ns
J91 TRST
setup time to TCK low 40.00 40.00 40.00 ns
J92 TCK falling edge to output valid 50.00 50.00 50.00 ns
J93
TCK falling edge to output valid out of high impedance
50.00 50.00 50.00 ns
J94 TCK falling edge to output high impedance 50.00 50.00 50.00 ns J95 Boundary scan input valid to TCK rising edge 50.00 50.00 50.00 ns J96 TCK rising edge to boundary scan input invalid 50.00 50.00 50.00 ns
Table 12. JTAG Timing (continued)
Num Characteristic
50 MHz 66MHz 80 MHz
Unit
Min Max Min Max Min Max
TCK
J82 J83
J82 J83
J84
J84
TCK
TMS, TDI
TDO
J85
J86
J87
J88 J89
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 39
PIO AC Electrical Specifications
Figure 36. JTAG TRST Timing Diagram
Figure 37. Boundary Scan (JTAG) Timing Diagram
Part VIII CPM Electrical Characteristics
This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC850.
8.1 PIO AC Electrical Specifications
Table 13 provides the parallel I/O timings for the MPC850 as shown in Figure 38.
Table 13. Parallel I/O Timing
Num Characteristic
All Frequencies
Unit
Min Max
29 Data-in setup time to clock high 15 ns 30 Data-in hold time from clock high 7.5 ns 31 Clock low to data-out valid (CPU writes data, control, or direction) 25 ns
TCK
TRST
J91
J90
TCK
Output
Signals
Output
Signals
Input
Signals
J92 J94
J93
J95 J96
40 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
IDMA Controller AC Electrical Specifications
Figure 38. Parallel I/O Data-In/Data-Out Timing Diagram
8.2 IDMA Controller AC Electrical Specifications
Table 14 provides the IDMA controller timings as shown in Figure 39 to Figure 42.
Figure 39. IDMA External Requests Timing Diagram
Table 14. IDMA Controller Timing
Num Characteristic
All Frequencies
Unit
Min Max
40 DREQ
setup time to clock high 7.00 ns
41 DREQ
hold time from clock high 3.00 ns
42 SD
ACK assertion delay from clock high 12.00 ns
43 SD
ACK negation delay from clock low 12.00 ns
44 SD
ACK negation delay from TA low 20.00 ns
45 SD
ACK negation delay from clock high 15.00 ns
46 T
A assertion to falling edge of the clock setup time (applies to external TA) 7.00 ns
CLKOUT
DATA-IN
29
31
30
DATA-OUT
41
40
DREQ
(Input)
CLKOUT
(Output)
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 41
IDMA Controller AC Electrical Specifications
Figure 40. SDACK Timing Diagram—Peripheral Write, T A Sampled Low at the Falling Edge
of the Clock
Figure 41. SDACK Timing Diagram—Peripheral Write, T A Sampled High at the Falling Edge
of the Clock
DATA
42
46
43
CLKOUT
(Output)
TS
(Output)
R/W
(Output)
T
A
(Output)
SDACK
DATA
42 44
CLKOUT
(Output)
TS
(Output)
R/W
(Output)
T
A
(Output)
SDACK
42 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Baud Rate Generator AC Electrical Specifications
Figure 42. SDACK Timing Diagram—Peripheral Read
8.3 Baud Rate Generator A C Electrical Specifications
Table 15 provides the baud rate generator timings as shown in Figure 43.
Figure 43. Baud Rate Generator Timing Diagram
Table 15. Baud Rate Generator Timing
Num Characteristic
All Frequencies
Unit
Min Max
50 BRGO rise and fall time 10.00 ns 51 BRGO duty cycle 40.00 60.00 % 52 BRGO cycle 40.00 ns
DATA
42 45
CLKOUT
(Output)
TS
(Output)
R/W
(Output)
T
A
(Output)
SDACK
52
50
51
BRGOn
50
51
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 43
Timer AC Electrical Specifications
8.4 Timer AC Electrical Specifications
Table 16 provides the baud rate generator timings as shown in Figure 44.
Figure 44. CPM General-Purpose Timers Timing Diagram
8.5 Serial Interface AC Electrical Specifications
Table 17 provides the serial interface timings as shown in Figure 45 to Figure 49.
T able 16. Timer Timing
Num Characteristic
All Frequencies
Unit
Min Max
61 TIN/TGA
TE rise and fall time 10.00 ns
62 TIN/TGA
TE low time 1.00 clk
63 TIN/TGA
TE high time 2.00 clk
64 TIN/TGA
TE cycle time 3.00 clk
65 CLKO high to T
OUT valid 3.00 25.00 ns
Table 17. SI Timing
Num Characteristic
All Frequencies
Unit
Min Max
70 L1RCLK, L1TCLK frequency (DSC = 0)
1, 2
SYNCCLK/2.5MHz
71 L1RCLK, L1TCLK width low (DSC = 0)
2
P + 10 ns
71a L1RCLK, L1TCLK width high (DSC = 0)
3
P + 10 ns
72 L1TXD, L1STn, L1RQ
, L1xCLKO rise/fall time 15.00 ns
73 L1RSYNC, L1TSYNC valid to L1xCLK edge Edge
(SYNC setup time)
20.00 ns
CLKOUT
TIN/TGA
TE
(Input)
TOUT
(Output)
64
65
61
626361
44 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Serial Interface AC Electrical Specifications
74 L1xCLK edge to L1RSYNC, L1TSYNC, invalid
(SYNC hold time)
35.00 ns
75 L1RSYNC, L1TSYNC rise/fall time 15.00 ns 76 L1RXD valid to L1xCLK edge (L1RXD setup time) 17.00 ns 77 L1xCLK edge to L1RXD invalid (L1RXD hold time) 13.00 ns 78 L1xCLK edge to L1STn valid
4
10.00 45.00 ns
78A L1SYNC valid to L1STn valid 10.00 45.00 ns
79 L1xCLK edge to L1STn invalid 10.00 45.00 ns 80 L1xCLK edge to L1TXD valid 10.00 55.00 ns
80A L1TSYNC valid to L1TXD valid
4
10.00 55.00 ns 81 L1xCLK edge to L1TXD high impedance 0.00 42.00 ns 82 L1RCLK, L1TCLK frequency (DSC =1) 16.00 or
SYNCCLK/2
MHz
83 L1RCLK, L1TCLK width low (DSC =1) P + 10 ns
83A L1RCLK, L1TCLK width high (DSC = 1)
3
P + 10 ns 84 L1CLK edge to L1CLKO valid (DSC = 1) 30.00 ns 85 L1RQ
valid before falling edge of L1TSYNC
4
1.00 L1TCLK
86 L1GR setup time
2
42.00 ns 87 L1GR hold time 42.00 ns 88 L1xCLK edge to L1SYNC valid (FSD = 00) CNT =
0000, BYT = 0, DSC = 0)
0.00 ns
1
The ratio SyncCLK/L1RCLK must be greater than 2.5/1.
2
These specs are valid for IDL mode only.
3
Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns.
4
These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.
Table 17. SI Timing (continued)
Num Characteristic
All Frequencies
Unit
Min Max
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 45
Serial Interface AC Electrical Specifications
Figure 45. SI Receive Timing Diagram with Normal Clocking (DSC = 0)
L1RxD
(Input)
79
76
7774
L1RCLK
(FE=0, CE=0)
(Input)
L1RCLK
(FE=1, CE=1)
(Input)
L1RSYNC
(Input)
L1STn
(Output)
71 70
RFSD=1
75
72
73
78
BIT0
71a
46 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Serial Interface AC Electrical Specifications
Figure 46. SI Receive Timing with Double-Speed Clocking (DSC = 1)
L1RXD
(Input)
L1RCLK
(FE=1, CE=1)
(Input)
L1RCLK
(FE=0, CE=0)
(Input)
L1RSYNC
(Input)
L1ST(4-1)
(Output)
72
RFSD=1
75
73
74 77
78
76
79
83a
82
L1CLKO
(Output)
84
BIT0
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 47
Serial Interface AC Electrical Specifications
Figure 47. SI T ransmit Timing Diagram
L1TxD
(Output)
79
8180a
L1TCLK
(FE=0, CE=0)
(Input)
L1TCLK
(FE=1, CE=1)
(Input)
L1TSYNC
(Input)
L1STn
(Output)
70
TFSD=0
75
72
74
80
BIT0
71
73
78
48 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Serial Interface AC Electrical Specifications
Figure 48. SI Transmit Timing with Double Speed Clocking (DSC = 1)
L1TXD
(Output)
L1RCLK
(FE=0, CE=0)
(Input)
L1RCLK
(FE=1, CE=1)
(Input)
L1RSYNC
(Input)
L1ST(4-1)
(Output)
72
TFSD=0
75
73
74
78a
80
79
83a
82
L1CLKO
(Output)
84
BIT0
78
81
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 49
Serial Interface AC Electrical Specifications
Figure 49. IDL Timing
B17 B16 B14 B13 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 MB15
L1RXD
(Input)
L1TXD
(Output)
L1ST(4-1)
(Output)
L1RQ
(Output)
73
77
12345678910 11 12 13 14 15 16 17 18 19 20
74
80
B17 B16 B15 B14 B13 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 M
71
71
L1GR
(Input)
78
85
72
76
87
86
L1RSYNC
(Input)
L1RCLK
(Input)
81
50 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
SCC in NMSI Mode Electrical Specifications
8.6 SCC in NMSI Mode Electrical Specifications
Table 18 provides the NMSI external clock timing.
Table 19 provides the NMSI internal clock timing.
Table 18. NMSI External Clock Timing
Num Characteristic
All Frequencies
Unit
Min Max
100 RCLKx and TCLKx frequency
1
(x = 2, 3 for all specs in this
table)
1
The ratios SyncCLK/RCLKx and SyncCLK/TCLKx must be greater than or equal to 2.25/1.
1/SYNCCLK ns
101 RCLKx and TCLKx width low 1/SYNCCLK +5 ns 102 RCLKx and TCLKx rise/fall time 15.00 ns 103 TXDx active delay (from TCLKx falling edge) 0.00 50.00 ns 104 RTSx active/inactive delay (from TCLKx falling edge) 0.00 50.00 ns 105 CTSx
setup time to TCLKx rising edge 5.00 ns 106 RXDx setup time to RCLKx rising edge 5.00 ns 107 RXDx hold time from RCLKx rising edge
2
2
Also applies to CD and CTS hold time when they are used as an external sync signal.
5.00 ns
108 CDx
setup time to RCLKx rising edge 5.00 ns
Table 19. NMSI Internal Clock Timing
Num Characteristic
All Frequencies
Unit
Min Max
100 RCLKx and TCLKx frequency
1
(x = 2, 3 for all specs in this table)
1
The ratios SyncCLK/RCLKx and SyncCLK/TCLK1x must be greater or equal to 3/1.
0.00 SYNCCLK/3 MHz 102 RCLKx and TCLKx rise/fall time ns 103 TXDx active delay (from TCLKx falling edge) 0.00 30.00 ns 104 RTSx active/inactive delay (from TCLKx falling edge) 0.00 30.00 ns 105 CTSx
setup time to TCLKx rising edge 40.00 ns 106 RXDx setup time to RCLKx rising edge 40.00 ns 107 RXDx hold time from RCLKx rising edge
2
2
Also applies to CD and CTS hold time when they are used as an external sync signals.
0.00 ns
108 CDx
setup time to RCLKx rising edge 40.00 ns
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 51
SCC in NMSI Mode Electrical Specifications
Figure 50 through Figure 52 show the NMSI timings.
Figure 50. SCC NMSI Receive Timing Diagram
Figure 51. SCC NMSI Transmit Timing Diagram
RCLKx
CDx
(Input)
102
100
107
108
107
RXDx
(Input)
CDx
(SYNC Input)
102 101
106
TCLKx
CTSx
(Input)
102
100
104
107
TXDx
(Output)
CTSx
(SYNC Input)
102 101
RTSx
(Output)
105
103
104
52 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Ethernet Electrical Specifications
Figure 52. HDLC Bus Timing Diagram
8.7 Ethernet Electrical Specifications
Table 20 provides the Ethernet timings as shown in Figure 53 to Figure 55.
Table 20. Ethernet Timing
Num Characteristic
All Frequencies
Unit
Min Max
120 CLSN width high 40.00 ns 121 RCLKx rise/fall time (x = 2, 3 for all specs in this table) 15.00 ns 122 RCLKx width low 40.00 ns 123 RCLKx clock period
1
80.00 120.00 ns 124 RXDx setup time 20.00 ns 125 RXDx hold time 5.00 ns 126 RENA active delay (from RCLKx rising edge of the last data bit) 10.00 ns 127 RENA width low 100.00 ns 128 TCLKx rise/fall time 15.00 ns 129 TCLKx width low 40.00 ns 130 TCLKx clock period
1
99.00 101.00 ns 131 TXDx active delay (from TCLKx rising edge) 10.00 50.00 ns 132 TXDx inactive delay (from TCLKx rising edge) 10.00 50.00 ns
TCLKx
CTSx
(Echo Input)
102
100
104
TXDx
(Output)
102 101
RTSx
(Output)
103
104107
105
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 53
Ethernet Electrical Specifications
Figure 53. Ethernet Collision Timing Diagram
Figure 54. Ethernet Receive Timing Diagram
133 TENA active delay (from TCLKx rising edge) 10.00 50.00 ns 134 TENA inactive delay (from TCLKx rising edge) 10.00 50.00 ns 138 CLKOUT low to SD
ACK asserted
2
20.00 ns
139 CLKOUT low to SD
ACK negated
2
20.00 ns
1
The ratios SyncCLK/RCLKx and SyncCLK/TCLKx must be greater or equal to 2/1.
2
SDACK is asserted whenever the SDMA writes the incoming frame destination address into memory.
Table 20. Ethernet Timing (continued)
Num Characteristic
All Frequencies
Unit
Min Max
CLSN(CTSx)
120
(Input)
RCLKx
121
RXDx
(Input)
121
RENA(CDx)
(Input)
125
124 123
127
126
Last Bit
122
54 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
SMC Transparent AC Electrical Specifications
Figure 55. Ethernet T ransmit Timing Diagram
8.8 SMC Transparent AC Electrical Specifications
Figure 21 provides the SMC transparent timings as shown in Figure 56.
Table 21. Serial Management Controller Timing
Num Characteristic
All Frequencies
Unit
Min Max
150 SMCLKx clock period
1
1
The ratio SyncCLK/SMCLKx must be greater or equal to 2/1.
100.00 ns
151 SMCLKx width low 50.00 ns
151a SMCLKx width high 50.00 ns
152 SMCLKx rise/fall time 15.00 ns 153 SMTXDx active delay (from SMCLKx falling edge) 10.00 50.00 ns 154 SMRXDx/SMSYNx
setup time 20.00 ns
155 SMRXDx/SMSYNx
hold time 5.00 ns
TCLKx
128
TxDx
(Output)
128
TENA(RTSx)
(Input)
NOTES:
Transmit clock invert (TCI) bit in GSMR is set. If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the CSL bit is set in the buffer descriptor at the end of the frame transmission.
1.
2.
RENA(CDx)
(Input)
133 134
132
131 130
129
(NOTE 2)
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 55
SPI Master AC Electrical Specifications
Figure 56. SMC T ransparent Timing Diagram
8.9 SPI Master AC Electrical Specifications
Table 22 provides the SPI master timings as shown in Figure 57 and Figure 58.
Table 22. SPI Master Timing
Num Characteristic
All Frequencies
Unit
Min Max
160 MASTER cycle time 4 1024 t
cyc
161 MASTER clock (SCK) high or low time 2 512 t
cyc
162 MASTER data setup time (inputs) 50.00 ns 163 Master data hold time (inputs) 0.00 ns 164 Master data valid (after SCK edge) 20.00 ns 165 Master data hold time (outputs) 0.00 ns 166 Rise time output 15.00 ns 167 Fall time output 15.00 ns
SMCLKx
SMRXDx
(Input)
152
150
SMTXDx
(Output)
152 151
151a
154 153
155
154
155
NOTE
NOTE:
This delay is equal to an integer number of character-length clocks.1.
SMSYNx
56 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
SPI Master AC Electrical Specifications
Figure 57. SPI Master (CP = 0) Timing Diagram
Figure 58. SPI Master (CP = 1) Timing Diagram
SPIMOSI
(Output)
SPICLK
(CI=0)
(Output)
SPICLK
(CI=1)
(Output)
SPIMISO
(Input)
162
Data
166167161
161 160
msb lsb msb
msb Data lsb msb
167 166
163
166
167
165 164
SPIMOSI
(Output)
SPICLK
(CI=0)
(Output)
SPICLK
(CI=1)
(Output)
SPIMISO
(Input)
Data
166167161
161 160
msb lsb msb
msb Data lsb msb
167 166
163
166
167
165 164
162
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 57
SPI Slave AC Electrical Specifications
8.10 SPI Slave AC Electrical Specifications
Table 23 provides the SPI slave timings as shown in Figure 59 and Figure 60.
Table 23. SPI Slave Timing
Num Characteristic
All Frequencies
Unit
Min Max
170 Slave cycle time 2 t
cyc
171 Slave enable lead time 15.00 ns 172 Slave enable lag time 15.00 ns 173 Slave clock (SPICLK) high or low time 1 t
cyc
174 Slave sequential transfer delay (does not require deselect) 1 t
cyc
175 Slave data setup time (inputs) 20.00 ns 176 Slave data hold time (inputs) 20.00 ns 177 Slave access time 50.00 ns 178 Slave SPI MISO disable time 50.00 ns 179 Slave data valid (after SPICLK edge) 50.00 ns 180 Slave data hold time (outputs) 0.00 ns 181 Rise time (input) 15.00 ns 182 Fall time (input) 15.00 ns
58 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
SPI Slave AC Electrical Specifications
Figure 59. SPI Slave (CP = 0) Timing Diagram
SPIMOSI
(Input)
SPICLK
(CI=0)
(Input)
SPICLK
(CI=1)
(Input)
SPIMISO
(Output)
180
Data
181182173
173 170
msb lsb msb
181
177 182
175 179
SPISEL
(Input)
171172
174
Datamsb lsb msbUndef
181
178
176 182
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 59
I2C AC Electrical Specifications
Figure 60. SPI Slave (CP = 1) Timing Diagram
8.11 I2C AC Electrical Specifications
Table 24 provides the I2C (SCL < 100 KHz) timings.
Table 24. I2C Timing (SCL < 100 KHZ)
Num Characteristic
All Frequencies
Unit
Min Max
200 SCL clock frequency (slave) 0.00 100.00 KHz 200 SCL clock frequency (master)
1
1.50 100.00 KHz 202 Bus free time between transmissions 4.70 µs 203 Low period of SCL 4.70 µs 204 High period of SCL 4.00 µs 205 Start condition setup time 4.70 µs 206 Start condition hold time 4.00 µs 207 Data hold time 0.00 µs
SPIMOSI
(Input)
SPICLK
(CI=0)
(Input)
SPICLK
(CI=1)
(Input)
SPIMISO
(Output)
180
Data
181182
msb lsb
181
177 182
175 179
SPISEL
(Input)
174
Data
msb
lsbUndef
178
176 182
msb
msb
172
173
173
171 170
181
60 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
I2C AC Electrical Specifications
Table 25 provides the I2C (SCL > 100 KHz) timings.
208 Data setup time 250.00 ns 209 SDL/SCL rise time 1.00 µs 210 SDL/SCL fall time 300.00 ns 211 Stop condition setup time 4.70 µs
1
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.
Table 25. I2C Timing (SCL > 100 KHZ)
Num Characteristic Expression
All Frequencies
Unit
Min Max
200 SCL clock frequency (slave) fSCL 0 BRGCLK/48 Hz 200 SCL clock frequency (master)
1
1
SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.
fSCL BRGCLK/16512 BRGCLK/48 Hz 202 Bus free time between transmissions 1/(2.2 * fSCL) s 203 Low period of SCL 1/(2.2 * fSCL) s 204 High period of SCL 1/(2.2 * fSCL) s 205 Start condition setup time 1/(2.2 * fSCL) s 206 Start condition hold time 1/(2.2 * fSCL) s 207 Data hold time 0 s 208 Data setup time 1/(40 * fSCL) s 209 SDL/SCL rise time 1/(10 * fSCL) s 210 SDL/SCL fall time 1/(33 * fSCL) s 211 Stop condition setup time 1/2(2.2 * fSCL) s
Table 24. I2C Timing (SCL < 100 KHZ) (CONTINUED)
Num Characteristic
All Frequencies
Unit
Min Max
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 61
I2C AC Electrical Specifications
Figure 61 shows the I2C bus timing.
Figure 61. I2C Bus Timing Diagram
Part IX Mechanical Data and Ordering Information
Table 26 provides information on the MPC850 derivative devices.
Table 26. MPC850 Derivatives
Device Ethernet Support Number of SCCs
1
1
Serial Communication Controller (SCC)
32-Channel HDLC
Support
64-Channel HDLC
Support
2
2
50 MHz version supports 64 time slots on a time division multiplexed line using one SCC
MPC850 N/A One N/A N/A MPC850DE Yes Two N/A N/A MPC850SAR Y es T wo N/A Yes
SCL
202
205
203
207
204
208
206 209 211210
SDA
62 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Pin Assignments and Mechanical Dimensions of the PBGA
Table 27 identifies the packages and operating frequencies available for the MPC850.
9.1 Pin Assignments and Mechanical Dimensions of the PBGA
The original pin numbering of the MPC850 conformed to a Motorola proprietary pin numbering scheme that has since been replaced by the JEDEC pin numbering standard for this package type. To support customers that are currently using the non-JEDEC pin numbering scheme, two sets of pinouts, JEDEC and non-JEDEC, are presented in this document.
Table 27. MPC850 Package/Frequency/Availability
Package Type Frequency (MHz) Temperature (Tj) Order Number
256-Lead Plastic Ball Grid Array (ZT suffix)
50 0°C to 95°C XPC850ZT50B
XPC850DEZT50B XPC850SRZT50B
66 0°C to 95°C XPC850ZT66B
XPC850DEZT66B XPC850SRZT66B
80 0°C to 95°C XPC850ZT80B
XPC850DEZT80B XPC850SRZT80B
256-Lead Plastic Ball Grid Array (CZT suffix)
50 -40°C to 95°C XPC850CZT50B
XPC850DECZT50B XPC850SRCZT50B
66 XPC850CZT66B
XPC850DECZT66B XPC850SRCZT66B
80 XPC850CZT80B
XPC850DECZT80B XPC850SRCZT80B
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 63
Pin Assignments and Mechanical Dimensions of the PBGA
Figure 62 shows the non-JEDEC pinout of the PBGA package as viewed from the top surface.
Figure 62. Pin Assignments for the PBGA (Top View)—non-JEDEC Standard
PC14 PB28 PB27
PC12
TCK PB24 PB23 PA8 PA7 VDDL PA5 PC7 PC4 PD14 PD10 PD8
PC15 PA14 PA13 PA12
TMS
PB26
PA15 PB30 PB29 PC13 TRST
N/C
PC10 PA6 PB18 PC5 PD13 PD9 PD4 PD5
A8 A7 PB31 TDO
TDI PC11
PB22
PC9
PB25 PA9 PC8
A11 A9 A12
PB19 PA4 PB16 PD15
PD12
PD7 PD6
PB17 PC6 PD11 PD3 IR
Q7 IRQ1 IRQ0
T
R
P
N
M
A15 A14 A13
A27 A19 A16
VDDL A20 A21
A29 A23 A25
A28 A30 A22
A31 TSIZ0 A26
WE1
TSIZ1
WE0 WE2 GPLA3
GPLA1 GPLA2 CS6
D8 D0
D4
D1
D9
D11
D2 D3
K
J
H
L
D16
D5
D19
VDDL
D21 D6
D29
D7
D30 CLKOUT
DP3
N/C
GND
G
F
VDDH
E
D
CS4
CS7 CS2
XFC VDDSYN
BI
N/C CS3 CS1 BDIP
BU RST IPB4 ALEB IR Q4
MODCK2
HRESET
SRESET
PORESET
VSSSYN1VSSSYN
BR
BB IRQ6 IPB3 IPB0 VDDL
EXTCLKEXTAL
XTAL
KAPWR
C
B
A
T
A
16 15
14 13 12 11 10 9
876
54321
A6
A10
A17
A24
A18
WE3
GPLA0
CS5
WR
GPLB4
CS0
TS IRQ2 IPB7 IPB2
MODCK1
TEXP
DP1
DP2
GPLA4
TEA BG IPB5 IPB1 IPB6
RSTCONF
W AITB
DP0
GPLA5
D12 D13
D23
D27
D17
D10
D15 D14
D22
D18
D25
D20
D28 D24
D26
D31
N/CN/C
N/C
N/C
N/C
N/C
64 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Pin Assignments and Mechanical Dimensions of the PBGA
Figure 63 shows the JEDEC pinout of the PBGA package as viewed from the top surface.
Figure 63. Pin Assignments for the PBGA (Top View)—JEDEC Standard
For more information on the printed circuit board layout of the PBGA package, including thermal via design and suggested pad layout, please refer to AN-1231/D, Plastic Ball Grid Array Application Note available from your local Motorola sales office.
PC14 PB28 PB27
PC12
TCK PB24 PB23 PA8 PA7 VDDL PA5 PC7 PC4 PD14 PD10 PD8
PC15 PA14 PA13 PA12
TMS
PB26
PA15 PB30 PB29 PC13 TRST
N/C
PC10 PA6 PB18 PC5 PD13 PD9 PD4 PD5
A8 A7 PB31 TDO
TDI PC11
PB22
PC9
PB25 PA9 PC8
A11 A9 A12
PB19 PA4 PB16 PD15
PD12
PD7 PD6
PB17 PC6 PD11 PD3 IR
Q7 IRQ1 IRQ0
U
T
R
P
N
A15 A14 A13
A27 A19 A16
VDDL A20 A21
A29 A23 A25
A28 A30 A22
A31 TSIZ0 A26
WE1
TSIZ1
WE0 WE2 GPLA3
GPLA1
GPLA2
CS6
D8 D0
D4
D1
D9
D11
D2 D3
L
K
J
M
D16
D5
D19
VDDL
D21 D6
D29
D7
D30 CLKOUT
DP3
N/C
GND
H
G
VDDH
F
E
CS4 CS7 CS2
XFC
VDDSYN
BI
N/C CS3 CS1 BDIP
BU RST IPB4 ALEB IR Q4
MODCK2
HRESET
SRESET
PORESET
VSSSYN1VSSSYN
BR
BB IRQ6 IPB3 IPB0 VDDL
EXTCLKEXTAL
XTAL
KAPWR
D
C
B
T
A
17 16
15 14 13 12 11 10
987
65432
A6
A10
A17
A24
A18
WE3
GPLA0
CS5
WR
GPLB4
CS0
TS IRQ2 IPB7 IPB2
MODCK1
TEXP
DP1
DP2
GPLA4
TEA BG IPB5 IPB1 IPB6
RSTCONF
W AITB
DP0
GPLA5
D12 D13
D23
D27
D17
D10
D15 D14
D22
D18
D25
D20
D28 D24
D26
D31
N/CN/C
N/C
N/C
N/C
N/C
MOTOROLA MPC850 (Rev . A/B/C) Har dware Specifications 65
Pin Assignments and Mechanical Dimensions of the PBGA
Figure 64 shows the non-JEDEC package dimensions of the PBGA.
Figure 64. Package Dimensions for the Plastic Ball Grid Array (PBGA)—non-JEDEC Standard
T
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
256X
BOTTOM VIEW
E
0.20
654321
b
0.15 C
D
D2
E2
A
B
0.30 C
AB
SIDE VIEW
DIM MIN MA X
MILLIMETERS
A 1.91 2.35 A1 0.50 0.70 A2 1.12 1.22 A3 0.29 0.43
b 0.60 0.90
D 23.00 BSC D1 19.05 REF D2
E 23.00 BSC E1 19.05 REF E2 19.00 20.00
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.
4. PRIMARY DATUM C AND THE SEA TING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
4X
7 8 9 10 11 12 13 14 15
M M
TOP VIEW
(D1)
15X
e
15X
e
(E1)
4X
e
/2
0.20 C
0.35 C
A3
256X
C
A
A1
A2
SEATING
PLANE
e 1.27 BSC
19.00 20.00
16
66 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Pin Assignments and Mechanical Dimensions of the PBGA
Figure 65 shows the JEDEC package dimensions of the PBGA.
Figure 65. Package Dimensions for the Plastic Ball Grid Array (PBGA)—JEDEC Standard
U
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
256X
BOTTOM VIEW
E
0.20
765432
b
0.15 C
D
D2
E2
A
B
0.30 C
AB
SIDE VIEW
DIM MIN MA X
MILLIMETERS
A 1.91 2.35 A1 0.50 0.70 A2 1.12 1.22 A3 0.29 0.43
b 0.60 0.90
D 23.00 BSC D1 19.05 REF D2
E 23.00 BSC E1 19.05 REF E2 19.00 20.00
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.
4. PRIMARY DATUM C AND THE SEA TING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
4X
8 9 10 11 12 13 14 15 16
M M
TOP VIEW
(D1)
15X
e
15X
e
(E1)
4X
e
/2
0.20 C
0.35 C
A3
256X
C
A
A1
A2
SEATING
PLANE
e 1.27 BSC
19.00 20.00
17
CASE 1130-01
ISSUE B
67 MPC850 (Rev . A/B/C) Har dware Specifications MOT OROLA
Pin Assignments and Mechanical Dimensions of the PBGA
Part X Document Revision History
Table 28 lists significant changes between revisions of this document.
Table 28. Document Revision History
Revision Date Change
0.1 11/2001 Removed reference to 5 Volt tolerance capability on peripheral interface pins. Replaced SI and IDL timing diagrams with better images. Put into new template, added this revision table.
0.2 04/2002 Put in the new power numbers and added Rev. C
MPC850EC/D
HOW TO REACH US: USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447
JAPAN:
Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan 81-3-3440-3569
ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334
TECHNICAL INFORMATION CENTER:
1-800-521-6274
HOME PAGE:
http://www.motorola.com/semiconductors
DOCUMENT COMMENTS:
FAX (512) 933-2625, Attn: RISC Applications Engineering
Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied cop yright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the inf ormation in this document.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
© Motorola, Inc. 2002
Loading...