
SEMICONDUCTOR TECHNICAL DATA
1
REV 0
Motorola, Inc. 1995
10/95
$ # !&
$#! %#
÷
÷ #"
High–Performance Silicon–Gate CMOS
The MC54/74HC390A is identical in pinout to the LS390. The device
inputs are compatible with standard CMOS outputs; with pullup resistors,
they are compatible with LSTTL outputs.
This device consists of two independent 4–bit counters, each composed
of a divide–by–two and a divide–by–five section. The divide–by–two and
divide–by–five counters have separate clock inputs, and can be cascaded to
implement various combinations of ÷ 2 and/or ÷ 5 up to a ÷ 100 counter.
Flip–flops internal to the counters are triggered by high–to–low transitions
of the clock input. A separate, asynchronous reset is provided for each 4–bit
counter. State changes o f the Q outputs do n ot occur simultaneously
because of internal ripple delays. Therefore, decoded output signals are
subject to decoding spikes and should not be used as clocks or strobes
except when gated with the Clock of the HC390A.
• Output Drive Capability: 10 LSTTL Loads
• Outputs Directly Interface to CMOS, NMOS, and TTL
• Operating Voltage Range: 2 to 6 V
• Low Input Current: 1 µA
• High Noise Immunity Characteristic of CMOS Devices
• In Compliance with the Requirements Defined by JEDEC Standard
No 7A
• Chip Complexity: 244 FETs or 61 Equivalent Gates
LOGIC DIAGRAM
Q
A
Q
B
Q
C
Q
D
1, 15
4, 12
2, 14
3, 13
5, 11
6, 10
7, 9
PIN 16 = V
CC
PIN 8 = GND
CLOCK A
RESET
CLOCK B
÷
2
COUNTER
÷
5
COUNTER
This document contains information on a product under development. Motorola reserves the right
to change or discontinue this product without notice.
PIN ASSIGNMENT
13
14
15
16
9
10
11
125
4
3
2
1
8
7
6
CLOCK B
b
Q
Ab
RESET b
CLOCK A
b
V
CC
Q
Db
Q
Cb
Q
Bb
CLOCK B
a
Q
Aa
RESET a
CLOCK A
a
GND
Q
Da
Q
Ca
Q
Ba
FUNCTION TABLE
Clock
A B Reset Action
X X H Reset
÷ 2 and ÷ 5
X L Increment
÷ 2
X L Increment
÷ 5
D SUFFIX
SOIC PACKAGE
CASE 751B–05
N SUFFIX
PLASTIC PACKAGE
CASE 648–08
ORDERING INFORMATION
MC54HCXXXAJ
MC74HCXXXAN
MC74HCXXXAD
MC74HCXXXADT
Ceramic
Plastic
SOIC
TSSOP
1
16
1
16
J SUFFIX
CERAMIC PACKAGE
CASE 620–10
1
16
1
16
DT SUFFIX
TSSOP PACKAGE
CASE 948F–01

MC54/74HC390A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
2
DC Supply Voltage (Referenced to GND)
DC Input Voltage (Referenced to GND)
DC Output Voltage (Referenced to GND)
DC Input Current, per Pin
DC Output Current, per Pin
DC Supply Current, VCC and GND Pins
Power Dissipation in Still Air,Plastic or Ceramic DIP†
SOIC Package†
TSSOP Package†
Lead Temperature, 1 mm from Case for 10 Seconds
Plastic DIP, SOIC or TSSOP Package
(Ceramic DIP)
_
C
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
Ceramic DIP: – 10 mW/_C from 100_ to 125_C
SOIC Package: – 7 mW/_C from 65_ to 125_C
TSSOP Package: – 6.1 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
Operating Temperature, All Package Types
Input Rise and Fall Time VCC = 2.0 V
(Figure 1) VCC = 3.0 V
VCC = 4.5 V
VCC = 6.0 V
ns
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Minimum High–Level Input
Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
Maximum Low–Level Input
Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
Minimum High–Level Output
Voltage
Vin = VIH or V
IL
|I
out
| v 20 µA
Vin = VIH or VIL|I
out
| v 2.4 mA
|I
out
| v 4.0 mA
|I
out
| v 5.2 mA
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
V
out
should be constrained to the
range GND v (Vin or V
out
) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.

MC54/74HC390A
High–Speed CMOS Logic Data
DL129 — Rev 6
3 MOTOROLA
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Maximum Low–Level Output
Voltage
Vin = VIH or V
IL
|I
out
| v 20 µA
Vin = VIH or VIL|I
out
| v 2.4 mA
|I
out
| v 4.0 mA
|I
out
| v 5.2 mA
Maximum Input Leakage Current
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
I
out
= 0 µA
µA
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
AC ELECTRICAL CHARACTERISTICS (C
L
= 50 pF, Input tf = tf = 6 ns)
Maximum Clock Frequency (50% Duty Cycle)
(Figures 1 and 3)
Maximum Propagation Delay, Clock A to QA
(Figures 1 and 3)
Maximum Propagation Delay, Clock A to QC
(QA connected to Clock B)
(Figures 1 and 3)
Maximum Propagation Delay, Clock B to QB
(Figures 1 and 3)
Maximum Propagation Delay, Clock B to QC
(Figures 1 and 3)
Maximum Propagation Delay, Clock B to QD
(Figures 1 and 3)
Maximum Propagation Delay, Reset to any Q
(Figures 2 and 3)

MC54/74HC390A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
4
AC ELECTRICAL CHARACTERISTICS (C
L
= 50 pF, Input tf = tf = 6 ns)
Maximum Output Transition Time, Any Output
(Figures 1 and 3)
Maximum Input Capacitance
pF
NOTES:
1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
2. Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
C
PD
Power Dissipation Capacitance (Per Counter)*
*Used to determine the no–load dynamic power consumption: PD = CPD V
CC
2
f + ICC VCC. For load considerations, see Chapter 2 of the
Motorola High–Speed CMOS Data Book (DL129/D).
TIMING REQUIREMENTS (Input t
r
= tf = 6 ns)
Minimum Recovery Time, Reset Inactive to Clock A or Clock B
(Figure 2)
Minimum Pulse Width, Clock A, Clock B
(Figure 1)
Minimum Pulse Width, Reset
(Figure 2)
Maximum Input Rise and Fall Times
(Figure 1)
ns
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).

MC54/74HC390A
High–Speed CMOS Logic Data
DL129 — Rev 6
5 MOTOROLA
PIN DESCRIPTIONS
INPUTS
Clock A (Pins 1, 15) and Clock B (Pins 4, 15)
Clock A is the clock input to the ÷ 2 counter; Clock B is the
clock input to the ÷ 5 counter. The internal flip–flops are
toggled by high–to–low transitions of the clock input.
CONTROL INPUTS
Reset (Pins 2, 14)
Asynchronous reset. A high at the Reset input prevents
counting, resets the internal flip–flops, and forces QA through
QD low.
OUTPUTS
QA (Pins 3, 13)
Output of the ÷ 2 counter.
QB, QC, QD (Pins 5, 6, 7, 9, 10, 11)
Outputs of the ÷ 5 counter. QD is the most significant bit.
QA is the least significant bit when the counter is connected
for BCD output as in Figure 4. QB is the least significant bit
when the counter is operating in the bi–quinary mode as in
Figure 5.
SWITCHING WAVEFORMS
Q
t
r
t
f
t
PLH
t
PHL
t
TLH
t
THL
V
CC
GND
CLOCK
10%
50%
90%
1/f
max
t
w
t
rec
RESET
Figure 1. Figure 2.
V
CC
GND
V
CC
GND
10%
50%
90%
Q
CLOCK
50%
50%
50%
t
PHL
t
w
10%
TEST CIRCUIT
*Includes all probe and jig capacitance
CL*
TEST POINT
DEVICE
UNDER
TEST
OUTPUT
Figure 3.

MC54/74HC390A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
6
C
D
R
Q
Q
0 1 2 3 4 5 6 7 8 9
EXPANDED LOGIC DIAGRAM
TIMING DIAGRAM
(QA Connected to Clock B)
Q
A
Q
B
Q
C
Q
D
CLOCK A
RESET
Q
A
Q
B
Q
C
Q
D
CLOCK A
CLOCK B
RESET
3, 13
5, 11
6, 10
7, 9
1, 15
4, 12
2, 14
C
D
R
Q
Q
C
D
R
Q
Q
C
DRQ
0 1 2 3 4 5 6

MC54/74HC390A
High–Speed CMOS Logic Data
DL129 — Rev 6
7 MOTOROLA
APPLICATIONS INFORMATION
Each half of the MC54/74HC390A has independent ÷ 2
and ÷ 5 sections (except for the Reset function). The ÷ 2 and
÷ 5 counters can be connected to give BCD or bi–quinary
(2–5) count sequences. If Output QA is connected to the
Clock B input (Figure 4), a decade divider with BCD output is
obtained. The function table for the BCD count sequence is
given in Table 1.
To obtain a bi–quinary count sequence, the input signals
connected to the Clock B input, and output QD is connected
to the Clock A input (Figure 5). QA provides a 50% duty cycle
output. T he bi–quinary count sequence function t able is
given in Table 2.
Table 1. BCD Count Sequence*
Q
D
Q
C
Q
B
Q
A
0 L L L L
1 L L L H
2 L L H L
3 L L H H
4 L H L L
5 L H L H
6 L H H L
7 L H H H
8 H L L L
9 H L L H
*QA connected to Clock B input.
Table 2. Bi–Quinary Count Sequence**
Q
A
Q
D
Q
C
Q
B
0 L L L L
1 L L L H
2 L L H L
3 L L H H
4 L H L L
8 H L L L
9 H L L H
10 H L H L
11 H L H H
12 H H L L
**QD connected to Clock A input.
CONNECTION DIAGRAMS
1, 15
÷
2
COUNTER
CLOCK A
RESET
Figure 4. BCD Count Figure 5. Bi-Quinary Count
÷
2
COUNTER
÷
5
COUNTER
÷
5
COUNTER
CLOCK B
CLOCK A
RESET
CLOCK B
1, 15
Q
A
Q
B
Q
C
Q
D
3, 13
5, 11
6, 10
7, 9
4, 12
2, 14
Q
A
Q
B
Q
C
Q
D
3, 13
5, 11
6, 10
7, 9
4, 12
2, 14

MC54/74HC390A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
8
OUTLINE DIMENSIONS
J SUFFIX
CERAMIC PACKAGE
CASE 620–10
ISSUE V
N SUFFIX
PLASTIC PACKAGE
CASE 648–08
ISSUE R
19.05
6.10
—
0.39
1.40
0.21
3.18
19.93
7.49
5.08
0.50
1.65
0.38
4.31
0
°
0.51
15
°
1.01
1.27 BSC
2.54 BSC
7.62 BSC
MIN MINMAX MAX
INCHES MILLIMETERS
DIM
0.750
0.240
—
0.015
0.055
0.008
0.125
0.785
0.295
0.200
0.020
0.065
0.015
0.170
0.050 BSC
0.100 BSC
0.300 BSC
A
B
C
D
E
F
G
J
K
L
M
N
0
°
0.020
15
°
0.040
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
4. DIM F MAY NARROW TO 0.76 (0.030) WHERE
THE LEAD ENTERS THE CERAMIC BODY.
1 8
916
–A
–
–B
–
C
K
N
G
E
F
D 16 PL
–T
–
SEATING
PLANE
M
L
J 16 PL
0.25 (0.010) T A
M
S
0.25 (0.010) T B
M
S
MIN MINMAX MAX
INCHES MILLIMETERS
DIM
A
B
C
D
F
G
H
J
K
L
M
S
18.80
6.35
3.69
0.39
1.02
0.21
2.80
7.50
0
°
0.51
19.55
6.85
4.44
0.53
1.77
0.38
3.30
7.74
10
°
1.01
0.740
0.250
0.145
0.015
0.040
0.008
0.110
0.295
0
°
0.020
0.770
0.270
0.175
0.021
0.070
0.015
0.130
0.305
10
°
0.040
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
2.54 BSC
1.27 BSC
0.100 BSC
0.050 BSC
–A
–
B
1 8
916
F
H
G
D
16 PL
S
C
–T
–
SEATING
PLANE
K
J
M
L
T A0.25 (0.010)
M M
0.25 (0.010) T B A
M
S S
MIN MINMAX MAX
MILLIMETERS INCHES
DIM
A
B
C
D
F
G
J
K
M
P
R
9.80
3.80
1.35
0.35
0.40
0.19
0.10
0
°
5.80
0.25
10.00
4.00
1.75
0.49
1.25
0.25
0.25
7
°
6.20
0.50
0.386
0.150
0.054
0.014
0.016
0.008
0.004
0
°
0.229
0.010
0.393
0.157
0.068
0.019
0.049
0.009
0.009
7
°
0.244
0.019
1.27 BSC 0.050 BSC
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
1
8
916
–A
–
–B
–
D 16 PL
K
C
G
–T
–
SEATING
PLANE
R X 45°
M
J
F
P 8 PL
0.25 (0.010) B
M M
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B–05
ISSUE J

MC54/74HC390A
High–Speed CMOS Logic Data
DL129 — Rev 6
9 MOTOROLA
OUTLINE DIMENSIONS
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948F–01
ISSUE O
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 4.90 5.10 0.193 0.200
B 4.30 4.50 0.169 0.177
C ––– 1.20 ––– 0.047
D 0.05 0.15 0.002 0.006
F 0.50 0.75 0.020 0.030
G 0.65 BSC 0.026 BSC
H 0.18 0.28 0.007 0.011
J 0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K 0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L 6.40 BSC 0.252 BSC
M 0 8 0 8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH OR
GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER
SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT
DATUM PLANE –W–.
_ _ _ _
SECTION N–N
SEATING
PLANE
IDENT.
PIN 1
1
8
16
9
DETAIL E
J
J1
B
C
D
A
K
K1
H
G
DETAIL E
F
M
L
2X L/2
–U–
S
U0.15 (0.006) T
S
U0.15 (0.006) T
S
U
M
0.10 (0.004) V
S
T
0.10 (0.004)
–T–
–V–
–W–
0.25 (0.010)
16X REFK
N
N
How to reach us:
USA/EUROPE: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters can and do vary in different
applications. All operating parameters, including “T ypicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
MC54/74HC390A/D
*MC54/74HC390A/D*
◊
CODELINE