Motorola MC9S12C128, MC9S12GC128, MC9S12C96, MC9S12C64, MC9S12GC64 User Manual

...
MC9S12C Family
Device User Guide
V01.05
Covers also
MC9S12GC Family
DOCUMENT NUMBER
9S12C128DGV1/D
Original Release Date: 25 JAN 2003
Revised: 11 FEBRUARY 2004
Motorola, Inc.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products forany particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonableattorney fees arising out of, directly or indirectly,any claim of personal injuryor death associated with such unintended or unauthorizeduse, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
©Motorola, Inc., 2002
1
Revision History
Device User Guide — 9S12C128DGV1/D V01.05
Version Number
00.01 25.JAN.03 25.JAN.03 Original Version. Based on C32 user guide version 01.12
00.02 07.FEB.03 07.FEB.03
00.03 25.FEB.03 25.FEB.03
00.04 15.APR.03 15.APR03
00.05 05.MAY.03 05.MAY.03
00.06 21.MAY.03 21.MAY.03
01.00 15.JUL.03 15.JUL03
01.01 12.AUG.03 12.AUG.03 Updated PARTID listing due to C128 ECO revision
01.02 20.NOV.03 20.NOV.03
01.03 27.NOV.03 27.NOV.03
01.04 27.JAN.04 27.JAN.04
01.05 11.FEB.04 11.FEB.04
Revision
Date
Effective
Date
Author Description of Changes
Enhanced PortK description Part number table revision in preface
QFP112 Emulation pinout correction Enhanced part number explanation in preface Reduced pseudo STOP current spec. for C64,C96,C128
Enhanced PortAD signal description Corrected VDDR description in 2.4.2 Revised pin leakage in electrical parameters
SPI timing parameter table correction Output drive high value reduced in 3V range PE[4:2] Pull-Up spec out of reset changed 3V Expansion bus timing parameters not tested in production Minimum bus frequency specification increased to 0.25MHz.
Parameter classification added to Appendix Table C-2. IOH changed to 4mA for 3V range.
LVR level defined.for C32. Run IDD changed for C32. Block guide reference table updated Added PCB layout guide for Pierce oscillator configuration IOL parameter updated in 3.3V range
Changed DOC number and CPU DOC reference number Included separate C32 LVI levels Changed PortM pull up reset state to enabled.
Added References to the CAN-less GC-Family No major revision number increment, since silicon functionality is not changed. Added VDDX connection in PCB layout figures 8-1.to 8-6 Added Part ID for 2L45J mask set to Part ID table
Table A-4 VDD/VDDPLL min when supplied externally now 2.35V Reference S12FTS128K1 in Preface (was S12FTS128K) Reference to CPU Guide corrected to Version2
Corrected flash sector sizes for C-Family devices with >64K Flash Corrected Preface Table 0-1 16K part listing to GC16 without CAN Added PPAGE specifications to memory map diagrams Added flash timing parameters for 1024 byte sector size
2
Device User Guide — 9S12C128DGV1/D V01.05
Table of Contents
Section 1 Introduction
1.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5 Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6 Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.7 Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Section 2 Signal Description
2.1 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2 Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2.1 Pin Initialization for 48 & 52 Pin LQFP bond-out versions . . . . . . . . . . . . . . . . . . 56
2.3 Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.1 EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.2 RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.3 TEST / VPP — Test Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.4 XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.5 BKGD / TAGHI / MODC — Background Debug, Tag High & Mode Pin . . . . . . . 58
2.3.6 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . 58
2.3.7 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . 58
2.3.8 PE7 / NOACC / XCLKS — Port E I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.9 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.10 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.11 PE4 / ECLK— Port E I/O Pin [4] / E-Clock Output. . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.12 PE3 / LSTRB — Port E I/O Pin [3] / Low-Byte Strobe (LSTRB). . . . . . . . . . . . . . 60
2.3.13 PE2 / R/W — Port E I/O Pin [2] / Read/Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.14 PE1 / IRQ — Port E input Pin [1] / Maskable Interrupt Pin . . . . . . . . . . . . . . . . . 61
2.3.15 PE0 / XIRQ — Port E input Pin [0] / Non Maskable Interrupt Pin . . . . . . . . . . . . 61
2.3.16 PAD[7:0] / AN[7:0] — Port AD I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.17 PP[7] / KWP[7] — Port P I/O Pin [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.18 PP[6] / KWP[6]/ROMCTL — Port P I/O Pin [6] . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.19 PP[5:0] / KWP[5:0] / PW[5:0] — Port P I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . 62
3
Device User Guide — 9S12C128DGV1/D V01.05
2.3.20 PJ[7:6] / KWJ[7:6] — Port J I/O Pins [7:6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.21 PM5 / SCK — Port M I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.22 PM4 / MOSI — Port M I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.23 PM3 / SS — Port M I/O Pin 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.24 PM2 / MISO — Port M I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.25 PM1 / TXCAN — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.26 PM0 / RXCAN — Port M I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.27 PS[3:2] — Port S I/O Pins [3:2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.28 PS1 / TXD — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.29 PS0 / RXD — Port S I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.30 PPT[7:5] / IOC[7:5] — Port T I/O Pins [7:5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.31 PT[4:0] / IOC[4:0] / PW[4:0]— Port T I/O Pins [4:0]. . . . . . . . . . . . . . . . . . . . . . . 63
2.4 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers. . . . . . . . . . . . . . . . . . . . . 63
2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator 63
2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Pins. . . . . . . . . . . . . . . . . . 63
2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . 64
2.4.5 VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL. . . . . . . . . . . . . . . . . . . . . . . . 64
Section 3 System Clock Description
Section 4 Modes of Operation
4.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
4.3.1 Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.3 Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.1 Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.3 Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.4 Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Section 5 Resets and Interrupts
4
Device User Guide — 9S12C128DGV1/D V01.05
5.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1 Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.1 Reset Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.2 Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Section 6 HCS12 Core Block Description
6.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.1 PPAGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.2 BDM alternate clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.3 Extended Address Range Emulation Implications. . . . . . . . . . . . . . . . . . . . . . . . 71
Section 7 Voltage Regulator (VREG) Block Description
7.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.1.1 VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.1.2 VDD1, VDD2, VSS1, VSS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Section 8 Recommended Printed Circuit Board Layout
Section 9 Clock Reset Generator (CRG) Block Description
9.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.1.1 XCLKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Section 10 Oscillator (OSC) Block Description
Section 11 Timer (TIM) Block Description
Section 12 Analog to Digital Converter (ATD) Block Description
12.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
12.1.1 VRL (voltage reference low). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Section 13 Serial Communications Interface (SCI) Block Description
Section 14 Serial Peripheral Interface (SPI) Block Description
Section 15 Flash Block Description
5
Device User Guide — 9S12C128DGV1/D V01.05
Section 16 RAM Block Description
Section 17 Pulse Width Modulator (PWM) Block Description
Section 18 MSCAN Block Description
Section 19 Port Integration Module (PIM) Block Description
Appendix A Electrical Characteristics
A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.2 Power Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.3 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.1.4 Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.1.5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.1.6 ESD Protection and Latch-up Immunity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.1.7 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.1.8 Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.1.9 I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Appendix B Electrical Specifications
B.1 Voltage Regulator Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.2 Chip Power-up and LVI/LVR graphical explanation. . . . . . . . . . . . . . . . . . . . . . . . . 96
B.3 Output Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.3.1 Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.3.2 Capacitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.4 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.4.1 ATD Operating Characteristics In 5V Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.4.2 ATD Operating Characteristics In 3.3V Range . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.4.3 Factors influencing accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
B.4.4 ATD accuracy (5V Range). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.4.5 ATD accuracy (3.3V Range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.5 NVM, Flash and EEPROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.5.1 NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.5.2 NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6
Device User Guide — 9S12C128DGV1/D V01.05
B.6 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.6.1 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.6.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.6.3 Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.7 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.8 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Appendix C Electrical Specifications
C.1 Master Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
C.2 Slave Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
C.3 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
C.3.1 General Muxed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Appendix D Package Information
D.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
D.2 80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
D.3 52-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
D.4 48-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Appendix E Emulation Information
E.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
E.1.1 PK[2:0] / XADDR[16:14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
E.2 112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7
Device User Guide — 9S12C128DGV1/D V01.05
8
Device User Guide — 9S12C128DGV1/D V01.05
List of Figures
Figure 0-1 Order Part number Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 1-1 MC9S12C-Family Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 1-2 MC9S12C128 and MC9S12GC128 User configurable Memory Map . . . . . . 29
Figure 1-3 MC9S12C96 User Configurable Memory Map . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 1-4 MC9S12C64 and MC9S12GC64 User Configurable Memory Map. . . . . . . . 31
Figure 1-5 MC9S12C32 and MC9S12GC32 User Configurable Memory Map. . . . . . . . 32
Figure 1-6 MC9S12GC16 User Configurable Memory Map . . . . . . . . . . . . . . . . . . . . . . 33
Figure 2-1 Pin Assignments in 80 QFP for MC9S12C-Family . . . . . . . . . . . . . . . . . . . . 52
Figure 2-2 Pin assignments in 52 LQFP for MC9S12C-Family. . . . . . . . . . . . . . . . . . . . 53
Figure 2-3 Pin Assignments in 48 LQFP for MC9S12C-Family . . . . . . . . . . . . . . . . . . .54
Figure 2-4 PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 2-5 Colpitts Oscillator Connections (PE7=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 2-6 Pierce Oscillator Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 2-7 External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 3-1 Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 8-1 Recommended PCB Layout (48 LQFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 8-2 Recommended PCB Layout (52 LQFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 8-3 Recommended PCB Layout (80 QFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 8-4 Recommended PCB Layout for 48 LQFP Pierce Oscillator . . . . . . . . . . . . . 77
Figure 8-5 Recommended PCB Layout for 52 LQFP Pierce Oscillator . . . . . . . . . . . . . 78
Figure 8-6 Recommended PCB Layout for 80QFP Pierce Oscillator . . . . . . . . . . . . . . . 79
Figure B-1 Voltage Regulator - Chip Power-up and Voltage Drops (not scaled) . . . . . 96
Figure B-2 ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure B-3 Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure B-4 Jitter Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure B-5 Maximum bus clock jitter approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure C-1 SPI Master Timing (CPHA=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure C-2 SPI Master Timing (CPHA=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure C-3 SPI Slave Timing (CPHA=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure C-4 SPI Slave Timing (CPHA=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure C-5 General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure D-1 80-pin QFP Mechanical Dimensions (case no. 841B). . . . . . . . . . . . . . . . 128
Figure D-2 52-pin LQFP Mechanical Dimensions (case no. 848D-03) . . . . . . . . . . . . 129
9
Device User Guide — 9S12C128DGV1/D V01.05
Figure D-3 48-pin LQFP Mechanical Dimensions (case no.932-03 ISSUE F) . . . . . . 130
Figure 19-1 Pin Assignments in 112-pin LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 19-2 112-pin LQFP mechanical dimensions (case no. 987)80-pin QFP Mechanical Di­mensions (case no. 841B)133
10
Device User Guide — 9S12C128DGV1/D V01.05
List of Tables
Table 0-2 MC9S12C-Family Package Option Summary . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 0-1 List of MC9S12C and MC9S12GC Family members. . . . . . . . . . . . . . . . . . . . 15
Table 0-3 MC9S12C-Family Part Number Coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 0-4 MC9S12GC-Family Part Number Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 0-5 Document References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 1-1 Device Register Map Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
$0000 - $000FMEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface) 34 $0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control) 34 $0018 - $0018 Miscellaneous Peripherals (Device User Guide) 35 $0019 - $0019 VREG3V3 (Voltage Regulator) 35 $0015 - $0016 INT map 1 of 2 (HCS12 Interrupt) 35 $0017 - $0017MMC map 2 of 4 (HCS12 Module Mapping Control) 35 $001A - $001B Miscellaneous Peripherals (Device User Guide) 35 $001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control, 36 Device User Guide) 36 $001E - $001E MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface) 36 $001F - $001F INT map 2 of 2 (HCS12 Interrupt) 36 $0020 - $002F DBG (including BKP) map 1 of 1 (HCS12 Debug) 36 $0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control) 37 $0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface) 37 $0034 - $003F CRG (Clock and Reset Generator) 37 $0040 - $006F TIM (Timer 16 Bit 8 Channels) 38 $0070 - $007F Reserved 40 $0080 - $009F ATD (Analog to Digital Converter 10 Bit 8 Channel) 40 $00A0 - $00C7 Reserved 41 $00D0 - $00D7 Reserved 42 $00C8 - $00CF SCI (Asynchronous Serial Interface) 42 $00D8 - $00DF SPI (Serial Peripheral Interface) 42 $00E0 - $00FF PWM (Pulse Width Modulator) 43 $0100 - $010F Flash Control Register 44 $0110 - $013F Reserved 45 $0140 - $017F CAN (Motorola Scalable CAN - MSCAN) 45
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . 46
11
Device User Guide — 9S12C128DGV1/D V01.05
$0180 - $023F Reserved 47 $0240 - $027F PIM (Port Interface Module) 47 $0280 - $03FF Reserved space 50
Table 1-3 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 1-4 Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 2-1 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 2-2 MC9S12C-Family Power and Ground Connection Summary . . . . . . . . . . . . . 64
Table 4-1 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 4-2 Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 5-1 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 5-2 Reset Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 6-1 Device Specific Flash PAGE Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 8-1 Recommended External Component Values. . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table A-1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table A-2 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table A-3 ESD and Latch-Up Protection Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 86
Table A-4 Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table A-5 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table A-6 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table A-7 3.3V I/O Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table A-8 Supply Current Characteristics for MC9S12C32 . . . . . . . . . . . . . . . . . . . . . . . 93
Table A-9 Supply Current Characteristics for MC9S12C64,MC9S12C96,MC9S12C128 94
Table B-1 Voltage Regulator Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table B-2 Voltage Regulator - Capacitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table B-3 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table B-4 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table B-5 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table B-6 ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table B-7 ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table B-8 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table B-9 NVM Reliability Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table B-10 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
Table B-11 Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
Table B-12 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
Table B-13 MSCAN Wake-up Pulse Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table C-1 Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
12
Device User Guide — 9S12C128DGV1/D V01.05
Table C-2 SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . .120
Table C-3 SPI Slave Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
Table C-4 Expanded Bus Timing Characteristics (5V Range). . . . . . . . . . . . . . . . . . . .124
Table C-5 Expanded Bus Timing Characteristics (3.3V Range) . . . . . . . . . . . . . . . . . .125
13
Device User Guide — 9S12C128DGV1/D V01.05
14
Device User Guide — 9S12C128DGV1/D V01.05
Preface
TheDeviceUser Guide provides information about the MC9S12C-Family as well the MC9S12GC-Family devices made up of standard HCS12 blocks and the HCS12 processor core. This document is part of the customer documentation. A completeset of device manualsalso includes the HCS12Core User Guide and all the individual Block User Guides of the implemented modules. In an effort to reduce redundancy all module specific information is located only in the respective Block User Guide. If applicable, special implementation details of the module are given in the block description sections of this document.
The C-Family and the GC-Family offer an extensive range of package, temperature and speed options. The members of the GC-Family do not feature a CAN module.
Table 0-1 shows a feature overview of the MC9S12C and MC9S12GC Family members. Table 0-2 summarizes the package option and size configuration. Table 0-3 lists the part number coding based on the package, speed and temperature and preliminary die
options for the C-Family. Table 0-4 lists the part number coding based on the package, speed and temperature and preliminary die
options for the GC-Family.
Table 0-1 List of MC9S12C and MC9S12GC Family members
Flash RAM Device CAN SCI SPI A/D PWM Timer
128K 4K
96K 4K MC9S12C96 1 1 1 8ch 6ch 8ch 64K 4K
32K 2K 16K 1K MC9S12GC16 1 1 8ch 6ch 8ch
MC9S12C128 1 1 1 8ch 6ch 8ch
MC9S12GC128 1 1 8ch 6ch 8ch
MC9S12C64 1 1 1 8ch 6ch 8ch
MC9S12GC64 1 1 8ch 6ch 8ch
MC9S12C32 1 1 1 8ch 6ch 8ch
MC9S12GC32 1 1 8ch 6ch 8ch
Table 0-2 MC9S12C-Family Package Option Summary
1
Package Device Part Number
48LQFP MC9S12C128 MC9S12C128 0L09S M, V, C 52LQFP MC9S12C128 MC9S12C128 0L09S M, V, C 35
80QFP MC9S12C128 MC9S12C128 0L09S M, V, C 60 48LQFP MC9S12C96 MC9S12C96 TBD M, V, C 52LQFP MC9S12C96 MC9S12C96 TBD M, V, C 35
80QFP MC9S12C96 MC9S12C96 TBD M, V, C 60
Mask
set
Options
Temp.
2
Flash RAM
128K 4K
96K 4K
I/O3,
31
31
4
15
Device User Guide — 9S12C128DGV1/D V01.05
y
1
Package Device Part Number
48LQFP MC9S12C64 MC9S12C64 TBD M, V, C 52LQFP MC9S12C64 MC9S12C64 TBD M, V, C 35
80QFP MC9S12C64 MC9S12C64 TBD M, V, C 60 48LQFP MC9S12C32 MC9S12C32 1L45J M, V, C 52LQFP MC9S12C32 MC9S12C32 1L45J M, V, C 35
80QFP MC9S12C32 MC9S12C32 1L45J M, V, C 60 48LQFP MC9S12GC128 MC9S12GC128 0L09S M, V, C 52LQFP MC9S12GC128 MC9S12GC128 0L09S M, V, C 35
80QFP MC9S12GC128 MC9S12GC128 0L09S M, V, C 60 48LQFP MC9S12GC128 MC9S12GC64 TBD M, V, C 52LQFP MC9S12GC128 MC9S12GC64 TBD M, V, C 35
80QFP MC9S12GC128 MC9S12GC64 TBD M, V, C 60 48LQFP MC9S12GC32 MC9S12GC32 1L45J M, V, C 52LQFP MC9S12GC32 MC9S12GC32 1L45J M, V, C 35
80QFP MC9S12GC32 MC9S12GC32 1L45J M, V, C 60 48LQFP MC9S12GC16 MC9S12GC16 1L45J M, V, C 52LQFP MC9S12GC16 MC9S12GC16 1L45J M, V, C 35
80QFP MC9S12GC16 MC9S12GC16 1L45J M, V, C 60
NOTES:
1. Maskset dependent errata can be accessed at
http://e-www.motorola.com/wbapp/sps/site/prod_summary.jsp
2. C: T
3. All C-Family derivatives feature 1 CAN, 1 SCI, 1 SPI, an 8-channel A/D, a 6-channel PWM and an 8
4. I/O is the sum of ports capable to act as digital input or output.
= 85˚C, f = 25MHz. V: TA=105˚C, f = 25MHz. M: TA= 125˚C, f = 25MHz
A
channel timer. The GC-Family members do not have the CAN module
Mask
set
Options
Temp.
2
Flash RAM
64K 4K
32K 2K
128K 4K
64K 4K
32K 2K
16K 2K
I/O3,
31
31
31
31
31
31
4
MC9S12 C32 (P)C FU 25
Temperature Options
C = -40˚C to 85˚C
Speed Option Package Option
Temperature Option
V = -40˚C to 105˚C M = -40˚C to 125˚C
Package Options
FU = 80QFP PB = 52LQFP
Preliminary Option
FA = 48LQFP
Speed Options
Device Title
25 = 25MHz bus 16 = 16MHz bus
Controller Famil
Figure 0-1 Order Part number Coding
Table 0-3 MC9S12C-Family Part Number Coding
Part Number
MC9S12C128CFA16 TBD -40˚C, 85˚C 48LQFP 16MHz C128 die
Mask
set
Temp. Package Speed Description
16
Device User Guide — 9S12C128DGV1/D V01.05
Part Number
MC9S12C128CPB16 TBD -40˚C, 85˚C 52LQFP 16MHz C128 die MC9S12C128CFU16 TBD -40˚C, 85˚C 80QFP 16MHz C128 die MC9S12C128VFA16 TBD -40˚C,105˚C 48LQFP 16MHz C128 die MC9S12C128VPB16 TBD -40˚C,105˚C 52LQFP 16MHz C128 die
MC9S12C128VFU16 TBD -40˚C, 105˚C 80QFP 16MHz C128 die MC9S12C128MFA16 TBD -40˚C,125˚C 48LQFP 16MHz C128 die MC9S12C128MPB16 TBD -40˚C,125˚C 52LQFP 16MHz C128 die MC9S12C128MFU16 TBD -40˚C, 125˚C 80QFP 16MHz C128 die
MC9S12C128CFA25 TBD -40˚C, 85˚C 48LQFP 25MHz C128 die MC9S12C128CPB25 TBD -40˚C, 85˚C 52LQFP 25MHz C128 die MC9S12C128CFU25 TBD -40˚C, 85˚C 80QFP 25MHz C128 die
MC9S12C128VFA25 TBD -40˚C,105˚C 48LQFP 25MHz C128 die
MC9S12C128VPB25 TBD -40˚C,105˚C 52LQFP 25MHz C128 die
MC9S12C128VFU25 TBD -40˚C, 105˚C 80QFP 25MHz C128 die MC9S12C128MFA25 TBD -40˚C,125˚C 48LQFP 25MHz C128 die MC9S12C128MPB25 TBD -40˚C,125˚C 52LQFP 25MHz C128 die MC9S12C128MFU25 TBD -40˚C, 125˚C 80QFP 25MHz C128 die MC9S12C96PCFA16 0L09S -40˚C, 85˚C 48LQFP 16MHz Preliminary C96 using C128 die MC9S12C96PCPB16 0L09S -40˚C, 85˚C 52LQFP 16MHz Preliminary C96 using C128 die MC9S12C96PCFU16 0L09S -40˚C, 85˚C 80QFP 16MHz Preliminary C96 using C128 die
MC9S12C96CFA16 TBD -40˚C, 85˚C 48LQFP 16MHz Final C96 using C96 die MC9S12C96CPB16 TBD -40˚C, 85˚C 52LQFP 16MHz Final C96 using C96 die MC9S12C96CFU16 TBD -40˚C, 85˚C 80QFP 16MHz Final C96 using C96 die
MC9S12C96PVFA16 0L09S -40˚C, 105˚C 48LQFP 16MHz Preliminary C96 using C128 die MC9S12C96PVPB16 0L09S -40˚C, 105˚C 52LQFP 16MHz Preliminary C96 using C128 die MC9S12C96PVFU16 0L09S -40˚C, 105˚C 80QFP 16MHz Preliminary C96 using C128 die
MC9S12C96VFA16 TBD -40˚C,105˚C 48LQFP 16MHz Final C96 using C96 die MC9S12C96VPB16 TBD -40˚C,105˚C 52LQFP 16MHz Final C96 using C96die MC9S12C96VFU16 TBD -40˚C, 105˚C 80QFP 16MHz Final C96 using C96 die
MC9S12C96PMFA16 0L09S -40˚C, 125˚C 48LQFP 16MHz Preliminary C96 using C128 die MC9S12C96PMPB16 0L09S -40˚C, 125˚C 52LQFP 16MHz Preliminary C96 using C128 die MC9S12C96PMFU16 0L09S -40˚C, 125˚C 80QFP 16MHz Preliminary C96 using C128 die
MC9S12C96MFA16 TBD -40˚C,125˚C 48LQFP 16MHz Final C96 using C96 die MC9S12C96MPB16 TBD -40˚C,125˚C 52LQFP 16MHz Final C96 using C96 die MC9S12C96MFU16 TBD -40˚C, 125˚C 80QFP 16MHz Final C96 using C96 die
MC9S12C96PCFA25 0L09S -40˚C, 85˚C 48LQFP 25MHz Preliminary C96 using C128 die MC9S12C96PCPB25 0L09S -40˚C, 85˚C 52LQFP 25MHz Preliminary C96 using C128 die MC9S12C96PCFU25 0L09S -40˚C, 85˚C 80QFP 25MHz Preliminary C96 using C128 die
MC9S12C96CFA25 TBD -40˚C, 85˚C 48LQFP 25MHz Final C96 using C96 die MC9S12C96CPB25 TBD -40˚C, 85˚C 52LQFP 25MHz Final C96 using C96 die
MC9S12C96CFU25 TBD -40˚C, 85˚C 80QFP 25MHz Final C96 using C96 die MC9S12C96PVFA25 0L09S -40˚C, 105˚C 48LQFP 25MHz Preliminary C96 using C128 die MC9S12C96PVPB25 0L09S -40˚C, 105˚C 52LQFP 25MHz Preliminary C96 using C128 die MC9S12C96PVFU25 0L09S -40˚C, 105˚C 80QFP 25MHz Preliminary C96 using C128 die
Mask
set
Temp. Package Speed Description
17
Device User Guide — 9S12C128DGV1/D V01.05
Part Number
MC9S12C96VFA25 TBD -40˚C,105˚C 48LQFP 25MHz Final C96 using C96 die MC9S12C96VPB25 TBD -40˚C,105˚C 52LQFP 25MHz Final C96 using C96 die MC9S12C96VFU25 TBD -40˚C, 105˚C 80QFP 25MHz Final C96 using C96 die
MC9S12C96PMFA25 0L09S -40˚C, 125˚C 48LQFP 25MHz Preliminary C96 using C128 die MC9S12C96PMPB25 0L09S -40˚C, 125˚C 52LQFP 25MHz Preliminary C96 using C128 die MC9S12C96PMFU25 0L09S -40˚C, 125˚C 80QFP 25MHz Preliminary C96 using C128 die
MC9S12C96MFA25 TBD -40˚C,125˚C 48LQFP 25MHz Final C96 using C96 die MC9S12C96MPB25 TBD -40˚C,125˚C 52LQFP 25MHz Final C96 using C96 die MC9S12C96MFU25 TBD -40˚C, 125˚C 80QFP 25MHz Final C96 using C96 die
MC9S12C64PCFA16 0L09S -40˚C, 85˚C 48LQFP 16MHz Preliminary C64 using C128 die MC9S12C64PCPB16 0L09S -40˚C, 85˚C 52LQFP 16MHz Preliminary C64 using C128 die MC9S12C64PCFU16 0L09S -40˚C, 85˚C 80QFP 16MHz Preliminary C64 using C128 die
MC9S12C64CFA16 TBD -40˚C, 85˚C 48LQFP 16MHz Final C64 using C64 die MC9S12C64CPB16 TBD -40˚C, 85˚C 52LQFP 16MHz Final C64 using C64 die
MC9S12C64CFU16 TBD -40˚C, 85˚C 80QFP 16MHz Final C64 using C64 die MC9S12C64PVFA16 0L09S -40˚C, 105˚C 48LQFP 16MHz Preliminary C64 using C128 die MC9S12C64PVPB16 0L09S -40˚C, 105˚C 52LQFP 16MHz Preliminary C64 using C128 die MC9S12C64PVFU16 0L09S -40˚C, 105˚C 80QFP 16MHz Preliminary C64 using C128 die
MC9S12C64VFA16 TBD -40˚C,105˚C 48LQFP 16MHz Final C64 using C64 die MC9S12C64VPB16 TBD -40˚C,105˚C 52LQFP 16MHz Final C64 using C64 die MC9S12C64VFU16 TBD -40˚C, 105˚C 80QFP 16MHz Final C64 using C64 die
MC9S12C64PMFA16 0L09S -40˚C, 125˚C 48LQFP 16MHz Preliminary C64 using C128 die MC9S12C64PMPB16 0L09S -40˚C, 125˚C 52LQFP 16MHz Preliminary C64 using C128 die MC9S12C64PMFU16 0L09S -40˚C, 125˚C 80QFP 16MHz Preliminary C64 using C128 die
MC9S12C64MFA16 TBD -40˚C,125˚C 48LQFP 16MHz Final C64 using C64 die MC9S12C64MPB16 TBD -40˚C,125˚C 52LQFP 16MHz Final C64 using C64 die MC9S12C64MFU16 TBD -40˚C, 125˚C 80QFP 16MHz Final C64 using C64 die
MC9S12C64PCFA25 0L09S -40˚C, 85˚C 48LQFP 25MHz Preliminary C64 using C128 die MC9S12C64PCPB25 0L09S -40˚C, 85˚C 52LQFP 25MHz Preliminary C64 using C128 die MC9S12C64PCFU25 0L09S -40˚C, 85˚C 80QFP 25MHz PreliminaryC64 using C128 die
MC9S12C64CFA25 TBD -40˚C, 85˚C 48LQFP 25MHz Final C64 using C64 die MC9S12C64CPB25 TBD -40˚C, 85˚C 52LQFP 25MHz Final C64 using C64 die
MC9S12C64CFU25 TBD -40˚C, 85˚C 80QFP 25MHz Final C64 using C64 die MC9S12C64PVFA25 0L09S -40˚C, 105˚C 48LQFP 25MHz Preliminary C64 using C128 die MC9S12C64PVPB25 0L09S -40˚C, 105˚C 52LQFP 25MHz Preliminary C64 using C128 die MC9S12C64PVFU25 0L09S -40˚C, 105˚C 80QFP 25MHz Preliminary C64 using C128 die
MC9S12C64VFA25 TBD -40˚C,105˚C 48LQFP 25MHz Final C64 using C64 die MC9S12C64VPB25 TBD -40˚C,105˚C 52LQFP 25MHz Final C64 using C64 die MC9S12C64VFU25 TBD -40˚C, 105˚C 80QFP 25MHz Final C64 using C64 die
MC9S12C64PMFA25 0L09S -40˚C, 125˚C 48LQFP 25MHz Preliminary C64 using C128 die MC9S12C64PMPB25 0L09S -40˚C, 125˚C 52LQFP 25MHz Preliminary C64 using C128 die MC9S12C64PMFU25 0L09S -40˚C, 125˚C 80QFP 25MHz Preliminary C64 using C128 die
MC9S12C64MFA25 TBD -40˚C,125˚C 48LQFP 25MHz Final C64 using C64 die MC9S12C64MPB25 TBD -40˚C,125˚C 52LQFP 25MHz Final C64 using C64 die
Mask
set
Temp. Package Speed Description
18
Device User Guide — 9S12C128DGV1/D V01.05
Part Number
MC9S12C64MFU25 TBD -40˚C, 125˚C 80QFP 25MHz Final C64 using C64 die
MC9S12C32CFA16 1L45J -40˚C, 85˚C 48LQFP 16MHz C32 die MC9S12C32CPB16 1L45J -40˚C, 85˚C 52LQFP 16MHz C32 die MC9S12C32CFU16 1L45J -40˚C, 85˚C 80QFP 16MHz C32 die
MC9S12C32VFA16 1L45J -40˚C,105˚C 48LQFP 16MHz C32 die MC9S12C32VPB16 1L45J -40˚C,105˚C 52LQFP 16MHz C32 die MC9S12C32VFU16 1L45J -40˚C, 105˚C 80QFP 16MHz C32 die
MC9S12C32MFA16 1L45J -40˚C,125˚C 48LQFP 16MHz C32 die MC9S12C32MPB16 1L45J -40˚C,125˚C 52LQFP 16MHz C32 die MC9S12C32MFU16 1L45J -40˚C, 125˚C 80QFP 16MHz C32 die
MC9S12C32CFA25 1L45J -40˚C, 85˚C 48LQFP 25MHz C32 die MC9S12C32CPB25 1L45J -40˚C, 85˚C 52LQFP 25MHz C32 die MC9S12C32CFU25 1L45J -40˚C, 85˚C 80QFP 25MHz C32 die
MC9S12C32VFA25 1L45J -40˚C,105˚C 48LQFP 25MHz C32 die MC9S12C32VPB25 1L45J -40˚C,105˚C 52LQFP 25MHz C32 die MC9S12C32VFU25 1L45J -40˚C, 105˚C 80QFP 25MHz C32 die
MC9S12C32MFA25 1L45J -40˚C,125˚C 48LQFP 25MHz C32 die MC9S12C32MPB25 1L45J -40˚C,125˚C 52LQFP 25MHz C32 die MC9S12C32MFU25 1L45J -40˚C, 125˚C 80QFP 25MHz C32 die
Mask
set
Temp. Package Speed Description
Table 0-4 MC9S12GC-Family Part Number Coding
Part Number
MC9S12GC128PCFA25 0L09S -40˚C, 85˚C 48LQFP 25MHz Preliminary GC128 using C128 die MC9S12GC128PCPB25 0L09S -40˚C, 85˚C 52LQFP 25MHz Preliminary GC128 using C128 die MC9S12GC128PCFU25 0L09S -40˚C, 85˚C 80QFP 25MHz Preliminary GC128 using C128 die
MC9S12GC128CFA25 TBD -40˚C, 85˚C 48LQFP 25MHz Final GC128 using GC128 die MC9S12GC128CPB25 TBD -40˚C, 85˚C 52LQFP 25MHz Final GC128 using GC128 die
MC9S12GC128CFU25 TBD -40˚C, 85˚C 80QFP 25MHz Final GC128 using GC128 die MC9S12GC128PVFA25 0L09S -40˚C, 105˚C 48LQFP 25MHz Preliminary GC128 using C128 die MC9S12GC128PVPB25 0L09S -40˚C, 105˚C 52LQFP 25MHz Preliminary GC128 using C128 die MC9S12GC128PVFU25 0L09S -40˚C, 105˚C 80QFP 25MHz Preliminary GC128 using C128 die
MC9S12GC128VFA25 TBD -40˚C, 105˚C 48LQFP 25MHz Final GC128 using GC128 die
MC9S12GC128VPB25 TBD -40˚C, 105˚C 52LQFP 25MHz Final GC128 using GC128 die
MC9S12GC128VFU25 TBD -40˚C, 105˚C 80QFP 25MHz Final GC128 using GC128 die
MC9S12GC128PMFA25 0L09S -40˚C, 125˚C 48LQFP 25MHz Preliminary GC128 using C128 die MC9S12GC128PMPB25 0L09S -40˚C, 125˚C 52LQFP 25MHz Preliminary GC128 using C128 die MC9S12GC128PMFU25 0L09S -40˚C, 125˚C 80QFP 25MHz Preliminary GC128 using C128 die
MC9S12GC128MFA25 TBD -40˚C, 125˚C 48LQFP 25MHz Final GC128 using GC128 die MC9S12GC128MPB25 TBD -40˚C, 125˚C 52LQFP 25MHz Final GC128 using GC128 die MC9S12GC128MFU25 TBD -40˚C, 125˚C 80QFP 25MHz Final GC128 using GC128 die MC9S12GC64PCFA25 0L09S -40˚C, 85˚C 48LQFP 25MHz Preliminary GC64 using C128 die MC9S12GC64PCPB25 0L09S -40˚C, 85˚C 52LQFP 25MHz Preliminary GC64 using C128 die MC9S12GC64PCFU25 0L09S -40˚C, 85˚C 80QFP 25MHz Preliminary GC64 using C128 die
Mask
set
Temp. Package Speed Description
19
Device User Guide — 9S12C128DGV1/D V01.05
Part Number
MC9S12GC64CFA25 TBD -40˚C, 85˚C 48LQFP 25MHz Final GC64 using GC64 die MC9S12GC64CPB25 TBD -40˚C, 85˚C 52LQFP 25MHz Final GC64 using GC64 die
MC9S12GC64CFU25 TBD -40˚C, 85˚C 80QFP 25MHz Final GC64 using GC64 die MC9S12GC64PVFA25 0L09S -40˚C, 105˚C 48LQFP 25MHz Preliminary GC64 using C128 die MC9S12GC64PVPB25 0L09S -40˚C, 105˚C 52LQFP 25MHz Preliminary GC64 using C128 die MC9S12GC64PVFU25 0L09S -40˚C, 105˚C 80QFP 25MHz Preliminary GC64 using C128 die
MC9S12GC64VFA25 TBD -40˚C, 105˚C 48LQFP 25MHz Final GC64 using GC64 die
MC9S12GC64VPB25 TBD -40˚C, 105˚C 52LQFP 25MHz Final GC64 using GC64 die
MC9S12GC64VFU25 TBD -40˚C, 105˚C 80QFP 25MHz Final GC64 using GC64 die
MC9S12GC64PMFA25 0L09S -40˚C, 125˚C 48LQFP 25MHz Preliminary GC64 using C128 die MC9S12GC64PMPB25 0L09S -40˚C, 125˚C 52LQFP 25MHz Preliminary GC64 using C128 die MC9S12GC64PMFU25 0L09S -40˚C, 125˚C 80QFP 25MHz Preliminary GC64 using C128 die
MC9S12GC64MFA25 TBD -40˚C, 125˚C 48LQFP 25MHz Final GC64 using GC64 die MC9S12GC64MPB25 TBD -40˚C, 125˚C 52LQFP 25MHz Final GC64 using GC64 die MC9S12GC64MFU25 TBD -40˚C, 125˚C 80QFP 25MHz Final GC64 using GC64 die
MC9S12GC32PCFA25 1L45J -40˚C, 85˚C 48LQFP 25MHz Preliminary GC32 using C32 die
MC9S12GC32PCPB25 1L45J -40˚C, 85˚C 52LQFP 25MHz Preliminary GC32 using C32 die MC9S12GC32PCFU25 1L45J -40˚C, 85˚C 80QFP 25MHz Preliminary GC32 using C32 die
MC9S12GC32CFA25 TBD -40˚C, 85˚C 48LQFP 25MHz Final GC32 using GC32 die
MC9S12GC32CPB25 TBD -40˚C, 85˚C 52LQFP 25MHz Final GC32 using GC32 die
MC9S12GC32CFU25 TBD -40˚C, 85˚C 80QFP 25MHz Final GC32 using GC32 die MC9S12GC32PVFA25 1L45J -40˚C,105˚C 48LQFP 25MHz Preliminary GC32 using C32 die MC9S12GC32PVPB25 1L45J -40˚C,105˚C 52LQFP 25MHz Preliminary GC32 using C32 die MC9S12GC32PVFU25 1L45J -40˚C, 105˚C 80QFP 25MHz Preliminary GC32 using C32 die
MC9S12GC32VFA25 TBD -40˚C,105˚C 48LQFP 25MHz Final GC32 using GC32 die MC9S12GC32VPB25 TBD -40˚C,105˚C 52LQFP 25MHz Final GC32 using GC32 die
MC9S12GC32VFU25 TBD -40˚C, 105˚C 80QFP 25MHz Final GC32 using GC32 die MC9S12GC32PMFA25 1L45J -40˚C,125˚C 48LQFP 25MHz Preliminary GC32 using C32 die MC9S12GC32PMPB25 1L45J -40˚C,125˚C 52LQFP 25MHz Preliminary GC32 using C32 die MC9S12GC32PMFU25 1L45J -40˚C, 125˚C 80QFP 25MHz Preliminary GC32 using C32 die
MC9S12GC32MFA25 TBD -40˚C,125˚C 48LQFP 25MHz Final GC32 using GC32 die MC9S12GC32MPB25 TBD -40˚C,125˚C 52LQFP 25MHz Final GC32 using GC32 die MC9S12GC32MFU25 TBD -40˚C, 125˚C 80QFP 25MHz Final GC32 using GC32 die
MC9S12GC16PCFA25 1L45J -40˚C, 85˚C 48LQFP 25MHz Preliminary GC16 using C32 die MC9S12GC16PCPB25 1L45J -40˚C, 85˚C 52LQFP 25MHz Preliminary GC16 using C32 die MC9S12GC16PCFU25 1L45J -40˚C, 85˚C 80QFP 25MHz Preliminary GC16 using C32 die
MC9S12GC16CFA25 TBD -40˚C, 85˚C 48LQFP 25MHz Final GC16 using GC16 die MC9S12GC16CPB25 TBD -40˚C, 85˚C 52LQFP 25MHz Final GC16 using GC16 die MC9S12GC16CFU25 TBD -40˚C, 85˚C 80QFP 25MHz Final GC16 using GC16 die
MC9S12GC16PVFA25 1L45J -40˚C,105˚C 48LQFP 25MHz Preliminary GC16 using C32 die MC9S12GC16PVPB25 1L45J -40˚C,105˚C 52LQFP 25MHz Preliminary GC16 using C32 die MC9S12GC16PVFU25 1L45J -40˚C, 105˚C 80QFP 25MHz Preliminary GC16 using C32 die
MC9S12GC16VFA25 TBD -40˚C,105˚C 48LQFP 25MHz Final GC16 using GC16 die
MC9S12GC16VPB25 TBD -40˚C,105˚C 52LQFP 25MHz Final GC16 using GC16 die
Mask
set
Temp. Package Speed Description
20
Device User Guide — 9S12C128DGV1/D V01.05
Part Number
MC9S12GC16VFU25 TBD -40˚C, 105˚C 80QFP 25MHz Final GC16 using GC16 die
MC9S12GC16PMFA25 1L45J -40˚C,125˚C 48LQFP 25MHz Preliminary GC16 using C32 die MC9S12GC16PMPB25 1L45J -40˚C,125˚C 52LQFP 25MHz Preliminary GC16 using C32 die MC9S12GC16PMFU25 1L45J -40˚C, 125˚C 80QFP 25MHz Preliminary GC16 using C32 die
MC9S12GC16MFA25 TBD -40˚C,125˚C 48LQFP 25MHz Final GC16 using GC16 die MC9S12GC16MPB25 TBD -40˚C,125˚C 52LQFP 25MHz Final GC16 using GC16 die MC9S12GC16MFU25 TBD -40˚C, 125˚C 80QFP 25MHz Final GC16 using GC16 die
Mask
set
Temp. Package Speed Description
Table 0-5 Document References
User Guide
HCS12 Background Debug (BDM) Block Guide V04 S12BDMV4/D
HCS12 Module Mapping Control (MMC) Block Guide V04 S12MMCV4/D
HCS12 Multiplexed External Bus Interface (MEBI) Block Guide V03 S12MEBIV3/D
Analog To Digital Converter: 10 Bit 8 Channel (ATD_10B8C) Block Guide V02 S12ATD10B8CV2/D
Clock and Reset Generator (CRG) Block Guide V04 S12CRGV4/D
Serial Communications Interface (SCI) Block Guide V02 S12SCIV2/D
Serial Peripheral Interface (SPI) Block Guide V03 S12SPIV3/D
Motorola Scalable CAN (MSCAN) Block Guide
Pulse Width Modulator: 8 bit, 6 channel (PWM_8B6C) Block Guide V01 S12PWM8B6V1/D
Timer: 16 bit, 8 channel (TIM_16B8C) Block Guide V01 S12TIM16B8CV1/D
Port Integration Module (PIM_9C32) Block Guide V01 S12C32PIMV1/D
32Kbyte Flash EEPROM (FTS32K) Block Guide V01 S12FTS32KV1/D 64Kbyte Flash EEPROM (FTS64K) Block Guide V01 S12FTS64KV1/D
128Kbyte Flash EEPROM (FTS128K1) Block Guide V01 S12FTS128K1V1/D
NOTES:
1. For the GC16 refer to the 16K flash, for the C32 and GC32 refer to the 32K flash, for the C64 and GC64 the 64K flash, for the C96 the 96K flash and C128 the 128K flash document.
2. Not available on the GC-Family members
1
CPU12 Reference Manual V02 S12CPUV2/D
HCS12 Debug (DBG) Block Guide V01 S12DBGV1/D
HCS12 Interrupt (INT) Block Guide V01 S12INTV1/D
Voltage Regulator (VREG) Block Guide V02 S12VREG3V3V2/D
Oscillator (OSC) Block Guide V02 S12OSCV2/D
Version Document Order Number
2
V02 S12MSCANV2/D
Terminology
New or invented terms, symbols, and notations
Acronyms and Abbreviations
21
Device User Guide — 9S12C128DGV1/D V01.05
22
Device User Guide — 9S12C128DGV1/D V01.05
Section 1 Introduction
1.1 Overview
The MC9S12C-Family and the MC9S12GC-Family is a 48/52/80 pin Flash-based Industrial/Automotive network control MCU family. Members of the MC9S12C-Family and the MC9S12GC-Family deliver the power and flexibility of our 16 Bit core (CPU12) family to a whole new range of cost and space sensitive, general purpose Industrial and Automotive network applications. All MC9S12C-Family and MC9S12GC-Family members are comprised of standard on-chip peripherals including a 16-bit central processing unit (CPU12), up to 128K bytes of Flash EEPROM, up to 4K bytes of RAM, an asynchronous serial communications interface (SCI), a serial peripheral interface (SPI), an 8-channel 16-bit timer module (TIM), a 6-channel 8-bit Pulse Width Modulator (PWM), an 8-channel, 10-bit analog-to-digital converter (ADC). The MC9S12C-Family members also feature a CAN 2.0 A, B software compatible module (MSCAN12). The MC9S12C-Family as well as the MC9S12GC-Family has full 16-bit data paths throughout. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational requirements. In addition to the I/O ports available in each module, up to 10 dedicated I/O port bits are available with Wake-Up capability from STOP or WAIT mode. The MC9S12C-Family and the MC9S12GC-Family devices are available in 48, 52 and 80 pin QFP packages, with the 80 Pin version pin compatible to the HCS12 A, B and D- Family derivatives.
1.2 Features
16-bit HCS12 CORE – HCS12 CPU
i. Upward compatible with M68HC11 instruction set ii. Interrupt stacking and programmer’s model identical to M68HC11 iii.Instruction queue
iv.Enhanced indexed addressing – MMC (memory map and interface) – INT (interrupt control) – BDM (background debug mode) – DBG12 (enhanced debug12 module, including breakpoints and change-of-flow trace buffer) – MEBI: Multiplexed Expansion Bus Interface (available only in 80 pin package version)
Wake-up interrupt inputs – Up to 12-port bits available for wake up interrupt function with digital filtering
Memory options – 16K or 32KByte Flash EEPROM (erasable in 512-byte sectors)
64K, 96K or 128KByte Flash EEPROM (erasable in 1024-byte sectors)
23
Device User Guide — 9S12C128DGV1/D V01.05
1K, 2K or 4K Byte RAM
Analog-to-Digital Converters – One 8-channel module with 10-bit resolution. – External conversion trigger capability
Available on MC9S12C-Family: One 1M bit per second, CAN 2.0 A, B software compatible module
Five receive and three transmit buffers – Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8x8bit – Four separate interrupt channels for Rx, Tx, error and wake-up – Low-pass filter wake-up function – Loop-back for self test operation
Timer Module (TIM) – 8-Channel Timer – Each Channel Configurable as either Input Capture or Output Compare – Simple PWM Mode – Modulo Reset of Timer Counter – 16-Bit Pulse Accumulator – External Event Counting – Gated Time Accumulation
6 PWM channels – Programmable period and duty cycle – 8-bit 6-channel or 16-bit 3-channel – Separate control for each pulse width and duty cycle – Center-aligned or left-aligned outputs – Programmable clock select logic with a wide range of frequencies – Fast emergency shutdown input
Serial interfaces – One asynchronous serial communications interface (SCI) – One synchronous serial peripheral interface (SPI)
CRG (Clock Reset Generator Module) – Windowed COP watchdog, – Real time interrupt, – Clock monitor,
24
Device User Guide — 9S12C128DGV1/D V01.05
Pierce or low current Colpitts oscillator – Phase-locked loop clock frequency multiplier – Limp home mode in absence of external clock – Low power 0.5 to 16 MHz crystal oscillator reference clock
Operating frequency – 32MHz equivalent to 16MHz Bus Speed for single chip – 32MHz equivalent to 16MHz Bus Speed in expanded bus modes – Option of 9S12C-Family: 50MHz equivalent to 25MHz Bus Speed – All 9S12GC-Family Members allow a 50MHz operting frequency.
Internal 2.5V Regulator – Supports an input voltage range from 2.97V to 5.5V – Low power mode capability – Includes low voltage reset (LVR) circuitry – Includes low voltage interrupt (LVI) circuitry
48-Pin LQFP, 52-Pin LQFP or 80-Pin QFP package – Up to 58 I/O lines with 5V input and drive capability (80 pin package) – Up to 2 dedicated 5V input only lines (IRQ, XIRQ) – 5V 8 A/D converter inputs and 5V I/O
Development support – Single-wire background debug™ mode (BDM) – On-chip hardware breakpoints – Enhanced DBG12 debug features
1.3 Modes of Operation
User modes (Expanded modes are only available in the 80 pin package version).
Normal and Emulation Operating Modes – Normal Single-Chip Mode – Normal Expanded Wide Mode – Normal Expanded Narrow Mode – Emulation Expanded Wide Mode – Emulation Expanded Narrow Mode
Special Operating Modes
25
Device User Guide — 9S12C128DGV1/D V01.05
Special Single-Chip Mode with active Background Debug Mode – Special Test Mode (Motorola use only) Special Peripheral Mode (Motorola use only)
Low power modes – Stop Mode – Pseudo Stop Mode – Wait Mode
26
1.4 Block Diagram
Figure 1-1 MC9S12C-Family Block Diagram
Device User Guide — 9S12C128DGV1/D V01.05
VSSR
VDDR
VDDX
VSSX
VDD2
VSS2
VDD1
VSS1
BKGD
XFC
VDDPLL
VSSPLL
EXTAL
XTAL
RESET
PE0 PE1
PE2 PE3
PE4
PE5 PE6
PE7
TEST/VPP
Voltage Regulator
16K, 32K, 64K, 96K, 128K Byte Flash
1K, 2K, 4K Byte RAM
MODC
Background
Debug12 Module
Clock and Reset
PLL
Generation Module
PTE
DDRE
XIRQ IRQ
W
R/ LSTRB/TAGLO ECLK MODA/IPIPE0 MODB/IPIPE1 NOACC/XCLKS
HCS12
CPU
COP Watchdog
Clock Monitor
Periodic Interrupt
System
Integration
Module
(SIM)
Multiplexed Address/Data Bus
DDRA DDRB
PTA PTB
PA4
PA3
PA2
PA7
PA6
PA5
PA0
PA1
PB7
PB6
PB5
PB4
PB3
ATD
Timer Module
PWM Module
SCI
MSCAN is not available on the 9S12GC Family Members
MSCAN
PB1
PB0
SPI
PB2
IOC0 IOC1 IOC2 IOC3 IOC4 IOC5 IOC6 IOC7
PW0 PW1 PW2 PW3 PW4 PW5
VDDA
VSSA
VRH
VRL AN0
AN1 AN2 AN3 AN4 AN5 AN6 AN7
MUX
RXD
TXD
RXCAN
TXCAN
MISO
SS
MOSI
SCK
VDDA VSSA VRH
VRL
PAD0 PAD1 PAD2 PAD3 PAD4
PTAD
DDRAD
DDRT
DDRP
Keypad Interrupt
DDRJ
Key Int
DDRS
DDRM
PTT
PTP
PTJ
PTS
PTM
PAD5 PAD6 PAD7
PT0 PT1 PT2 PT3 PT4 PT5 PT6 PT7
PP0 PP1 PP2
PP3 PP4
PP5
PP6 PP7
PJ6 PJ7
PS0 PS1
PS2 PS3
PM0 PM1 PM2 PM3 PM4 PM5
ADDR12
ADDR11
ADDR10
DATA11
DATA10
ADDR8
ADDR9
DATA8
DAT A9
Multiplexed Wide Bus
ADDR15
ADDR14
DATA15
DATA14
DATA13
ADDR13
DATA12
Internal Logic 2.5V
VDD1,2 VSS1,2
PLL 2.5V
VDDPLL
VSSPLL
ADDR4
ADDR3
ADDR2
ADDR1
ADDR7
ADDR6
DAT A7
DAT A6
ADDR5
DATA4
DAT A5
ADDR0
DAT A3
DAT A2
DAT A1
DAT A0
I/O Driver 5V
VDDX
VSSX
A/D Converter 5V
VDDA
VSSA
Voltage Regulator 5V & I/O
VDDR VSSR
Signals shown in Bold are not available on the 52 or 48 Pin Package Signals shown in
VRL is bonded internally to VSSA for 52 and 48 Pin packages
Bold Italic
are available in the 52, but not the 48 Pin Package
27
Device User Guide — 9S12C128DGV1/D V01.05
1.5 Device Memory Map
Table 1-1 shows the device register map of the MC9S12C-Family after reset. The following figures
(Figure 1-2, Figure 1-2, Figure 1-3 and Figure 1-4) illustrate the full device memory map with flash and RAM.
Table 1-1 Device Register Map Overview
Address Module Size
$000 - $017 CORE (Ports A, B, E, Modes, Inits, Test) 24 $018 Reserved 1 $019 Voltage Regulator (VREG) 1 $01A - $01B Device ID register 2 $01C - $01F CORE (MEMSIZ, IRQ, HPRIO) 4 $020 - $02F CORE (DBG) 16
$030 - $033 $034 - $03F Clock and Reset Generator (CRG) 12
$040 - $06F Standard Timer Module16-bit 8-channels (TIM) 48 $070 - $07F Reserved 16 $080 - $09F Analog to Digital Convert (ATD) 32 $0A0 - $0C7 Reserved 40 $0C8 - $0CF Serial Communications Interface (SCI) 8 $0D0 - $0D7 Reserved 8 $0D8 - $0DF Serial Peripheral Interface (SPI) 8 $0E0 - $0FF Pulse Width Modulator 8-bit 6 channels (PWM) 32 $100 - $10F Flash Control Register 16 $110 - $13F Reserved 48
$140 - $17F $180 - $23F Reserved 192
$240 - $27F Port Integration Module (PIM) 64 $280 - $3FF Reserved 384
NOTES:
1. External memory paging is not supported on this device (6.1.1 PPAGE).
2. Not available on MC9S12GC-Family Devices
CORE (PPAGE1)
Motorola Scalable CAN (MSCAN)
2
4
64
28
Device User Guide — 9S12C128DGV1/D V01.05
$0000 $0400
$3000
$4000
$8000
$C000
$FF00 $FFFF
VECTORS
NORMAL
SINGLE CHIP
EXT
VECTORS
EXPANDED SPECIAL
VECTORS
SINGLE CHIP
$0000
$03FF $0000
$3FFF $3000
$3FFF $4000
$7FFF
$8000
$BFFF
$C000
$FFFF
$FF00
$FFFF
1K Register Space
Mappable to any 2K Boundary
16K Fixed Flash EEPROM
4K Bytes RAM
Mappable to any 4K Boundary
16K Fixed Flash EEPROM
16K Page Window 8 * 16K Flash EEPROM Pages
16K Fixed Flash EEPROM
BDM (If Active)
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space $0000 - $0FFF: 4K RAM (only 3K visible $0400 - $0FFF)
Flash Erase Sector Size is 1024 Bytes
PAGE MAP
$3D
$3E
PPAGE
$3F
Figure 1-2 MC9S12C128 and MC9S12GC128 User configurable Memory Map
29
Device User Guide — 9S12C128DGV1/D V01.05
$0000 $0400
$3000
$4000
$8000
$C000
$FF00 $FFFF
VECTORS
NORMAL
SINGLE CHIP
EXT
VECTORS
EXPANDED SPECIAL
VECTORS
SINGLE CHIP
$0000
$03FF
$0000
$3FFF
$3000
$3FFF
$4000
$7FFF
$8000
$BFFF
$C000
$FFFF $FF00
$FFFF
1K Register Space
Mappable to any 2K Boundary
16K Fixed Flash EEPROM
4K Bytes RAM
Mappable to any 4K Boundary
16K Fixed Flash EEPROM
16K Page Window 6 * 16K Flash EEPROM Pages
16K Fixed Flash EEPROM
BDM (If Active)
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space $0000 - $0FFF: 4K RAM (only 3K visible $0400 - $0FFF)
Flash Erase Sector Size is 1024 Bytes
PAGE MAP
$3D
$3E
PPAGE
$3F
Figure 1-3 MC9S12C96 User Configurable Memory Map
30
Device User Guide — 9S12C128DGV1/D V01.05
$0000 $0400
$3000
$4000
$8000
$C000
$FF00 $FFFF
VECTORS
NORMAL
SINGLE CHIP
EXT
VECTORS
EXPANDED SPECIAL
VECTORS
SINGLE CHIP
$0000
$03FF
$0000
$3FFF
$3000
$3FFF
$4000
$7FFF
$8000
$BFFF
$C000
$FFFF $FF00
$FFFF
1K Register Space
Mappable to any 2K Boundary
16K Fixed Flash EEPROM
4K Bytes RAM
Mappable to any 4K Boundary
16K Fixed Flash EEPROM
16K Page Window 4 * 16K Flash EEPROM Pages
16K Fixed Flash EEPROM
BDM (If Active)
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space $0000 - $0FFF: 4K RAM (only 3K visible $0400 - $0FFF)
Flash Erase Sector Size is 1024 Bytes
PAGE MAP
$3D
$3E
PPAGE
$3F
Figure 1-4 MC9S12C64 and MC9S12GC64 User Configurable Memory Map
31
Device User Guide — 9S12C128DGV1/D V01.05
$0000 $0400
$3800
$4000
$8000
$C000
$FF00 $FFFF
VECTORS
NORMAL
SINGLE CHIP
EXT
VECTORS
EXPANDED SPECIAL
VECTORS
SINGLE CHIP
$0000
$03FF
$3800
$3FFF
$8000
$BFFF
$C000
$FFFF $FF00
$FFFF
1K Register Space
Mappable to any 2K Boundary
2K Bytes RAM
Mappable to any 2K Boundary
16K Page Window 2 * 16K Flash EEPROM Pages
16K Fixed Flash EEPROM
BDM (If Active)
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space $0800 - $0FFF: 2K RAM
Flash Erase Sector Size is 512 Bytes
PAGE MAP
$3E
PPAGE
$3F
Figure 1-5 MC9S12C32 and MC9S12GC32 User Configurable Memory Map
32
Device User Guide — 9S12C128DGV1/D V01.05
$0000 $0400
$3800
$4000
$8000
$C000
$FF00 $FFFF
VECTORS
NORMAL
SINGLE CHIP
EXT
VECTORS
EXPANDED SPECIAL
VECTORS
SINGLE CHIP
$0000
$03FF
$3800
$3FFF
$C000
$FFFF $FF00
$FFFF
1K Register Space
Mappable to any 2K Boundary
2K Bytes RAM
Mappable to any 2K Boundary
16K Fixed Flash EEPROM
BDM (If Active)
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space $0800 - $0FFF: 2K RAM
Flash Erase Sector Size is 512 Bytes
PAGE MAP
PPAGE
$3F
Figure 1-6 MC9S12GC16 User Configurable Memory Map
1.6 Detailed Register Map
The detailed register map of the MC9S12C Family is listed in address order below.
33
Device User Guide — 9S12C128DGV1/D V01.05
$0000 - $000F MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0000 PORTA
$0001 PORTB
$0002 DDRA
$0003 DDRB
$0004 Reserved
$0005 Reserved
$0006 Reserved
$0007 Reserved
$0008 PORTE
$0009 DDRE
$000A PEAR
$000B MODE
$000C PUCR
$000D RDRIV
$000E EBICTL
$000F Reserved
Read: Write: Read: Write: Read: Write: Read: Write: Read: 00000000 Write: Read: 00000000 Write: Read: 00000000 Write: Read: 00000000 Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: 0000000 Write: Read: 00000000 Write:
Bit 7 654321Bit 0
Bit 7 654321Bit 0
Bit 7 654321Bit 0
Bit 7 654321Bit 0
Bit 7 65432
Bit 7 6543Bit 2
NOACCE
MODC MODB MODA
PUPKE
RDPK
0
00
00
PIPOE NECLK LSTRE RDWE
0
PUPEE
RDPE
IVIS
00
00
0
Bit 1 Bit 0
00
00
EMK EME
PUPBE PUPAE
RDPB RDPA
ESTR
$0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0010 INITRM
$0011 INITRG
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
34
Read: Write: Read: 0 Write:
RAM15 RAM14 RAM13 RAM12 RAM11
REG14 REG13 REG12 REG11
00
000
RAMHAL
Device User Guide — 9S12C128DGV1/D V01.05
$0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0012 INITEE
$0013 MISC
$0014 Reserved
Read: Write: Read: 0000 Write: Read: 00000000 Write:
EE15 EE14 EE13 EE12 EE11
EXSTR1 EXSTR0 ROMHM ROMON
00
EEON
$0015 - $0016 INT map 1 of 2 (HCS12 Interrupt)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0015 ITCR
$0016 ITEST
Read: 0 0 0 Write: Read: Write:
INTE INTC INTA INT8 INT6 INT4 INT2 INT0
WRINT ADR3 ADR2 ADR1 ADR0
$0017 - $0017 MMC map 2 of 4 (HCS12 Module Mapping Control)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0017 Reserved
Read: 00000000 Write:
$0018 - $0018 Miscellaneous Peripherals (Device User Guide)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0018 Reserved
Read: 00000000 Write:
$0019 - $0019 VREG3V3 (Voltage Regulator)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0019 VREGCTRL
Read: 00000LVDS Write:
LVIE LVIF
$001A - $001B Miscellaneous Peripherals (Device User Guide)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$001A PARTIDH
$001B PARTIDL
Read: ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8 Write: Read: ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 Write:
35
Device User Guide — 9S12C128DGV1/D V01.05
$001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control, Device User Guide)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$001C MEMSIZ0
$001D MEMSIZ1
Read: reg_sw0 0 eep_sw1 eep_sw0 0 ram_sw2 ram_sw1 ram_sw0 Write: Read: rom_sw1 rom_sw0 0000pag_sw1 pag_sw0 Write:
$001E - $001E MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$001E INTCR
Read: Write:
IRQE IRQEN
000000
$001F - $001F INT map 2 of 2 (HCS12 Interrupt)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$001F HPRIO
Read: Write:
PSEL7 PSEL6 PSEL5 PSEL4 PSEL3 PSEL2 PSEL1
0
$0020 - $002F DBG (including BKP) map 1 of 1 (HCS12 Debug)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0020
$0021
$0022
$0023
$0024
$0025
$0026
$0027
$0028
$0029
$002A
$002B
DBGC1 read
-
write
DBGSC read
-
DBGTBH
-
DBGTBL read Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
- write
DBGCNT read TBF 0 CNT
- write
DBGCCX read
- write
DBGCCH read
DBGCCL read
- write
write
read
write
write
DBGC2 read
BKPCT0
write
DBGC3 read
BKPCT1
DBGCAX
BKP0X
DBGCAH read
BKP0H write
write
read
write
DBGEN ARM TRGSEL BEGIN DBGBRK
AF BF CF 0
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
PAGSEL EXTCMP
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 654321Bit 0
BKABEN FULL BDM TAGAB BKCEN TAGC RWCEN RWC
BKAMBH BKAMBL BKBMBH BKBMBL RWAEN RWA RWBEN RWB
PAGSEL EXTCMP
Bit 15 14 13 12 11 10 9 Bit 8
0
TRG
CAPMOD
36
Device User Guide — 9S12C128DGV1/D V01.05
$0020 - $002F DBG (including BKP) map 1 of 1 (HCS12 Debug)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$002C
$002D
$002E
$002F
DBGCAL read
BKP0L write
DBGCBX read
BKP1X write
DBGCBH read
BKP1H write
DBGCBL read
BKP1L write
Bit 7 654321Bit 0
PAGSEL EXTCMP
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 654321Bit 0
$0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0030 PPAGE
$0031 Reserved
Read: 0 0
Write:
PIX5 PIX4 PIX3 PIX2 PIX1 PIX0
Read: 00000000
Write:
$0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Read:
(1)
1
Write:
Read:
Write:
Bit 7 654321Bit 0
Bit 7 654321Bit 0
$0032 PORTK
$0033 DDRK
NOTES:
1. Only applicable in special emulation-only bond outs, for emulation of extended memory map.
$0034 - $003F CRG (Clock and Reset Generator)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0034 SYNR
$0035 REFDV
$0036
CTFLG
TEST ONLY
$0037 CRGFLG
$0038 CRGINT
$0039 CLKSEL
$003A PLLCTL
Read: 0 0
Write:
Read: 0000
Write:
SYN5 SYN4 SYN3 SYN2 SYN1 SYN0
REFDV3 REFDV2 REFDV1 REFDV0
Read: TOUT7 TOUT6 TOUT5 TOUT4 TOUT3 TOUT2 TOUT1 TOUT0
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
RTIF PROF
RTIE
00
PLLSEL PSTP SYSWAI ROAWAI PLLWAI CWAI RTIWAI COPWAI
CME PLLON AUTO ACQ
0
LOCKIF
LOCKIE
LOCK TRACK
00
0
PRE PCE SCME
SCMIF
SCMIE
SCM
0
37
Device User Guide — 9S12C128DGV1/D V01.05
$0034 - $003F CRG (Clock and Reset Generator)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$003B RTICTL
$003C COPCTL
$003D
$003E
FORBYP
TEST ONLY
CTCTL
TEST ONLY
$003F ARMCOP
Read: 0
Write:
Read:
Write:
Read:
Write:
WCOP RSBCK
RTIBYP COPBYP
RTR6 RTR5 RTR4 RTR3 RTR2 RTR1 RTR0
000
0
Read: TCTL7 TCTL6 TCTL5 TCTL4 TCLT3 TCTL2 TCTL1 TCTL0
Write:
Read: 00000000
Write: Bit 7 654321Bit 0
$0040 - $006F TIM (Timer 16 Bit 8 Channels)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0040 TIOS
$0041 CFORC
$0042 OC7M
$0043 OC7D
$0044 TCNT (hi)
$0045 TCNT (lo)
$0046 TSCR1
$0047 TTOV
$0048 TCTL1
$0049 TCTL2
$004A TCTL3
$004B TCTL4
$004C TIE
$004D TSCR2
$004E TFLG1
$004F TFLG2
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0
00000000
FOC7 FOC6 FOC5 FOC4 FOC3 FOC2 FOC1 FOC0
OC7M7 OC7M6 OC7M5 OC7M4 OC7M3 OC7M2 OC7M1 OC7M0
OC7D7 OC7D6 OC7D5 OC7D4 OC7D3 OC7D2 OC7D1 OC7D0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 654321Bit 0
TEN TSWAI TSFRZ TFFCA
TOV7 TOV6 TOV5 TOV4 TOV3 TOV2 TOV1 TOV0
OM7 OL7 OM6 OL6 OM5 OL5 OM4 OL4
OM3 OL3 OM2 OL2 OM1 OL1 OM0 OL0
EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A
EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A
C7I C6I C5I C4I C3I C2I C1I C0I
TOI
000
C7F C6F C5F C4F C3F C2F C1F C0F
TOF
0000000
PLLBYP
CR2 CR1 CR0
00
FCM
0
0000
TCRE PR2 PR1 PR0
38
Device User Guide — 9S12C128DGV1/D V01.05
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0050 TC0 (hi)
$0051 TC0 (lo)
$0052 TC1 (hi)
$0053 TC1 (lo)
$0054 TC2 (hi)
$0055 TC2 (lo)
$0056 TC3 (hi)
$0057 TC3 (lo)
$0058 TC4 (hi)
$0059 TC4 (lo)
$005A TC5 (hi)
$005B TC5 (lo)
$005C TC6 (hi)
$005D TC6 (lo)
$005E TC7 (hi)
$005F TC7 (lo)
$0060 PACTL
$0061 PAFLG
$0062 PACNT (hi)
$0063 PACNT (lo)
$0064 Reserved
$0065 Reserved
$0066 Reserved
$0067 Reserved
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read: 000000
Write:
Read:
Write:
Read:
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 654321Bit 0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 654321Bit 0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 654321Bit 0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 654321Bit 0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 654321Bit 0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 654321Bit 0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 654321Bit 0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 654321Bit 0
0
PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAI
PAOVF PAIF
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 654321Bit 0
39
Device User Guide — 9S12C128DGV1/D V01.05
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0068 Reserved
$0069 Reserved
$006A Reserved
$006B Reserved
$006C Reserved
$006D Reserved
$006E Reserved
$006F Reserved
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
$0070 - $007F Reserved
$0070
- $007F
Reserved
Read: 00000000
Write:
$0080 - $009F ATD (Analog to Digital Converter 10 Bit 8 Channel)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0080 ATDCTL0
$0081 ATDCTL1
$0082 ATDCTL2
$0083 ATDCTL3
$0084 ATDCTL4
$0085 ATDCTL5
$0086 ATDSTAT0
$0087 Reserved
$0088 ATDTEST0
$0089 ATDTEST1
$008A Reserved
Read: 00000000
Write:
Read: 00000000
Write:
Read:
Write:
Read: 0
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Read: 0000000
Write:
Read: 00000000
Write:
ADPU AFFC AWAI ETRIGLE ETRIGP ETRIG ASCIE
S8C S4C S2C S1C FIFO FRZ1 FRZ0
SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0
DJM DSGN SCAN MULT
SCF
0
ETORF FIFOR
0
0 CC2 CC1 CC0
CC CB CA
ASCIF
SC
40
Device User Guide — 9S12C128DGV1/D V01.05
$0080 - $009F ATD (Analog to Digital Converter 10 Bit 8 Channel)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$008B ATDSTAT1
$008C Reserved
$008D ATDDIEN
$008E Reserved
$008F PORTAD0
$0090 ATDDR0H
$0091 ATDDR0L
$0092 ATDDR1H
$0093 ATDDR1L
$0094 ATDDR2H
$0095 ATDDR2L
$0096 ATDDR3H
$0097 ATDDR3L
$0098 ATDDR4H
$0099 ATDDR4L
$009A ATDDR5H
$009B ATDDR5L
$009C ATDDR6H
$009D ATDDR6L
$009E ATDDR7H
$009F ATDDR7L
Read: CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0
Write:
Read: 00000000
Write:
Read:
Write:
Read: 00000000
Write:
Read: Bit7 654321BIT 0
Write:
Read: Bit15 14 13 12 11 10 9 Bit8
Write:
Read: Bit7 Bit6 000000
Write:
Read: Bit15 14 13 12 11 10 9 Bit8
Write:
Read: Bit7 Bit6 000000
Write:
Read: Bit15 14 13 12 11 10 9 Bit8
Write:
Read: Bit7 Bit6 000000
Write:
Read: Bit15 14 13 12 11 10 9 Bit8
Write:
Read: Bit7 Bit6 000000
Write:
Read: Bit15 14 13 12 11 10 9 Bit8
Write:
Read: Bit7 Bit6 000000
Write:
Read: Bit15 14 13 12 11 10 9 Bit8
Write:
Read: Bit7 Bit6 000000
Write:
Read: Bit15 14 13 12 11 10 9 Bit8
Write:
Read: Bit7 Bit6 000000
Write:
Read: Bit15 14 13 12 11 10 9 Bit8
Write:
Read: Bit7 Bit6 000000
Write:
Bit 7 654321Bit 0
$00A0 - $00C7 Reserved
$00A0
- $00C7
Reserved
Read: 00000000
Write:
41
Device User Guide — 9S12C128DGV1/D V01.05
$00C8 - $00CF SCI (Asynchronous Serial Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00C8 SCIBDH
$00C9 SCIBDL
$00CA SCICR1
$00CB SCICR2
$00CC SCISR1
$00CD SCISR2
$00CE SCIDRH
$00CF SCIDRL
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read: TDRE TC RDRF IDLE OR NF FE PF
Write:
Read: 00000
Write:
Read: R8
Write:
Read: R7 R6 R5 R4 R3 R2 R1 R0
Write: T7 T6 T5 T4 T3 T2 T1 T0
000
SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0
LOOPS SCISWAI RSRC M WAKE ILT PE PT
TIE TCIE RIE ILIE TE RE RWU SBK
T8
000000
SBR12 SBR11 SBR10 SBR9 SBR8
BRK13 TXDIR
RAF
$00D0 - $00D7 Reserved
$00D0
- $00D7
Reserved
Read: 00000000
Write:
$00D8 - $00DF SPI (Serial Peripheral Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00D8 SPICR1
$00D9 SPICR2
$00DA SPIBR
$00DB SPISR
$00DC Reserved
$00DD SPIDR
$00DE Reserved
$00DF Reserved
Read:
Write:
Read: 0 0 0
Write:
Read: 0
Write:
Read: SPIF 0 SPTEF MODF 0000
Write:
Read: 00000000
Write:
Read:
Write:
Read: 0 0 0 0 0 0 0 0
Write:
Read: 00000000
Write:
SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE
MODFEN BIDIROE
SPPR2 SPPR1 SPPR0
Bit7 654321Bit0
0
0
SPISWAI SPC0
SPR2 SPR1 SPR0
42
Device User Guide — 9S12C128DGV1/D V01.05
$00E0 - $00FF PWM (Pulse Width Modulator)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00E0 PWME
$00E1 PWMPOL
$00E2 PWMCLK
$00E3 PWMPRCLK
$00E4 PWMCAE
$00E5 PWMCTL
$00E6
PWMTST
Test Only
$00E7 PWMPRSC
$00E8 PWMSCLA
$00E9 PWMSCLB
$00EA PWMSCNTA
$00EB PWMSCNTB
$00EC PWMCNT0
$00ED PWMCNT1
$00EE PWMCNT2
$00EF PWMCNT3
$00F0 PWMCNT4
$00F1 PWMCNT5
$00F2 PWMPER0
$00F3 PWMPER1
$00F4 PWMPER2
$00F5 PWMPER3
$00F6 PWMPER4
Read: 0 0
Write:
Read: 0 0
Write:
Read: 0 0
Write:
Read: 0
Write:
PCKB2 PCKB1 PCKB0
Read: 0 0
Write:
Read: 0
Write:
CON45 CON23 CON01 PSWAI PFRZ
PWME5 PWME4 PWME3 PWME2 PWME1 PWME0
PPOL5 PPOL4 PPOL3 PPOL2 PPOL1 PPOL0
PCLK5 PCLK4 PCLK3 PCLK2 PCLK1 PCLK0
0
PCKA2 PCKA1 PCKA0
CAE5 CAE4 CAE3 CAE2 CAE1 CAE0
0
Read: 00000000
Write:
Read: 00000000
Write:
Read:
Write:
Read:
Write:
Bit 7 6 5 4 3 2 1 Bit 0
Bit 7 6 5 4 3 2 1 Bit 0
Read: 00000000
Write:
Read: 00000000
Write:
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 00000000
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 00000000
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 00000000
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 00000000
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 00000000
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 00000000
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7 6 5 4 3 2 1 Bit 0
Bit 7 6 5 4 3 2 1 Bit 0
Bit 7 6 5 4 3 2 1 Bit 0
Bit 7 6 5 4 3 2 1 Bit 0
Bit 7 6 5 4 3 2 1 Bit 0
0
43
Device User Guide — 9S12C128DGV1/D V01.05
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00F7 PWMPER5
$00F8 PWMDTY0
$00F9 PWMDTY1
$00FA PWMDTY2
$00FB PWMDTY3
$00FC PWMDTY4
$00FD PWMDTY5
$00FE Reserved
$00FF Reserved
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7 6 5 4 3 2 1 Bit 0
Bit 7 6 5 4 3 2 1 Bit 0
Bit 7 6 5 4 3 2 1 Bit 0
Bit 7 6 5 4 3 2 1 Bit 0
Bit 7 6 5 4 3 2 1 Bit 0
Bit 7 6 5 4 3 2 1 Bit 0
Bit 7 6 5 4 3 2 1 Bit 0
Read: 00000000
Write:
Read: 00000000
Write:
$0100 - $010F Flash Control Register
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0100 FCLKDIV
$0101 FSEC
$0102 FTSTMOD
$0103 FCNFG
$0104 FPROT
$0105
FSTAT
$0106 FCMD
$0107
$0108
$0109
$010A
$010B
Reserved for
Factory Test
Reserved for
Factory Test
Reserved for
Factory Test
Reserved for
Factory Test
Reserved for
Factory Test
Read: FDIVLD
Write:
PRDIV8 FDIV5 FDIV4 FDIV3 FDIV2 FDIV1 FDIV0
Read: KEYEN1 KEYEN0 NV5 NV4 NV3 NV2 SEC1 SEC0
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read: 0
Write:
0 0 0 WRALL
CBEIE CCIE KEYACC
000
FPOPEN NV6 FPHDIS FPHS1 FPHS0 FPLDIS FPLS1 FPLS0
CBEIF
CCIF
PVIOL ACCERR
CMDB6 CMDB5
00
000
BKSEL1 BKSEL0
0
BLANK
CMDB2
00
0
CMDB0
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
0
44
Device User Guide — 9S12C128DGV1/D V01.05
$0100 - $010F Flash Control Register
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$010C Reserved
$010D Reserved
$010E Reserved
$010F Reserved
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
$0110 - $013F Reserved
$0110
- $003F
Reserved
Read: 00000000
Write:
$0140 - $017F CAN (Motorola Scalable CAN - MSCAN)
1
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0140 CANCTL0
$0141 CANCTL1
$0142 CANBTR0
$0143 CANBTR1
$0144 CANRFLG
$0145 CANRIER
$0146 CANTFLG
$0147 CANTIER
$0148 CANTARQ
$0149 CANTAAK
$014A CANTBSEL
$014B CANIDAC
$014C Reserved
$014D Reserved
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
RXFRM
CANE CLKSRC LOOPB LISTEN
SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
WUPIF CSCIF
WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE
00000
RXACT
CSWAI
RSTAT1 RSTAT0 TSTAT1 TSTAT0
Write:
Read: 00000
Write:
Read:
00000
Write:
Read: 00000ABTAK2ABTAK1ABTAK0
Write:
Read:
00000
Write:
Read: 0 0
Write:
IDAM1 IDAM0
Read: 00000000
Write:
Read: 00000000
Write:
SYNCH
TIME WUPE SLPRQ INITRQ
0
WUPM
SLPAK INITAK
OVRIF RXF
TXE2 TXE1 TXE0
TXEIE2 TXEIE1 TXEIE0
ABTRQ2 ABTRQ1 ABTRQ0
TX2 TX1 TX0
0 IDHIT2 IDHIT1 IDHIT0
45
Device User Guide — 9S12C128DGV1/D V01.05
$0140 - $017F CAN (Motorola Scalable CAN - MSCAN)
1
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$014E CANRXERR
$014F CANTXERR
$0150 -
$0153
$0154 -
$0157
$0158 -
$015B
$015C -
$015F
$0160 -
$016F
$0170 -
$017F
NOTES:
1. Not available on the MC9S12GC-Family members. Those memory locations should not be accessed.
CANIDAR0 -
CANIDAR3
CANIDMR0 -
CANIDMR3
CANIDAR4 -
CANIDAR7
CANIDMR4 -
CANIDMR7
CANRXFG
CANTXFG
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read: FOREGROUND RECEIVE BUFFER see Table 1-2
Write:
Read:
Write:
RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0
TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
FOREGROUND TRANSMIT BUFFER see Table 1-2
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Extended ID Read: ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21
$xxx0
$xxx1
$xxx2
$xxx3
$xxx4­$xxxB
$xxxC CANRxDLR
$xxxD Reserved
$xxxE CANxRTSRH
$xxxF CANxRTSRL
$xx10
Standard ID Read: ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3
CANxRIDR0 Write:
Extended ID Read: ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15
Standard ID Read: ID2 ID1 ID0 RTR IDE=0
CANxRIDR1 Write:
Extended ID Read: ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7
Standard ID Read:
CANxRIDR2 Write:
Extended ID Read: ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR
Standard ID Read:
CANxRIDR3 Write:
CANxRDSR0 -
CANxRDSR7
Extended ID Read: CANxTIDR0 Write:
Standard ID Read:
Read: DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Write: Read: Write: Read: Write: Read: TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8 Write: Read: TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0 Write:
ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21
Write:
ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3
DLC3 DLC2 DLC1 DLC0
46
Device User Guide — 9S12C128DGV1/D V01.05
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Extended ID Read:
$xx11
$xx12
$xx13
$xx14­$xx1B
$xx1C CANxTDLR
$xx1D CONxTTBPR
$xx1E CANxTTSRH
$xx1F CANxTTSRL
CANxTIDR1 Write:
Standard ID Read:
Extended ID Read: CANxTIDR2 Write:
Standard ID Read:
Extended ID Read: CANxTIDR3 Write:
Standard ID Read:
CANxTDSR0 -
CANxTDSR7
Write:
Write:
Write: Read: Write: Read: Write: Read: Write: Read: TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8 Write: Read: TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0 Write:
ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15
ID2 ID1 ID0 RTR IDE=0
ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7
ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
DLC3 DLC2 DLC1 DLC0
PRIO7 PRIO6 PRIO5 PRIO4 PRIO3 PRIO2 PRIO1 PRIO0
$0180 - $023F Reserved
$0180
- $023F
Reserved
Read: 00000000
Write:
$0240 - $027F PIM (Port Interface Module)
$0240 PTT
$0241 PTIT
$0242 DDRT
$0243 RDRT
$0244 PERT
$0245 PPST
$0246 Reserved
$0247 MODRR
$0248 PTS
Read:
Write:
PTT7 PTT6 PTT5 PTT4 PTT3 PTT2 PTT1 PTT0
Read: PTIT7 PTIT6 PTIT5 PTIT4 PTIT3 PTIT2 PTIT1 PTIT0
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
DDRT7 DDRT7 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0
RDRT7 RDRT6 RDRT5 RDRT4 RDRT3 RDRT2 RDRT1 RDRT0
PERT7 PERT6 PERT5 PERT4 PERT3 PERT2 PERT1 PERT0
PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0
Read: 00000000
Write:
Read: 0 0 0
Write:
MODRR4 MODRR3 MODRR2 MODRR1 MODRR0
Read: 0000
Write:
PTS3 PTS2 PTS1 PTS0
47
Device User Guide — 9S12C128DGV1/D V01.05
$0249 PTIS
$024A DDRS
$024B RDRS
$024C PERS
$024D PPSS
$024E WOMS
$024F Reserved
$0250 PTM
$0251 PTIM
$0252 DDRM
$0253 RDRM
$0254 PERM
$0255 PPSM
$0256 WOMM
$0257 Reserved
$0258 PTP
$0259 PTIP
$025A DDRP
$025B RDRP
$025C PERP
$025D PPSP
$025E PIEP
$025F PIFP
$0260 Reserved
Read: 0000PTIS3 PTIS2 PTIS1 PTIS0
Write:
Read: 0000
Write:
Read: 0000
Write:
Read: 0000
Write:
Read: 0000
Write:
Read: 0000
Write:
DDRS3 DDRS2 DDRS1 DDRS0
RDRS3 RDRS2 RDRS1 RDRS0
PERS3 PERS2 PERS1 PERS0
PPSS3 PPSS2 PPSS1 PPSS0
WOMS3 WOMS2 WOMS1 WOMS0
Read: 00000000
Write:
Read: 0 0
Write:
PTM5 PTM4 PTM3 PTM2 PTM1 PTM0
Read: 0 0 PTIM5 PTIM4 PTIM3 PTIM2 PTIM1 PTIM0
Write:
Read: 0 0
Write:
Read: 0 0
Write:
Read: 0 0
Write:
Read: 0 0
Write:
Read: 0 0
Write:
DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0
RDRM5 RDRM4 RDRM3 RDRM2 RDRM1 RDRM0
PERM5 PERM4 PERM3 PERM2 PERM1 PERM0
PPSM5 PPSM4 PPSM3 PPSM2 PPSM1 PPSM0
WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0
Read: 00000000
Write:
Read:
Write:
PTP7 PTP6 PTP5 PTP4 PTP3 PTP2 PTP1 PTP0
Read: PTIP7 PTIP6 PTIP5 PTIP4 PTIP3 PTIP2 PTIP1 PTIP0
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
DDRP7 DDRP7 DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRP0
RDRP7 RDRP6 RDRP5 RDRP4 RDRP3 RDRP2 RDRP1 RDRP0
PERP7 PERP6 PERP5 PERP4 PERP3 PERP2 PERP1 PERP0
PPSP7 PPSP6 PPSP5 PPSP4 PPSP3 PPSP2 PPSP1 PPSS0
PIEP7 PIEP6 PIEP5 PIEP4 PIEP3 PIEP2 PIEP1 PIEP0
PIFP7 PIFP6 PIFP5 PIFP4 PIFP3 PIFP2 PIFP1 PIFP0
Read: 00000000
Write:
48
Device User Guide — 9S12C128DGV1/D V01.05
$0261 Reserved
$0262 Reserved
$0263 Reserved
$0264 Reserved
$0265 Reserved
$0266 Reserved
$0267 Reserved
$0268 PTJ
$0269 PTIJ
$026A DDRJ
$026B RDRJ
$026C PERJ
$026D PPSJ
$026E PIEJ
$026F PIFJ
$0270 PTAD
$0271 PTIAD
$0272 DDRAD
$0273 RDRAD
$0274 PERAD
$0275 PPSAD
$0276-
$027F
Reserved
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Read: 00000000
Write:
Read:
Write:
PTJ7 PTJ6
000000
Read: PTIJ7 PTIJ6 000000
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
DDRJ7 DDRJ7
RDRJ7 RDRJ6
PERJ7 PERJ6
PPSJ7 PPSJ6
PIEJ7 PIEJ6
PIFJ7 PIFJ6
PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0
PTIAD7 PTIAD6 PTIAD5 PTIAD4 PTIAD3 PTIAD2 PTIAD1 PTIJ7
000000
000000
000000
000000
000000
000000
Write:
Read:
DDRAD7 DDRAD6 DDRAD5 DDRAD4 DDRAD3 DDRAD2 DDRAD1 DDRAD0
Write:
Read:
RDRAD7 RDRAD6 RDRAD5 RDRAD4 RDRAD3 RDRAD2 RDRAD1 RDRAD0
Write:
Read:
PERAD7 PERAD6 PERAD5 PERAD4 PERAD3 PERAD2 PERAD1 PERAD0
Write:
Read:
PPSAD7 PPSAD6 PPSAD5 PPSAD4 PPSAD3 PPSAD2 PPSAD1 PPSAD0
Write:
Read: 00000000
Write:
49
Device User Guide — 9S12C128DGV1/D V01.05
$0280 - $03FF Reserved space
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0280
- $2FF
$0300 -
$03FF
Reserved
Unimplemented
Read: 00000000
Write:
Read: 00000000
Write:
1.7 Part ID Assignments
The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses $001A and $001B after reset). The read-only value is a unique part ID for each revision of the chip. Table 1-3 shows the assigned part ID numbers.
Table 1-3 Assigned Part ID Numbers
Device Mask Set Number
MC9S12C32 0L45J $3300 MC9S12C32 1L45J $3300 MC9S12C32 2L45J $3302 MC9S12C64 TBD TBD
MC9S12C96 TBD TBD MC9S12C128 0L09S $3100 MC9S12C128 1L09S $3101 MC9S12GC16 TBD TBD MC9S12GC32 TBD TBD MC9S12GC64 TBD TBD
MC9S12GC128 TBD TBD
NOTES:
1. The coding is as follows: Bit 15-12: Major family identifier Bit 11-8: Minor family identifier Bit 7-4: Major mask set revision number including FAB transfers Bit 3-0: Minor - non full - mask set revision
Part ID
1
The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses $001C and$001D after reset). Table 1-4shows the read-only values oftheseregisters. Refer to Module Mapping and Control (MMC) Block Guide for further details.
Device Register name Value
MC9S12GC16
50
Table 1-4 Memory size registers
MEMSIZ0 $00 MEMSIZ1 $80
Table 1-4 Memory size registers
Device Register name Value
MC9S12C32, MC9S12GC32
MC9S12C64, MC9S12GC64
MC9S12C96
MC9S12C128, MC9S12GC128
Device User Guide — 9S12C128DGV1/D V01.05
MEMSIZ0 $00 MEMSIZ1 $80 MEMSIZ0 $01 MEMSIZ1 $C0 MEMSIZ0 $01 MEMSIZ1 $C0 MEMSIZ0 $01 MEMSIZ1 $C0
51
Device User Guide — 9S12C128DGV1/D V01.05
Section 2 Signal Description
2.1 Device Pinout
PP4/KWP4/PW4
PP5/KWP5/PW5
PP7/KWP7
VDDX
VSSX
PM0/RXCAN
PM1/TXCAN
PM2/MISO
PM3/SS
PM4/MOSI
PM5/SCK
PJ6/KWJ6
PJ7/KWJ7
PP6/KWP6/ROMCTL
PS3
PS2
PS1/TXD
PS0/RXD
VSSA
VRL
PW3/KWP3/PP3
PW2/KWP2/PP2 PW1/KWP1/PP1 PW0/KWP0/PP0
PW0/IOC0/PT0 PW1/IOC1/PT1 PW2/IOC2/PT2 PW3/IOC3/PT3
VDD1 VSS1
PW4/IOC4/PT4
IOC5/PT5 IOC6/PT6 IOC7/PT7
TAGHI/BKGD
MODC/
ADDR0/DATA0/PB0 ADDR1/DATA1/PB1 ADDR2/DATA2/PB2 ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
80797877767574737271706968676665646362
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21222324252627282930313233343536373839
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
MC9S12C-Family
MC9S12GC-Family
VSSR
VDDR
ECLK/PE4
MODA/IPIPE0/PE5
MODB/IPIPE1/PE6
XCLKS/NOACC/PE7
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST/VPP
IRQ/PE1
R/W/PE2
LSTRB/TAGLO/PE3
61
60
VRH
59
VDDA
58
PAD07/AN07
57
PAD06/AN06
56
PAD05/AN05
55
PAD04/AN04
54
PAD03/AN03
53
PAD02/AN02
52
PAD01/AN01
51
PAD00/AN00
50
VSS2
49
VDD2
48
PA7/ADDR15/DATA15
47
PA6/ADDR14/DATA14
46
PA5/ADDR13/DATA13
45
PA4/ADDR12/DATA12
44
PA3/ADDR11/DATA11
43
PA2/ADDR10/DATA10
42
PA1/ADDR9/DATA9
41
PA0/ADDR8/DATA8
40
XIRQ/PE0
Signals shown in Bold are not available on the 52 or 48 Pin Package Signals shown in
Figure 2-1 Pin Assignments in 80 QFP for MC9S12C-Family
52
Bold Italic
are available in the 52, but not the 48 Pin Package
PW3/KWP3/PP3
PW0/IOC0/PT0 PW1/IOC1/PT1 PW2/IOC2/PT2 PW3/IOC3/PT3
VDD1
VSS1
PW4/IOC4/PT4
IOC5/PT5 IOC6/PT6 IOC7/PT7
MODC/BKGD
PB4
PP4/KWP4/PW4
PP5/KWP5/PW5
52
14
51
15
1 2 3 4 5 6 7 8 9 10 11 12 13
VDDX
VSSX
PM0/RXCAN
50
49
48
MC9S12C-Family
MC9S12GC-Family
16
17
18
PM1/TXCAN
PM2/MISO
PM3/SS
47
46
45
19
20
21
Device User Guide — 9S12C128DGV1/D V01.05
PM4/MOSI
PM5/SCK
PS1/TXD
PS0/RXD
VSSA
44
43
42
41
22
23
24
25
40
39 38 37 36 35 34 33 32 31 30 29 28 27
VRH VDDA PAD07/AN07
PAD06/AN06 PAD05/AN05
PAD04/AN04 PAD03/AN03 PAD02/AN02 PAD01/AN01 PAD00/AN00
PA2 PA1
PA0
26
VSSR
VDDR
ECLK/PE4
XCLKS/PE7
* Signals shown in
RESET
VDDPLL
Bold italic
XFC
VSSPLL
are not available on the 48 Pin Package
EXTAL
XTAL
TEST/VPP
IRQ/PE1
XIRQ/PE0
Figure 2-2 Pin assignments in 52 LQFP for MC9S12C-Family
53
Device User Guide — 9S12C128DGV1/D V01.05
PP5/KWP5/PW5
VDDX
VSSX
PM0/RXCAN
48
47
46
PW0/IOC0/PT0 PW1/IOC1/PT1 PW2/IOC2/PT2 PW3/IOC3/PT3
VDD1
VSS1
PW4/IOC4/PT4
IOC5/PT5 IOC6/PT6 IOC7/PT7
MODC/BKGD
PB4
1 2 3 4 5 6 7 8 9 10 11 12
13
14
45
MC9S12GC-Family
15
16
PM1/TXCAN
PM2/MISO
PM3/SS
PM4/MOSI
44
43
42
41
MC9S12C-Family
17
18
19
20
PM5/SCK
PS1/TXD
PS0/RXD
40
39
38
21
22
23
VSSA
37
36 35 34 33 32 31 30 29 28 27 26 25
24
VRH VDDA PAD07/AN07
PAD06/AN06 PAD05/AN05
PAD04/AN04 PAD03/AN03 PAD02/AN02 PAD01/AN01 PAD00/AN00 PA0 XIRQ/PE0
VSSR
ECLK/PE4
XCLKS/PE7
VDDR
RESET
XFC
VDDPLL
VSSPLL
EXTAL
XTAL
TEST/VPP
IRQ/PE1
Figure 2-3 Pin Assignments in 48 LQFP for MC9S12C-Family
54
Device User Guide — 9S12C128DGV1/D V01.05
2.2 Signal Properties Summary
Table 2-1 Signal Properties
Internal Pull
Pin Name
Function 1
EXTAL VDDPLL NA NA
XTAL VDDPLL NA NA
RESET VDDX None None External reset pin
XFC VDDPLL NA NA PLL loop filter pin
TEST VPP VSSX NA NA Test pin only
BKGD MODC
PE7 NOACC
PE6 IPIPE1 MODB VDDX
PE5 IPIPE0 MODA VDDX
PE4 ECLK VDDX PUCR
PE3
PE2 R/
PE1 IRQ VDDX PUCR Up Port E input, external interrupt pin PE0
PA[7:3]
PA[2:1]
PA[0]
PB[7:5]
PB[4]
PB[3:0]
PAD[7:0] AN[7:0] VDDA
PP[7] KWP[7] VDDX
PP[6] KWP[6] ROMCTL VDDX
PP[5] KWP[5] PW5 VDDX
Pin Name
Function 2
LSTRB TAGLO VDDX PUCR
W VDDX PUCR
XIRQ VDDX PUCR Up Port E input, non-maskable interrupt pin
ADDR[15:1/
DATA[15:1]
ADDR[10:9/
DATA[10:9]
ADDR[8]/
DATA[8]
ADDR[7:5]/
DATA[7:5]
ADDR[4]/
DATA[4]
ADDR[3:0]/
DATA[3:0]
Pin Name
Function 3
TAGHI VDDX Up Up Background debug, mode pin, tag signal high
XCLKS VDDX PUCR Up Port E I/O pin, access, clock select
VDDX PUCR Disabled Port A I/O pin & multiplexed address/data
Power
Domain
VDDX PUCR Disabled Port A I/O pin & multiplexed address/data
VDDX PUCR Disabled Port A I/O pin & multiplexed address/data
VDDX PUCR Disabled Port B I/O pin & multiplexed address/data
VDDX PUCR Disabled Port B I/O pin & multiplexed address/data
VDDX PUCR Disabled Port B I/O pin & multiplexed address/data
PP[4:3] KWP[4:3] PW[4:3] VDDX
Resistor
CTRL
While
pin is low: Down
While RESET
pin is low: Down
PERAD/P
PSAD
PERP/
PPSP
PERP/
PPSP
PERP/
PPSP
PERP/
PPSP
Reset
State
RESET
Mode
Dep
Mode
Dep
Mode
Dep
Disabled Port AD I/O pins and ATD inputs
Disabled Port P I/O Pins and keypad wake-up
Disabled
Disabled Port P I/O Pin, keypad wake-up, PW5 output
Disabled Port P I/O Pin, keypad wake-up, PWM output
Description
Oscillator pins
Port E I/O pin and pipe status
Port E I/O pin and pipe status
Port E I/O pin, bus clock output
1
Port E I/O pin, low strobe, tag signal low
(1)
Port E I/O pin, R/W in expanded modes
(1)
Port P I/O Pins, keypad wake-up and ROMON enable.
55
Device User Guide — 9S12C128DGV1/D V01.05
Internal Pull
Pin Name
Function 1
PP[2:0] KWP[2:0] PW[2:0] VDDX
PJ[7:6] KWJ[7:6] VDDX
PM5 SCK VDDX
PM4
PM3
PM2
PM1 TXCAN VDDX
PM0 RXCAN VDDX
PS[3:2] VDDX
PS1 TXD VDDX
PS0 RXD VDDX
PT[7:5] IOC[7:5] VDDX
PT[4:0] IOC[4:0] PW[4:0] VDDX
NOTES:
1. The PortE output buffer enable signal control at reset is determined by the PEAR register and is mode dependent. E.g. in special test mode RDWE=LSTRE=1 which enables the PE[3:2] output buffers and disables the pull-ups. Refer to S12_MEBI user guide for PEAR register details.
2. CAN functionality is not available on the MC9S12GC-Family members
Pin Name
Function 2
MOSI
SS VDDX
MISO
Pin Name
Function 3
VDDX
VDDX
Power
Domain
Resistor
CTRL
PERP/
PPSP
PERJ/
PPSJ
PERM/
PPSM
PERM/
PPSM
PERM/
PPSM
PERM/
PPSM
PERM/
PPSM
PERM/
PPSM
PERS/
PPSS
PERS/
PPSS
PERS/
PPSS
PERT/
PPST
PERT/
PPST
Reset
State
Disabled Port P I/O Pins, keypad wake-up, PWM outputs
Disabled Port J I/O Pins and keypad wake-up
Up Port M I/O Pin and SPI SCK signal
Up Port M I/O Pin and SPI
Up Port M I/O Pin and SPI SS signal
Up Port M I/O Pin and SPI
Up
Up
Up Port S I/O Pins
Up Port S I/O Pin and SCI transmit signal
Up Port S I/O Pin and SCI receive signal
Disabled Port T I/O Pins shared with timer (TIM)
Disabled Port T I/O Pins shared with timer and PWM
Port M I/O Pin and CAN transmit signal
Port M I/O Pin and CAN receive signal
Description
MOSI
signal
MISO
signal
2
2
2.2.1 Pin Initialization for 48 & 52 Pin LQFP bond-out versions
Not Bonded Pins If the port pins are not bonded out in the chosen package the user should initialize the registers to be inputs with enabled pull resistance to avoid excess current consumption. This applies to the following pins:
(48LQFP): Port A[7:1], Port B[7:5], Port B[3:0], PortE[6,5,3,2], Port P[7:6], PortP[4:0], Port J[7:6], PortS[3:2]
(52LQFP): Port A[7:3], Port B[7:5], Port B[3:0], PortE[6,5,3,2], Port P[7:6], PortP[2:0], Port J[7:6], PortS[3:2]
56
Device User Guide — 9S12C128DGV1/D V01.05
2.3 Detailed Signal Descriptions
2.3.1 EXTAL, XTAL — Oscillator Pins
EXTAL and XTAL arethe crystal driver and external clock pins.On reset all the device clocks arederived from the EXTAL input frequency. XTAL is the crystal output.
2.3.2 RESET — External Reset Pin
RESET is an active low bidirectional control signal that acts as an input to initialize the MCU to a known start-up state. It also acts as an open-drain output to indicate that an internal failure has been detected in either the clock monitor or COP watchdog circuit. External circuitry connected to the RESET pin should not include alarge capacitance that would interfere with the ability of this signal to rise to a valid logic one within 32 ECLK cycles after the low drive is released. Upon detection of any reset, an internal circuit drives the RESET pin low and a clocked reset sequence controls when the MCU can begin normal processing.
2.3.3 TEST / VPP — Test Pin
This pin is reserved for test and must be tied to VSS in all applications.
2.3.4 XFC — PLL Loop Filter Pin
Dedicated pin used to create the PLL loop filter. See CRG BUG for more detailed information.PLL loop filter. Please ask your Motorola representative for the interactive application note to compute PLL loop filter elements. Any current leakage on this pin must be avoided.
XFC
R
0
MCU
C
S
Figure 2-4 PLL Loop Filter Connections
C
P
VDDPLLVDDPLL
57
Device User Guide — 9S12C128DGV1/D V01.05
2.3.5 BKGD / TAGHI / MODC — Background Debug, Tag High & Mode Pin
The BKGD / TAGHI / MODC pin is used as a pseudo-open-drain pin for the background debug communication. In MCU expanded modes of operation when instruction tagging is on, an input low on this pin during the falling edge of E-clock tags the high half of the instruction word being read into the instruction queue. It is also used as a MCU operating mode select pin at the rising edge during reset, when the state of this pin is latched to the MODC bit.
2.3.6 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins
PA7-PA0 are general purpose input or output pins,. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus. PA[7:1] pins are not available in the 48 package version. PA[7:3] are not available in the 52 pin package version.
2.3.7 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins
PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus. PB[7:5] and PB[3:0] pins are not available in the 48 nor 52 pin package version.
2.3.8 PE7 / NOACC / XCLKS — Port E I/O Pin 7
PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC signal, when enabled, is used to indicate that the current bus cycle is an unused or “free” cycle. This signal will assert when the CPU is not using the bus.The XCLKS is an input signal which controls whether a crystal in combination with the internal Colpitts (low power) oscillator is used or whether Pierce oscillator/external clock circuitry is used. The state of this pin is latched at the rising edge of RESET. If the input is a logic low the EXTAL pin is configured for an external clock drive or a Pierce Oscillator. If input is a logic high a Colpitts oscillator circuit is configured on EXTAL and XTAL. Since this pin is an input with a pull-up device during reset, if the pin is left floating, the default configuration is a Colpitts oscillator circuit on EXTAL and XTAL.
58
Device User Guide — 9S12C128DGV1/D V01.05
EXTAL
CDC*
MCU
C
1
Crystal or
ceramic resonator
XTAL
C
2
VSSPLL
* Due to the nature of a translated ground Colpitts oscillator a
DC voltage bias is applied to the crystal
.Please contact the crystal manufacturer for crystal DC
Figure 2-5 Colpitts Oscillator Connections (PE7=1)
EXTAL
C
1
MCU
XTAL
R
B
*
R
S
Crystal or
ceramic resonator
C
2
VSSPLL
* Rs can be zero (shorted) when use with higher frequency crystals.
Refer to manufacturer’s data.
Figure 2-6 Pierce Oscillator Connections (PE7=0)
MCU
EXTAL
XTAL
not connected
CMOS-COMPATIBLE
EXTERNAL OSCILLATO
(VDDPLL-Level)
R
Figure 2-7 External Clock Connections (PE7=0)
59
Device User Guide — 9S12C128DGV1/D V01.05
2.3.9 PE6 / MODB / IPIPE1 — Port E I/O Pin 6
PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the instruction queue tracking signal IPIPE1}. This pin is an input with a pull-down device which is only active when RESET is low. PE[6] is not available in the 48 / 52 pin package versions.
2.3.10 PE5 / MODA / IPIPE0 — Port E I/O Pin 5
PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the instruction queue tracking signal IPIPE0}. This pin is an input with a pull-down device which is only active when RESET is low. This pin is not available in the 48 / 52 pin package versions.
2.3.11 PE4 / ECLK— Port E I/O Pin [4] / E-Clock Output
ECLK is the output connection for the internal bus clock. It is used to demultiplex the address and data in expanded modes and is used as a timing reference. ECLK frequency is equal to 1/2 the crystal frequency out of reset. The ECLK pin is initially configured as ECLK output with stretch in all expanded modes. The E clock output function depends upon the settings of the NECLK bit in the PEAR register, the IVIS bit in the MODE register and the ESTR bit in the EBICTL register. All clocks, including the E clock, are halted when the MCU is in STOP mode. It is possible to configure the MCU to interface to slow external memory. ECLK can be stretched for such accesses. Reference the MISC register (EXSTR[1:0] bits) for more information. In normal expanded narrow mode, the E clock is available for use in external select decode logic or as a constant speed clock for use in the external application system. Alternatively PE4 can be used as a general purpose input or output pin.
2.3.12 PE3 / LSTRB — Port E I/O Pin [3] / Low-Byte Strobe (LSTRB)
In all modes this pin can be used as a general-purpose I/O and is an input with an active pull-up out of reset. If the strobe function is required,it should be enabled by setting the LSTRE bit inthe PEAR register. This signal is used in write operations. Therefore external low byte writes will not be possible until this function is enabled. This pin is also used as
LSTRB function. This pin is not available in the 48 / 52 pin package versions.
the
TAGLO in Special Expanded modes and is multiplexed with
2.3.13 PE2 / R/W — Port E I/O Pin [2] / Read/Write
In all modes this pin can be used as a general-purpose I/O and is an input with an active pull-up out of reset. If the read/write function is required it should be enabled by setting the RDWE bit in the PEAR register. External writes will not be possible until enabled. This pin is not available in the 48 / 52 pin package versions.
60
Device User Guide — 9S12C128DGV1/D V01.05
2.3.14 PE1 / IRQ — Port E input Pin [1] / Maskable Interrupt Pin
The IRQ input provides a means of applying asynchronous interrupt requests to the MCU. Either falling edge-sensitive triggering or level-sensitive triggering is program selectable (INTCR register). always enabled and configured to level-sensitive triggering out of reset. It can be disabled by clearing IRQEN bit (INTCR register). When the MCU is reset the register. This pin is always an input and can always be read. There is an active pull-up on this pin while in reset and immediately out of reset. The pull-up can be turned off by clearing PUPEE in the PUCR register.
IRQ function is masked in the condition code
IRQ is
2.3.15 PE0 / XIRQ — Port E input Pin [0] / Non Maskable Interrupt Pin
The XIRQ input provides a means of requesting a non maskable interrupt after reset initialization. During reset, the X bit in the condition code register (CCR) is set and any interrupt is masked until MCU software enables it. Because the network. This pin is always an input and can always be read. There is an active pull-up on this pin while in reset and immediately out of reset. The pull-up can be turned off by clearing PUPEE in the PUCR register.
XIRQ input is level sensitive, it can be connected to a multiple-source wired-OR
2.3.16 PAD[7:0] / AN[7:0] — Port AD I/O Pins [7:0]
PAD7-PAD0 are general purpose I/O pins and also analog inputs for the analog to digital converter. In order to use a PAD pin as a standard I/O, the corresponding ATDDIEN register bit must be set. These bits are cleared out of reset to configure the PAD pins for A/D operation.
When the A/D converter is active in multi-channel mode, port inputs are scanned and converted irrespective of PortAD configuration. Thus PortAD pins that are configured as digital inputs or digital outputs are also converted in the A/D conversion sequence.
2.3.17 PP[7] / KWP[7] — Port P I/O Pin [7]
PP7 is a general purpose input or output pin, shared with the keypad interrupt function. When configured as an input, it can generate interrupts causing the MCU to exit STOP or WAIT mode. This pin is not available in the 48 / 52 pin package versions.
2.3.18 PP[6] / KWP[6]/ROMCTL — Port P I/O Pin [6]
PP6 is a general purpose input or output pin, shared with the keypad interrupt function. When configured as an input, it can generate interrupts causing the MCU to exit STOP or WAIT mode. This pin is not available in the 48 / 52 pin package versions. During MCU expanded modes of operation, this pin is used to enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of RESET, the state of this pin is latched to the ROMON bit. PP6=1 in emulation modes equates to ROMON =0 (ROM space externally mapped) PP6=0 in expanded modes equates to ROMON =0 (ROM space externally mapped)
61
Device User Guide — 9S12C128DGV1/D V01.05
2.3.19 PP[5:0] / KWP[5:0] / PW[5:0] — Port P I/O Pins [5:0]
PP[5:0] are general purpose input or output pins, shared with the keypad interrupt function. When configured as inputs, they can generate interrupts causing the MCU to exit STOP or WAIT mode. PP[5:0] are also shared with the PWM output signals, PW[5:0]. Pins PP[2:0] are only available in the 80 pin package version. Pins PP[4:3] are not available in the 48 pin package version.
2.3.20 PJ[7:6] / KWJ[7:6] — Port J I/O Pins [7:6]
PJ[7:6] are general purpose input or output pins, shared with the keypad interrupt function. When configured as inputs, they can generate interrupts causing the MCU to exit STOP or WAIT mode. These pins are not available in the 48 pin package version nor in the 52 pin package version.
2.3.21 PM5 / SCK — Port M I/O Pin 5
PM5 is a general purpose input or output pin and also the serial clock pin SCK for the Serial Peripheral Interface (SPI).
2.3.22 PM4 / MOSI — Port M I/O Pin 4
PM4 is a general purpose input or output pin and also the master output (during master mode) or slave input (during slave mode) pin for the Serial Peripheral Interface (SPI).
2.3.23 PM3 / SS — Port M I/O Pin 3
PM3 is a general purpose input or output pin and also the slave select pin SS for the Serial Peripheral Interface (SPI).
2.3.24 PM2 / MISO — Port M I/O Pin 2
PM2 is a general purpose input or output pin and also the master input (during master mode) or slave output (during slave mode) pin for the Serial Peripheral Interface (SPI).
2.3.25 PM1 / TXCAN — Port M I/O Pin 1
PM1 is a general purpose input or output pin and the transmit pin, TXCAN, of the CAN module if available.
2.3.26 PM0 / RXCAN — Port M I/O Pin 0
PM0 is a generalpurpose input or output pin and thereceive pin, RXCAN, of the CAN moduleif available.
62
Device User Guide — 9S12C128DGV1/D V01.05
2.3.27 PS[3:2] — Port S I/O Pins [3:2]
PS3 and PS2 are general purpose input or output pins. These pins are not available in the 48 / 52 pin package versions.
2.3.28 PS1 / TXD — Port S I/O Pin 1
PS1 is a general purpose input or output pin and the transmit pin,TXD, of SerialCommunication Interface (SCI).
2.3.29 PS0 / RXD — Port S I/O Pin 0
PS0 is a general purpose input or output pin and the receive pin, RXD, of Serial Communication Interface (SCI).
2.3.30 PPT[7:5] / IOC[7:5] — Port T I/O Pins [7:5]
PT7-PT5 are general purpose input or output pins. They can also be configured as the timer system input capture or output compare pins IOC7-IOC5.
2.3.31 PT[4:0] / IOC[4:0] / PW[4:0]— Port T I/O Pins [4:0]
PT4-PT0 are general purpose input or output pins. They can also be configured as the timer system input capture or output compare pins IOC4-IOC0 or as the PWM outputs PW[4:0].
2.4 Power Supply Pins
2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers
External power and ground for I/O drivers. Bypass requirements depend on how heavily the MCU pins are loaded.
2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator
External power and ground for the internal voltage regulator. Connecting VDDR to ground disables the internal voltage regulator.
2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Pins
Power is supplied to the MCU through VDD and VSS. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VDDR is tied to ground.
63
Device User Guide — 9S12C128DGV1/D V01.05
2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG
VDDA, VSSA are the power supply and ground input pins for the voltage regulator reference and the analog to digital converter.
2.4.5 VRH, VRL — ATD Reference Voltage Input Pins
VRH and VRL are the reference voltage input pins for the analog to digital converter.
2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL
Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the supply voltage to the Oscillator and PLL to be bypassed independently. This 2.5V voltage is generated by the internal voltage regulator.
Table 2-2 MC9S12C-Family Power and Ground Connection Summary
Mnemonic
VDD1
VDD2
VSS1
VSS2
VDDR 5.0 V VSSR 0 V VDDX 5.0 V
VSSX 0 V
VDDA 5.0 V Operating voltage and ground for the analog-to-digital converters and the
VSSA 0 V
VRH 5.0 V
VRL 0 V
VDDPLL 2.5 V Provides operating voltage and ground for the Phased-Locked Loop. This VSSPLL 0 V
Nominal
Voltage
2.5 V
0V
Description
Internal power and ground generated by internal regulator. These also allow an external source to supply the core VDD/VSS voltages and bypass the internal voltage regulator. In the 48 and 52 LQFP packages VDD2 and VSS2 are not available.
External power and ground, supply to internal voltage regulator.
External power and ground, supply to pin drivers.
reference for the internal voltageregulator,allowsthe supply voltage to the A/D to be bypassed independently.
Reference voltage low for the ATD converter. In the 48 and 52 LQFP packages VRL is bonded to VSSA.
allows the supply voltage to the PLL to be bypassed independently. Internal power and ground generated by internal regulator.
NOTE:
All VSS pins must be connected together in the application. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on MCU pin load.
Section 3 System Clock Description
64
Device User Guide — 9S12C128DGV1/D V01.05
The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules. Figure 3-1 shows the clock connections from the CRG to all modules. Consult the CRG Block User Guide for details on clock generation.
EXTAL
XTAL
CRG
core clock
bus clock
oscillator clock
Figure 3-1 Clock Connections
S12_CORE
Flash
RAM
TIM
ATD
PIM
SCI SPI
MSCAN
Not on 9S12GC
VREG
TPM
Section 4 Modes of Operation
4.1 Overview
Eight possible modes determine the operating configuration of the MC9S12C Family. Each mode has an associated default memory map and external bus configuration controlled by a further pin.
Three low power modes exist for the device.
4.2 Chip Configuration Summary
The operating mode out ofresetis determined by the statesof the MODC, MODB, andMODApins during reset. The MODC, MODB, and MODA bits in the MODE register show the current operating mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA pins are
65
Device User Guide — 9S12C128DGV1/D V01.05
latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting of the ROMON bit in theMISC register thus controllingwhether the internal Flashis visible in thememory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin is latched into the ROMON bit in the MISC register on the rising edge of the reset signal.
Table 4-1 Mode Selection
BKGD =
MODC
000X1
001 0 1 0 X 0 Special Test (Expanded Wide), BDM allowed 011 1 0 0 X 1 Normal Single Chip, BDM allowed 101
110X1
111
PE6 =
MODB
PE5 =
MODA
PP6 =
ROMCTL
01 10
01 10
00 11
00 11
ROMON
Bit
Mode Description
Special Single Chip, BDM allowed and ACTIVE. BDM is allowed in all other modes but a serial command is required to make BDM active.
Emulation Expanded Narrow, BDM allowed
Emulation Expanded Wide, BDM allowed
Normal Expanded Narrow, BDM allowed Peripheral; BDM allowed but bus operations would cause
bus conflicts (must not be used) Normal Expanded Wide, BDM allowed
For further explanation on the modes refer to the S12_MEBI block guide.
Table 4-2 Clock Selection Based on PE7
PE7 = XCLKS Description
1 Colpitts Oscillator selected 0 Pierce Oscillator/external clock selected
4.3 Security
The device will make available a security feature preventing the unauthorized read and write of the memory contents. This feature allows:
Protection of the contents of FLASH,
Operation in single-chip mode,
Operation from external memory with internal FLASH disabled.
The user must be reminded that part of the security must lie with the user’s code. An extreme example would be user’s code that dumps the contents of the internal program. This code would defeat the purpose of security. At the same time the user may also wish to put a back door in the user’s program. An example
66
Device User Guide — 9S12C128DGV1/D V01.05
of this is the user downloads a key through the SCI which allows access to a programming routine that updates parameters.
4.3.1 Securing the Microcontroller
Once the user has programmed the FLASH, the part can be secured by programming the security bits located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part and through powering down the part.
The security byte resides in a portion of the Flash array. Check the Flash Block User Guide for more details on the security configuration.
4.3.2 Operation of the Secured Microcontroller
4.3.2.1 Normal Single Chip Mode
This will be the most commonusage of the secured part. Everything will appear the same as if the part was not secured with the exception of BDM operation. The BDM operation will be blocked.
4.3.2.2 Executing from External Memory
The user may wish to execute from external space with a secured microcontroller. This is accomplished by resetting directly into expanded mode. The internal FLASH will be disabled. BDM operations will be blocked.
4.3.3 Unsecuring the Microcontroller
In order to unsecure the microcontroller, the internal FLASH must be erased. This can be done through an external program in expanded mode or via a sequence of BDM commands. Unsecuringis also possiblevia the Backdoor Key Access. Refer to Flash Block Guide for details.
Once the user has erased the FLASH, the part can be reset into special single chip mode. This invokes a program that verifies the erasure of the internal FLASH. Once this program completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally done through the BDM, but the user could also change to expanded mode (by writing the mode bits through the BDM) and jumping to an external program (again through BDM commands). Note that if the part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be secured again.
4.4 Low Power Modes
The microcontroller features three main low power modes. Consult the respective Block User Guide for information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of information about the clock system is the Clock and Reset Generator User Guide (CRG).
67
Device User Guide — 9S12C128DGV1/D V01.05
4.4.1 Stop
Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static mode. Wake up from this mode can be done via reset or external interrupts.
4.4.2 Pseudo Stop
This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are turned off. This mode consumes more current than the full STOP mode, but the wake up time from this mode is significantly shorter.
4.4.3 Wait
This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute instructions.The internal CPU signals (address and databus)willbefully static. All peripherals stay active. For further power consumption reduction the peripherals can individually turn off their local clocks.
4.4.4 Run
Although this is not a low power mode, unused peripheral modules should not be enabled in order to save power.
Section 5 Resets and Interrupts
5.1 Overview
Consult the Exception Processing section of the CPU12 Reference Manual for information.
5.2 Vectors
5.2.1 Vector Table
Table 5-1 lists interrupt sources and vectors in default order of priority.
Table 5-1 Interrupt Vector Locations
Vector Address Interrupt Source
External Reset, Power On Reset or Low
$FFFE, $FFFF
$FFFC, $FFFD Clock Monitor fail reset None COPCTL (CME, FCME) – $FFFA, $FFFB COP failure reset None COP rate select – $FFF8, $FFF9 Unimplemented instruction trap None None
Voltage Reset (see CRG Flags Register
to determine reset source)
CCR
Mask
None None
Local Enable
HPRIO Value
to Elevate
68
Device User Guide — 9S12C128DGV1/D V01.05
$FFF6, $FFF7 SWI None None – $FFF4, $FFF5 XIRQ X-Bit None – $FFF2, $FFF3 IRQ I-Bit INTCR (IRQEN) $F2 $FFF0, $FFF1 Real Time Interrupt I-Bit CRGINT (RTIE) $F0 $FFEE, $FFEF Standard Timer channel 0 I-Bit TIE (C0I) $EE $FFEC, $FFED Standard Timer channel 1 I-Bit TIE (C1I) $EC $FFEA, $FFEB Standard Timer channel 2 I-Bit TIE (C2I) $EA $FFE8, $FFE9 Standard Timer channel 3 I-Bit TIE (C3I) $E8 $FFE6, $FFE7 Standard Timer channel 4 I-Bit TIE (C4I) $E6 $FFE4, $FFE5 Standard Timer channel 5 I-Bit TIE (C5I) $E4 $FFE2, $FFE3 Standard Timer channel 6 I-Bit TIE (C6I) $E2 $FFE0, $FFE1 Standard Timer channel 7 I-Bit TIE (C7I) $E0 $FFDE, $FFDF Standard Timer overflow I-Bit TMSK2 (TOI) $DE $FFDC, $FFDD Pulse accumulator A overflow I-Bit PACTL (PAOVI) $DC $FFDA, $FFDB Pulse accumulator input edge I-Bit PACTL (PAI) $DA $FFD8, $FFD9 SPI I-Bit SPICR1 (SPIE, SPTIE) $D8
$FFD6, $FFD7 SCI I-Bit $FFD4, $FFD5
$FFD2, $FFD3 ATD I-Bit ATDCTL2 (ASCIE) $D2 $FFD0, $FFD1 $FFCE, $FFCF Port J I-Bit PIEP (PIEP7-6) $CE $FFCC, $FFCD $FFCA, $FFCB $FFC8, $FFC9 $FFC6, $FFC7 CRG PLL lock I-Bit PLLCR (LOCKIE) $C6 $FFC4, $FFC5 CRG Self Clock Mode I-Bit PLLCR (SCMIE) $C4 $FFBA to $FFC3 $FFB8, $FFB9 FLASH I-Bit FCNFG (CCIE, CBEIE) $B8
$FFB6, $FFB7 $FFB4, $FFB5 $FFB2, $FFB3 $FFB0, $FFB1
$FF90 to $FFAF $FF8E, $FF8F Port P I-Bit PIEP (PIEP7-0) $8E $FF8C, $FF8D PWM Emergency Shutdown I-Bit PWMSDN(PWMIE) $8C $FF8A, $FF8B VREG LVI I-Bit CTRL0 (LVIE) $8A $FF80 to $FF89
NOTES:
1. Not available on MC9S12GC-Family members
CAN wake-up
CAN errors
CAN receive
CAN transmit
1
1
1
1
Reserved
Reserved
Reserved Reserved Reserved
Reserved
I-Bit CANRIER (WUPIE) $B6 I-Bit CANRIER (CSCIE, OVRIE) $B4 I-Bit CANRIER (RXFIE) $B2 I-Bit CANTIER (TXEIE[2:0]) $B0
Reserved
Reserved
SCICR2
(TIE, TCIE, RIE, ILIE)
$D6
5.3 Resets
Resets are a subset of the interrupts featured inTable 5-1. The different sources capable of generating a system reset are summarized in Table 5-2. When a reset occurs, MCU registers and control bits are
69
Device User Guide — 9S12C128DGV1/D V01.05
changed to known start-up states. Refer to the respective module Block User Guides for register reset states.
5.3.1 Reset Summary Table
Table 5-2 Reset Summary
Reset Priority Source Vector
Power-on Reset 1 CRG Module $FFFE, $FFFF
External Reset 1 RESET pin $FFFE, $FFFF
Low Voltage Reset 1 VREG Module $FFFE, $FFFF
Clock Monitor Reset 2 CRG Module $FFFC, $FFFD
COP Watchdog Reset 3 CRG Module $FFFA, $FFFB
5.3.2 Effects of Reset
When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the respective module Block User Guides for register reset states. Refer to the HCS12 Multiplexed External Bus Interface (MEBI) Block Guide for mode dependent pin configuration of port A, B and E out of reset.
Refer to the PIM Block User Guide for reset configurations of all peripheral module ports. Refer to Figure 1-2 to Figure 1-5 footnotes for locations of the memories depending on the operating
mode after reset. The RAM array is not automatically initialized out of reset.
NOTE:
For devices assembled in 48-pin or 52-pinLQFP packages all non-bonded out pins should be configured as outputs after reset in order to avoid current drawn from floating inputs. Refer to
Table 2-1
for affected pins.
Section 6 HCS12 Core Block Description
Consult the individual block guides for information about the HCS12 core modules, i.e.central processing unit (CPU), interrupt module (INT), module mapping control module (MMC), multiplexed external bus interface (MEBI), debug12 module (DBG12) and background debug mode module (BDM). Where the CPU12 Reference Manual refers to cycles this is equivalent to device bus clock periods.
6.1 Device-specific information
6.1.1 PPAGE
External paging is not supported on these devices. In order to access the 16K flash blocks in the address range $8000-$BFFF the PPAGE registermust be loaded with thecorresponding value for this range.Refer to Table 6-1 for device specific page mapping.
70
Device User Guide — 9S12C128DGV1/D V01.05
For all devicesFlash Page 3F is visible in the $C000-$FFFF range if ROMON is set. For all devices (ecept 9S12GC16) Page 3E is also visible in the $4000-$7FFF range if ROMHM is cleared and ROMON is set. For all devices apart from MC9S12C32 Flash Page 3D is visible in the $0000-$3FFF range if ROMON is set...
Table 6-1 Device Specific Flash PAGE Mapping
Device PAGE PAGE visible with PPAGE contents
MC9S12GC16 3F $00,$01,$02,$03,$04,$05,$06,$07,$08,$09......$36,$37,$38,$39,$3A,$3B,$3C,$3D,$3E,$3F
MC9S12C32
MC9S12GC32
MC9S12C64
MC9S12GC64
MC9S12C96
MC9S12C128
MC9S12GC128
3E $00,$02,$04,$06,$08,$0A,$0C,$0E,$10,$12......$2C,$2E,$30,$32,$34,$36,$38,$3A,$3C,$3E
3F $01,$03,$05,$07,$09,$0B,$0D,$0F,$11,$13.....$2D,$2F,$31,$33,$35,$37,$39,$3B,$3D,$3F
3C $00,$04,$08,$0C,$10,$14,$18,$1C,$20,$24,$28,$2C,$30,$34,$38,$3C 3D $01,$05,$09,$0D,$11,$15,$19,$1D,$21,$25,$29,$2D,$31,$35,$39,$3D
3E $02,$06,$0A,$0E,$12,$16,$1A,$1E,$22,$26,$2A,$2E,$32,$36,$3A,$3E
3F $03,$07,$0B,$0F,$13,$17,$1B,$1F,$23,$27,$2B,$2F,$33,$37,$3B,$3F
3A $00,$02,$08,$0A,$10,$12,$18,$1A,$20,$22,$28,$2A,$30,$32,$38,$3A
3B $01,$03,$09,$0B,$11,$13,$19,$1B,$21,$23,$29,$2B,$31,$33,$39,$3B 3C $04,$0C,$14,$1C,$24,$2C,$34,$3C 3D $05,$0D,$15,$1D,$25,$2D,$35,$3D
3E $06,$0E,$16,$1E,$26,$2E,$36,$3E
3F $07,$0F,$17,$1F,$27,$2F,$37,$3F
38 $00,$08,$10,$18,$20,$28,$30,$38
39 $01,$09,$11,$19,$21,$29,$31,$39
3A $02,$0A,$12,$1A,$22,$2A,$32,$3A
3B $03,$0B,$13,$1B,$23,$2B,$33,$3B 3C $04,$0C,$14,$1C,$24,$2C,$34,$3C 3D $05,$0D,$15,$1D,$25,$2D,$35,$3D
3E $06,$0E,$16,$1E,$26,$2E,$36,$3E
3F $07,$0F,$17,$1F,$27,$2F,$37,$3F
6.1.2 BDM alternate clock
The BDM section of S12 Core User Guide reference to alternate clock is equivalent to oscillator clock.
6.1.3 Extended Address Range Emulation Implications
In order to emulate the MC9S12GC or MC9S12C-Family devices, external addressing of a 128K memory map is required. This is provided in a 112 LQFP package version which includes the 3 necessary extra external address bus signals via PortK[2:0]. This package version is for emulation only and not provided as a general production package.
The reset state of DDRK is $00, configuring the pins as inputs. The reset state of PUPKE in the PUCR register is “1” enabling the internal PortK pullups. In this reset state the pull-ups provide a defined state and prevent a floating input, thereby preventing
unnecessary current flow at the input stage.
71
Device User Guide — 9S12C128DGV1/D V01.05
To prevent unnecessary current flow in production package options, the states of DDRK and PUPKE should not be changed by software.
Section 7 Voltage Regulator (VREG) Block Description
Consult the VREG Block User Guide for information about the dual output linear voltage regulator.
7.1 Device-specific information
The VREG is part of the IPBus domain.
7.1.1 VREGEN
VREGEN is connected internally to VDDR.
7.1.2 VDD1, VDD2, VSS1, VSS2
In the 80 pin QFP package versions, both internal VDD and VSS of the 2.5V domain are bonded out on 2 sides of the device as two pin pairs (VDD1, VSS1 & VDD2, VSS2). VDD1 and VDD2 are connected together internally. VSS1 and VSS2 are connected together internally.
The extra pin pair enables systems using the 80 pin package to employ better supply routing and further decoupling.
Section 8 Recommended Printed Circuit Board Layout
The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the MCU itself. The following rules must be observed:
Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the corresponding pins (C1 - C6).
Central point of the ground star should be the VSSR pin.
Use low ohmic low inductance connections between VSS1, VSS2 and VSSR.
VSSPLL must be directly connected to VSSR.
Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7, C8, C11 and Q1 as small as possible.
Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the connection area to the MCU.
Central power input should be fed in at the VDDA/VSSA pins.
72
Device User Guide — 9S12C128DGV1/D V01.05
Table 8-1 Recommended External Component Values
Component Purpose Type Value
C1 VDD1 filter capapcitor ceramic X7R
220nF, 470nF C2 VDD2 filter capacitor (80 QFP only) ceramic X7R 220nF C3 VDDA filter capacitor ceramic X7R 100nF C4 VDDR filter capacitor X7R/tantalum >=100nF C5 VDDPLL filter capacitor ceramic X7R 100nF C6 VDDX filter capacitor X7R/tantalum >=100nF C7 OSC load capacitor
See PLL specification chapter
C8 OSC load capacitor C9 PLL loop filter capacitor
See PLL specification chapter
C10 PLL loop filter capacitor
C11 DC cutoff capacitor
Colpitts mode only, if recommended by
quartz manufacturer
R1 PLL loop filter resistor See PLL Specification chapter
R2 / R
B
PLL loop filter resistor
Pierce mode only
R3 / R
S
PLL loop filter resistor
Q1 Quartz
1
NOTES:
1. In 48LQFP and 52LQFP package versions, VDD2 is not available. Thus 470nF must be connected to VDD1.
73
Device User Guide — 9S12C128DGV1/D V01.05
VDDX
C6
VSSX
VDD1
C1
VSS1
VSSA
C3
VDDA
Note:
Oscillator in Colpitts mode.
VSSR
VDDR
C4
C9
R1
C5
C10
C11
VSSPLL VDDPLL
C8
C7
Q1
Figure 8-1 Recommended PCB Layout (48 LQFP)
74
Device User Guide — 9S12C128DGV1/D V01.05
)
NOTE: Oscillator in Colpitts mode.
C1
VDD1
VSS1
VSSR
VDDX
C4
C6
VSSX
VSSA
C3
VDDA
C9
R1
C5
C10
C8
C11
VSSPLL
VDDPLL
C7
Q1
VDDR
Figure 8-2 Recommended PCB Layout (52 LQFP)
75
Device User Guide — 9S12C128DGV1/D V01.05
NOTE: Oscillator in Colpitts mode.
VDDX
C6
)
VSSA
C1
VDD1
VSS1
VSSX
C3
VDDA
VSS2
C2
VDD2
VSSR
VDDR
C4
C9
R1
C5
C10
C11
VSSPLL VDDPLL
C8
C7
Q1
Figure 8-3 Recommended PCB Layout (80 QFP)
76
Device User Guide — 9S12C128DGV1/D V01.05
C1
VDD1
VSS1
VDDR
VSSR
VDDX
C4
C6
C9
R1
VSSX
C5
C10
VSSA
R2
Q1
C8
VSSPLL
VDDPLL
C3
VDDA
R3
C7
Figure 8-4 Recommended PCB Layout for 48 LQFP Pierce Oscillator
77
Device User Guide — 9S12C128DGV1/D V01.05
C1
VDD1
VSS1
VSSR
VDDR
VDDX
C4
C6
C9
R1
VSSX
C5
C10
VSSA
R2
Q1
C8
VSSPLL
VDDPLL
C3
VDDA
R3
C7
Figure 8-5 Recommended PCB Layout for 52 LQFP Pierce Oscillator
78
VDDX
Device User Guide — 9S12C128DGV1/D V01.05
C6
C1
VDD1
VSS1
VSSR
VDDR
VSSX
C4
C5
R2
VSSA
R3
C3
VDDA
VSS2
C2
VDD2
VSSPLL
Q1
C9
R1
C10
C8
VSSPLL
VDDPLL
C7
Figure 8-6 Recommended PCB Layout for 80QFP Pierce Oscillator
Section 9 Clock Reset Generator (CRG) Block Description
Consult the CRG Block User Guide for information about the Clock and Reset Generator module.
9.1 Device-specific information
The CRG is part of the IPBus domain.
79
Device User Guide — 9S12C128DGV1/D V01.05
The Low Voltage Reset feature uses the low voltage reset signal from the VREG module as an input to the CRG module. When the regulator output voltage supply to the internal chip logic falls below a specified threshold the LVR signal from the VREG module causes the CRG module to generate a reset. Consult the VREG Block User Guide for voltage level specifications.
9.1.1 XCLKS
The XCLKS input signal is active low (see 2.3.8 PE7 / NOACC / XCLKS — Port E I/O Pin 7).
Section 10 Oscillator (OSC) Block Description
Consult the OSC Block User Guide for information about the Oscillator module.
Section 11 Timer (TIM) Block Description
Consult the TIM_16B8C Block User Guide for information about the Timer module.
Section 12 Analog to Digital Converter (ATD) Block Description
12.1 Device-specific information
12.1.1 VRL (voltage reference low)
In the 48 and 52 pin package versions, the VRL pad is bonded internally to the VSSA pin. Consult the ATD_10B8C Block User Guide for further information about the A/D Converter module.
Section 13 Serial Communications Interface (SCI) Block Description
Consult the SCI Block User Guide for information about the Asynchronous Serial Communications Interface module.
Section 14 Serial Peripheral Interface (SPI) Block Description
Consult the SPI Block User Guide for information about the Serial Peripheral Interface module.
80
Device User Guide — 9S12C128DGV1/D V01.05
Consult the SPI Block User Guide for information about the Synchronous Serial Communications Interface module.
Section 15 Flash Block Description
Consult the FTS16K Block User Guide for information about the Flash module for the MC9S12GC16. Consult the FTS32K Block User Guide for information about the Flash module for the MC9S12C32 or
MC9S12GC32. Consult the FTS64K Block User Guide for information about the Flash module for the MC9S12C64 or
MC9S12GC64. Consult the FTS96K Block User Guide for information about the Flash module for the MC9S12C96. Consult the FTS128K Block User Guide for information about the Flash module for the MC9S12C128or
MC9S12GC128.
Section 16 RAM Block Description
This module supports single-cycle misaligned word accesses without wait states. The MC912GC16 features a single 1K byte RAM module. The MC9S12C32 and MC9S12GC32 feature a 2K byte RAM module. The MC9S12C64, MC9S12GC64, MC9S12C96, MC9S12C128 and MC9S12GC128 versions feature a
4K byte RAM module.
Section 17 Pulse Width Modulator (PWM) Block Description
Consult the PWM_8B6C Block User Guide for information about the Pulse Width Modulator Module.
Section 18 MSCAN Block Description
Consult the MSCAN Block User Guide for information about the Motorola Scalable CAN Module. This module is not available on the MC9GC-Family Members.
Section 19 Port Integration Module (PIM) Block Description
81
Device User Guide — 9S12C128DGV1/D V01.05
Consult the PIM_9C32 Block User Guide for information about the Port Integration Module for all versions of the MC9DS12GC and MC9S12C-Family.
The MODRR register within the PIM allows for mapping of PWM channels to PortT in the absence of PortP pins for the low pin count packages. For the 80QFP package option it is recommended not to use MODRR since this is intended to support PWM channel availability in low pin count packages. Note that when mapping PWM channels to PortT in an 80QFP option, the associated PWM channels are then mapped to both PortP and PortT.
82
Device User Guide — 9S12C128DGV1/D V01.05
Appendix A Electrical Characteristics
A.1 General
NOTE:
NOTE:
This supplement contains the most accurate electrical information for the MC9S12C-Family microcontrollers available at the time of publication. The information should be considered
PRELIMINARY and is subject to change.
This introduction is intended to give an overview on several common topics like power supply, current injection etc.
The electrical characteristics given in this section are preliminary and should be used as a guide only. Values cannot be guaranteed by Motorola and are subject to change without notice.
The parts are specified and tested over the 5V and 3.3V ranges. For the intermediate range, generally the electrical specifications for the 3.3V range apply, but the parts are not tested in production test in the intermediate range.
A.1.1 Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate.
NOTE:
This classification will be added at a later release of the specification
P: Those parameters are guaranteed during production testing on each individual device. C: Those parameters are achieved by the design characterization by measuring a statistically relevant
sample size across process variations. They are regularly verified by production monitors. T: Those parameters are achieved by designcharacterization on a smallsample size from typicaldevices.
All values shown in the typical column are within this category. D: Those parameters are derived mainly from simulations.
A.1.2 Power Supply
The MC9S12C-Family and MC9S12GC-Family members utilize several pins to supply power to the I/O ports, A/D converter, oscillator and PLL as well as the internal logic.
The VDDA, VSSA pair supplies the A/D converter. The VDDX, VSSX pair supplies the I/O pins The VDDR, VSSR pair supplies the internal voltage regulator. VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic. VDDPLL, VSSPLL supply the oscillator and the PLL.
83
Device User Guide — 9S12C128DGV1/D V01.05
VSS1 and VSS2 are internally connected by metal. VDD1 and VDD2 are internally connected by metal. VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD protection.
NOTE:
In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5 is used for either VSSA, VSSR and VSSX unless otherwise noted. IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR pins. VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and VSSPLL. IDD is used for the sum of the currents flowing into VDD1 and VDD2.
A.1.3 Pins
There are four groups of functional pins.
A.1.3.1 5V I/O pins
Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog inputs, BKGD pin and theRESETinputs.The internal structure of allthose pins is identical, howeversome of the functionality may be disabled. E.g. pull-up and pull-down resistors may be disabled permanently.
A.1.3.2 Analog Reference
This class is made up by the two VRH and VRL pins. In 48 and 52 pin package versions the VRL pad is bonded to the VSSA pin.
A.1.3.3 Oscillator
The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied by VDDPLL.
A.1.3.4 TEST
This pin is used for production testing only.
A.1.4 Current Injection
Power supply must maintain regulation within operating V operating maximum current conditions. If positive injection current (V injection current mayflow out of VDD5 and could result in external power supply going out of regulation. Insure external VDD5 load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption.
or VDD range during instantaneous and
DD5
in
>V
) is greater than I
DD5
DD5
, the
84
Device User Guide — 9S12C128DGV1/D V01.05
A.1.5 Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the device.
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either V
Table A-1 Absolute Maximum Ratings
Num Rating Symbol Min Max Unit
SS5
or V
DD5
).
1 I/O, Regulator and Analog Supply Voltage 2
Digital Logic Supply Voltage
3
PLL Supply Voltage
(1)
1
4 Voltage difference VDDX to VDDR and VDDA 5 Voltage difference VSSX to VSSR and VSSA 6 Digital I/O Input Voltage 7 Analog Reference 8 XFC, EXTAL, XTAL inputs 9 TEST input
Instantaneous Maximum Current
10
Single pin limit for all digital I/O pins Instantaneous Maximum Current
11
Single pin limit for XFC, EXTAL, XTAL Instantaneous Maximum Current
12
Single pin limit for TEST
4
2
3
13 Operating Temperature Range (packaged) 14 Operating Temperature Range (junction) 15 Storage Temperature Range
V
DD5
V
DD
V
DDPLL
VDDX
VSSX
V
IN
V
RH,VRL
V
ILV
V
TEST
I
D
I
DL
I
DT
T T
T
stg
-0.3 6.5 V
-0.3 3.0 V
-0.3 3.0 V
-0.3 0.3 V
-0.3 0.3 V
-0.3 6.5 V
-0.3 6.5 V
-0.3 3.0 V
-0.3 10.0 V
-25 +25 mA
-25 +25 mA
-0.25 0 mA
A
J
– 40 125 °C – 40 140 °C – 65 155 °C
NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when the device is powered from an external source.
2. All digital I/O pins are internally clamped to V
3. These pins are internally clamped to V
4. This pin is clamped low to V
SSX
SSPLL
, but not clamped high. This pin must be tied low in applications.
and V
SSX
and V
DDPLL
DDX
, V
SSR
and V
DDR
or V
SSA
and V
DDA
.
85
Device User Guide — 9S12C128DGV1/D V01.05
A.1.6 ESD Protection and Latch-up Immunity
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model.
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.
Table A-2 ESD and Latch-up Test Conditions
Model Description Symbol Value Unit
Series Resistance R1 1500 Ohm Storage Capacitance C 100 pF
Human Body
Number of Pulse per pin positive negative
Series Resistance R1 0 Ohm
-
­3 3
Storage Capacitance C 200 pF
Machine
Latch-up
Number of Pulse per pin positive negative
Minimum input voltage limit -2.5 V Maximum input voltage limit 7.5 V
-
­3 3
Table A-3 ESD and Latch-Up Protection Characteristics
Num C Rating Symbol Min Max Unit
1 C Human Body Model (HBM) 2 C Machine Model (MM) 3 C Charge Device Model (CDM)
Latch-up Current at 125°C
4C
5C
positive negative
Latch-up Current at 27°C positive negative
V
V
V
HBM
MM
CDM
I
LAT
I
LAT
2000 - V
200 - V 500 - V
+100
-100
+200
-200
-mA
-mA
A.1.7 Operating Conditions
This chapter describes the operating conditions of the devices. Unless otherwise noted those conditions apply to all the following data.
86
Device User Guide — 9S12C128DGV1/D V01.05
NOTE:
Insteadof specifying ambient temperature all parametersarespecified for the more meaningful silicon junction temperature. For power dissipation calculations refer to Section A.1.8 Power Dissipation and Thermal Characteristics.
Table A-4 Operating Conditions
Rating Symbol Min Typ Max Unit
I/O, Regulator and Analog Supply Voltage Digital Logic Supply Voltage PLL Supply Voltage
Voltage Difference VDDX to VDDA Voltage Difference VSSX to VSSR and VSSA Oscillator
Bus Frequency Operating Junction Temperature Range
NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when this regulator is disabled and the device is powered from an external source.
2. Some blocks e.g. ATD (conversion) and NVMs (program/erase) require higher bus frequencies for proper oper­ation.
(1)
1
V
V
V
DDPLL
VDDX
VSSX
f
f
bus
DD5
DD
osc
T
J
2.97 5 5.5 V
2.35 2.5 2.75 V
2.35 2.5 2.75 V
-0.1 0 0.1 V
-0.1 0 0.1 V
0.5 - 16 MHz
2
0.25 - 25 MHz
-40 - 140 °C
A.1.8 Power Dissipation and Thermal Characteristics
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum operating junction temperature is not exceeded. The average chip-junction temperature (T obtained from:
T T P
Θ
J A
D
JA
T
Junction Temperature, [°C]=
Ambient Temperature, [°C]=
Total Chip Power Dissipation, [W]=
Package Thermal Resistance, [°C/W]=
T
J
A
P
D
ΘJA•()+=
The total power dissipation can be calculated from:
P
INT
P
Chip Internal Power Dissipation, [W]=
D
P
+=
INTPIO
)in°C can be
J
87
Device User Guide — 9S12C128DGV1/D V01.05
Two cases with internal voltage regulator enabled and disabled must be considered:
1. Internal Voltage Regulator disabled
P
INT
Which is the sum of all output currents on I/O ports associated with VDDX and VDDM. For R
respectively
2. Internal voltage regulator enabled
I
DDR
additionally contains the current flowing into the external loads with output high.
is valid:
DSON
is the current shown in Table A-8 and not the overall current flowing into VDDR, which
R
DSON
I
I
DDVDD
P
R
DSON
V
------------------------------------ for outputs driven high;=
P
INT
P
DDPLLVDDPLL
R
IO
IO
DSON
i
V
OL
------------ for outputs driven low;= I
OL
DD5
I
DDRVDDR
VOH–
I
OH
I
R
i
DSON
I
=
DDAVDDA
=
+V
2
I
IO
i
+=
2
I
IO
i
DDA
+=
DDA
88
Device User Guide — 9S12C128DGV1/D V01.05
Which is the sum of all output currents on I/O ports associated with VDDX and VDDR.
Table A-5 Thermal Package Characteristics
Num C Rating Symbol Min Typ Max Unit
1T
2T
Thermal Resistance LQFP48, single layer PCB Thermal Resistance LQFP48, double sided PCB with
2 internal planes
3
2
3 T Junction to Board LQFP48 4 T Junction to Case LQFP48 5 T Junction to Package Top LQFP48 6 T Thermal Resistance LQFP52, single sided PCB
7T
Thermal Resistance LQFP52, double sided PCB with 2 internal planes
8 T Junction to Board LQFP52
9 T Junction to Case LQFP52 10 T Junction to Package Top LQFP52 11 T Thermal Resistance QFP 80, single sided PCB
12 T
Thermal Resistance QFP 80, double sided PCB with 2 internal planes
13 T Junction to Board QFP80 14 T Junction to Case QFP80 15 T Junction to Package Top QFP80
NOTES:
1. The values for thermal resistance are achieved by package simulations
2. PC Board according to EIA/JEDEC Standard 51-2
3. PC Board according to EIA/JEDEC Standard 51-7
θ
JA
θ
JA
θ
JB
θ
JC
Ψ
JT
θ
JA
θ
JA
θ
JB
θ
JC
Ψ
JT
θ
JA
θ
JA
θ
JB
θ
JC
Ψ
JT
1
--69
--53
30 20
4
--65
--49
31 17
3
--52
--42
28 18
4
o
C/W
o
C/W
o
C/W
o
C/W
o
C/W
o
C/W
o
C/W
o
C/W
o
C/W
o
C/W
o
C/W
o
C/W
o
C/W
o
C/W
o
C/W
A.1.9 I/O Characteristics
This section describes the characteristics of all I/O pins. All parameters are not always applicable, e.g. not all pins feature pull up/down resistances.
89
Device User Guide — 9S12C128DGV1/D V01.05
Table A-6 5V I/O Characteristics
Conditions are 4.5< VDDX <5.5V Termperature from -40˚C to +140˚C, unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P Input High Voltage
T Input High Voltage
2 P Input Low Voltage
T Input Low Voltage
3 C Input Hysteresis
V
V V
V V
HYS
IH
IH
0.65*V
DD5
--V
- - VDD5 + 0.3 V
IL
IL
--
VSS5 - 0.3 - - V
0.35*V
250 mV
DD5
Input Leakage Current (pins in high ohmic input
1
4P
5C
6P
7C
8P
9P
10 C
11 P
12 C
mode) Vin= V
DD5
or V
SS5
Output High Voltage (pins in output mode) Partial Drive IOH= –2mA
Output High Voltage (pins in output mode) Full Drive IOH = –10mA
Output Low Voltage (pins in output mode) Partial Drive IOL = +2mA
Output Low Voltage (pins in output mode) Full Drive IOL= +10mA
Internal Pull Up Device Current, tested at V
Max.
IL
Internal Pull Up Device Current, tested at V
IH
Min.
Internal Pull Down Device Current, tested at V
IH
Min.
Internal Pull Down Device Current, tested at V
Max.
IL
13 D Input Capacitance
Injection current
14 T
Single Pin limit
Total Device Limit. Sum of all injected currents 15 P 16 P
Port P, J Interrupt Input Pulse filtered
Port P, J Interrupt Input Pulse passed
2
3
3
I
V
V
V
V
I
PUL
I
PUH
I
PDH
I
PDL
C
I
ICS
I
ICP
t
PIGN
t
PVAL
in
OH
OH
OL
OL
in
–1 - 1 µA
V
– 0.8
DD5
V
– 0.8
DD5
--V
--V
- - 0.8 V
- - 0.8 V
- - -130 µA
-10 - - µA
- - 130 µA
10 - - µA
7-pF
-2.5
-25
- 2.5 25
3 µs
10 µs
mA
NOTES:
1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for each 8 C to 12 C in the temperature range from 50 C to 125 C.
2. Refer to Section A.1.4 Current Injection, for more details
3. Parameter only applies in STOP or Pseudo STOP mode.
V
90
Device User Guide — 9S12C128DGV1/D V01.05
Table A-7 3.3V I/O Characteristics
Conditions are VDDX=3.3V +/-10%, Termperature from -40˚C to +140˚C, unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P Input High Voltage
T Input High Voltage
2 P Input Low Voltage
T Input Low Voltage
3 C Input Hysteresis
V
V V
V V
HYS
0.65*V
IH
IH
IL
IL
DD5
- - VDD5 + 0.3 V
--
VSS5 - 0.3 - - V
--V
0.35*V
250 mV
DD5
Input Leakage Current (pins in high ohmic input
1
4P
5C
6P
7C
8P
9P
10 C
11 P
12 C
mode) Vin= V
DD5
or V
SS5
Output High Voltage (pins in output mode) Partial Drive IOH= –0.75mA
Output High Voltage (pins in output mode) Full Drive IOH= –4mA
Output Low Voltage (pins in output mode) Partial Drive IOL= +0.9mA
Output Low Voltage (pins in output mode) Full Drive IOL= +4.75mA
Internal Pull Up Device Current, tested at V
Max.
IL
Internal Pull Up Device Current, tested at V
IH
Min.
Internal Pull Down Device Current, tested at V
IH
Min.
Internal Pull Down Device Current, tested at V
Max.
IL
11 D Input Capacitance
2
12 T
Injection current Single Pin limit
Total Device Limit. Sum of all injected currents 13 P 14 P
Port P, J Interrupt Input Pulse filtered
Port P, J Interrupt Input Pulse passed
3
3
I
V
V
V
V
I
PUL
I
PUH
I
PDH
I
PDL
C
I
ICS
I
ICP
t
PIGN
t
PVAL
in
OH
OH
OL
OL
–1 - 1 µA
V
V
DD5
DD5
– 0.4
– 0.4
--V
--V
- - 0.4 V
- - 0.4 V
- - –60 µA
-6 - - µA
--60µA
6--µA
in
-2.5
-25
7-pF
- 2.5 25
3 µs
10 µs
NOTES:
1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for each 8 C to 12 C in the temperature range from 50 C to 125 C.
2. Refer to Section A.1.4 Current Injection, for more details
3. Parameter only applies in STOP or Pseudo STOP mode.
V
mA
91
Device User Guide — 9S12C128DGV1/D V01.05
A.1.10 Supply Currents
This section describes the current consumption characteristics of the device as well as the conditions for the measurements.
A.1.10.1 Measurement Conditions
All measurements are without output loads. Unless otherwise noted the currents are measured in single chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator.
A.1.10.2 Additional Remarks
In expanded modes the currents flowing in the system are highly dependent onthe load atthe address, data and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be given. A very good estimate is to take the single chip currents and add the currents due to the external loads.
92
Device User Guide — 9S12C128DGV1/D V01.05
Table A-8 Supply Current Characteristics for MC9S12C32
Conditions are shown in Table A-4 with internal regulator enabled unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P Run Supply Current Single Chip
Wait Supply current
2
P P
C
VDDR<4.9V, only RTI enabled
VDDR>4.9V, only RTI enabled
Pseudo Stop Current (RTI and COP disabled)
C P C
3
P
"C" Temp Option 100˚C
C P
"V" Temp Option 120˚C
C P
"M" Temp Option 140°C
Pseudo Stop Current (RTI and COP enabled)
C
4
C C C C
Stop Current
(3)
C P C
5
P
"C" Temp Option 100˚C
C P
"V" Temp Option 120˚C
C P
"M" Temp Option 140°C
All modules enabled
(2)
(2)(3)
-40°C 27°C 85°C
105°C 125°C
23
-40°C 27°C 85°C
105°C 125°C
-40°C 27°C 85°C
105°C 125°C
I
DD5
I
DDW
I
DDPS
I
DDPS
I
DDS
(1)
35 mA
3.5
30
8
mA
2.5
340 360
1
500 550
450
1450
µA 590 720
1900
780
1100
4500
540
1
700 750
µA 880
1300
10 20
80 100 140
1000
µA 170 300
1400 350 520
4000
NOTES:
1. STOP current measured in production test at increased junction temperature, hence for Temp Option "C" the test is carried out at 100˚C although the Temperature specification is 85˚C. Similarly for "v" and "M" options the temperature used in test lies 15˚C above the temperature option specification.
2. PLL off
3. At those low power dissipation levels T
= TA can be assumed
J
93
Device User Guide — 9S12C128DGV1/D V01.05
Table A-9 Supply Current Characteristics for MC9S12C64,MC9S12C96,MC9S12C128
Conditions are shown in Table A-4 with internal regulator enabled unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P Run Supply Current Single Chip,
Wait Supply current
2
P P C
VDDR<4.9V, only RTI enabled
VDDR>4.9V, only RTI enabled
Pseudo Stop Current (RTI and COP disabled)
C P C
6
P
"C" Temp Option 100˚C
C P
"V" Temp Option 120˚C
C P
"M" Temp Option 140°C
Pseudo Stop Current (RTI and COP enabled)
C
4
C C C C
Stop Current
(3)
C P C
5
P
"C" Temp Option 100˚C
C P
"V" Temp Option 120˚C
C P
"M" Temp Option 140°C
All modules enabled
(2)
(2)(3)
-40°C 27°C 85°C
105°C 125°C
23
-40°C 27°C 85°C
105°C 125°C
-40°C 27°C 85°C
105°C 125°C
I
DD5
I
DDW
I
DDPS
I
DDPS
I
DDS
(1)
45 mA
2.5
33
8
mA
3.5
190 200
1
300 400
250
1400
µA 450 600
1900
650
1000
4800
370
1
500 590
µA 780
1200
12 25
100 130 160
1200
µA 200 350
1700 400 600
4500
NOTES:
1. STOP current measured in production test at increased junction temperature, hence for Temp Option "C" the test is carried out at 100˚C although the Temperature specification is 85˚C. Similarly for "v" and "M" options the temperature used in test lies 15˚C above the temperature option specification.
2. PLL off
3. At those low power dissipation levels T
= TA can be assumed
J
94
Device User Guide — 9S12C128DGV1/D V01.05
Appendix B Electrical Specifications
B.1 Voltage Regulator Operating Conditions
Table B-1 Voltage Regulator Electrical Parameters
Nu
C Characteristic Symbol Min Typical Max Unit
m
1 P Input Voltages
Regulator Current
2C
3P
4P
5P
6P
Reduced Power Mode Shutdown Mode
Output Voltage Core
Full Performance Mode
Low Voltage Interrupt Assert Level C32, GC32 Assert Level C64, C96,C128
Deassert Level C32, GC32 Deassert Level C64, C96, C128
Low Voltage Reset Assert Level C32, GC32 Assert Level C64, C96, C128
Low Voltage Reset Deassert Level
1
GC64, GC128
GC64, GC128
2
GC64, GC128
(2)
V
VDDR, A
I
REG
V
DD
V
LVIA
V
LVIA
V
LVID
V
LVID
V
LVRA
V
LVRD
2.97 5.5 V
— —
2.35 2.5 2.75 V
4.30
4.10
4.42
4.25
2.25
2.25
——
20 12
4.53
4.37
4.65
4.52
2.3
2.35
50 40
4.77
4.66
4.89
4.77
—V
2.55 V
µA µA
V V V V
7C
NOTES:
1. Monitors V voltage.
2. Monitors V
3. Monitors V
NOTE:
Power-on Reset
Assert Level Deassert Level
, active only in Full Performance Mode. Indicates I/O & ADC performance degradation due to low supply
DDA
, active only in Full Performance Mode. MCU is monitored by the POR in RPM (see Figure B-1)
DD
. Active in all modes.
DD
3
V
PORA
V
PORD
0.97 —
— —
2.05
The electrical characteristics given in this section are preliminary and should be used as a guide only. Values in this section cannot be guaranteed by Motorola and are subject to change without notice.
V V
95
Device User Guide — 9S12C128DGV1/D V01.05
B.2 Chip Power-up and LVI/LVR graphical explanation
Voltage regulator sub modules LVI (low voltage interrupt), POR (power-on reset) and LVR (low voltage reset) handle chip power-up or drops of the supply voltage. Their function is described in Figure B-1.
Figure B-1 Voltage Regulator - Chip Power-up and Voltage Drops (not scaled)
V
PORD
V
LVI
POR
V
V
V
V
LVID
LVIA
LVRD
LVRA
V
DDA
V
DD
t
LVI enabled LVI disabled due to LVR
LVR
B.3 Output Loads
B.3.1 Resistive Loads
The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits allows no external DC loads.
96
Device User Guide — 9S12C128DGV1/D V01.05
B.3.2 Capacitive Loads
The capacitive loads are specified in Table B-2. Ceramic capacitors with X7R dielectricum are required.
Table B-2 Voltage Regulator - Capacitive Loads
Num Characteristic Symbol Min Typical Max Unit
1 VDD external capacitive load C 2 VDDPLL external capacitive load C
DDext
DDPLLext
400 440 12000 nF
90 220 5000 nF
97
Device User Guide — 9S12C128DGV1/D V01.05
98
Device User Guide — 9S12C128DGV1/D V01.05
B.4 ATD Characteristics
This section describes the characteristics of the analog to digital converter. VRL is not available as a separate pin in the 48 and 52 pin versions. In this case the internal VRL pad is
bonded to the VSSA pin. The ATD is specified and tested for both the 3.3V and 5V range. For ranges between 3.3V and 5V the
ATD accuracy is generally the same as in the 3.3V range but is not tested in this range in production test.
B.4.1 ATD Operating Characteristics In 5V Range
The Table B-3 shows conditions under which the ATD operates. The following constraints exist to obtain full-scale, full range results:
VSSA VRLVINVRHVDDA. This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped.
Table B-3 ATD Operating Characteristics
Conditions are shown in Table A-4 unless otherwise noted. Supply Voltage 5V-10% <= V
<=5V+10%
DDA
Num C Rating Symbol Min Typ Max Unit
Reference Potential
1D
2C 3 D ATD Clock Frequency
4D
5D
5D 6 P Reference Supply current
NOTES:
1. Full accuracy is not guaranteed when differential voltage is less than 4.75V
2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks.
Differential Reference Voltage
ATD 10-Bit Conversion Period
Conv, Time at 2.0MHz ATD Clock f
ATD 8-Bit Conversion Period
Conv, Time at 2.0MHz ATD Clock f
Recovery Time (V
=5.0 Volts)
DDA
1
Clock Cycles
Clock Cycles
Low
High
ATDCLK
ATDCLK
VRL VRH
VSSA
VDDA/2
VDDA/2
VDDA
VRH-VRL 4.75 5.0 5.25 V
2
2
f
ATDCLK
N
CONV10
T
CONV10
N
CONV10
T
CONV10
t
REC
I
REF
0.5 2.0 MHz
14
7
12
6
28 14
26 13
20 µs
0.375 mA
V V
Cycles
µs
Cycles
µs
B.4.2 ATD Operating Characteristics In 3.3V Range
The Table B-3 shows conditions under which the ATD operates. The following constraints exist to obtain full-scale, full range results:
V
VRL≤ VIN≤ VRH≤ V
SSA
DDA
. This constraint exists since the sample buffer amplifier can not drive
99
Device User Guide — 9S12C128DGV1/D V01.05
beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped
Table B-4 ATD Operating Characteristics
Conditions are shown in Table A-4 unless otherwise noted; Supply Voltage 3.3V-10% <= V
<= 3.3V+10%
DDA
Num C Rating Symbol Min Typ Max Unit
Reference Potential
1D
2 C Differential Reference Voltage 3 D ATD Clock Frequency
ATD 10-Bit Conversion Period
4D
Conv, Time at 2.0MHz ATD Clock f
ATD 8-Bit Conversion Period
5D
Conv, Time at 2.0MHz ATD Clock f
6D 7 P Reference Supply current
NOTES:
1. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
Recovery Time (V
period of 16 ATD clocks.
=3.3 Volts)
DDA
Clock Cycles
Clock Cycles
Low
High
ATDCLK
ATDCLK
(1)
1
V
RL
V
RH
VRH-V
f
ATDCLK
N
CONV10
T
CONV10
N
CONV8
T
CONV8
t
REC
I
REF
RL
V
V
DDA
SSA
/2
V
DDA
V
/2
DDA
3.0 3.3 3.6 V
0.5 2.0 MHz
14
7
12
6
28 14
26 13
Cycles
Cycles
20 µs
0.250 mA
V V
µs
µs
B.4.3 Factors influencing accuracy
Three factors - source resistance, source capacitance and current injection - have an influenceon the accuracy of the ATD.
B.4.3.1 Source Resistance:
Due to the input pin leakage current as specified in Table A-6 in conjunction with the source resistance there will be a voltage drop from the signal source to the ATD input. The maximum source resistance R specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or operatingconditions are less than worst case orleakage-inducederror is acceptable, larger values of source resistance is allowable.
B.4.3.2 Source capacitance
When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input voltage 1LSB, then the external filter capacitor, C
1024 * (C
f
INS
- C
INN
).
S
100
Loading...