Datasheet MC74HC390ADT Datasheet (Motorola)


SEMICONDUCTOR TECHNICAL DATA
1
REV 0
Motorola, Inc. 1995
10/95
 
÷
 ÷ #"
High–Performance Silicon–Gate CMOS
The MC54/74HC390A is identical in pinout to the LS390. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.
This device consists of two independent 4–bit counters, each composed of a divide–by–two and a divide–by–five section. The divide–by–two and divide–by–five counters have separate clock inputs, and can be cascaded to implement various combinations of ÷ 2 and/or ÷ 5 up to a ÷ 100 counter.
Flip–flops internal to the counters are triggered by high–to–low transitions of the clock input. A separate, asynchronous reset is provided for each 4–bit counter. State changes o f the Q outputs do n ot occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used as clocks or strobes except when gated with the Clock of the HC390A.
Output Drive Capability: 10 LSTTL Loads
Outputs Directly Interface to CMOS, NMOS, and TTL
Operating Voltage Range: 2 to 6 V
Low Input Current: 1 µA
High Noise Immunity Characteristic of CMOS Devices
In Compliance with the Requirements Defined by JEDEC Standard
No 7A
Chip Complexity: 244 FETs or 61 Equivalent Gates
LOGIC DIAGRAM
Q
A
Q
B
Q
C
Q
D
1, 15
4, 12
2, 14
3, 13
5, 11 6, 10
7, 9
PIN 16 = V
CC
PIN 8 = GND
CLOCK A
RESET
CLOCK B
÷
2
COUNTER
÷
5
COUNTER
This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

PIN ASSIGNMENT
13
14
15
16
9
10
11
125
4
3
2
1
8
7
6
CLOCK B
b
Q
Ab
RESET b
CLOCK A
b
V
CC
Q
Db
Q
Cb
Q
Bb
CLOCK B
a
Q
Aa
RESET a
CLOCK A
a
GND
Q
Da
Q
Ca
Q
Ba
FUNCTION TABLE
Clock
A B Reset Action
X X H Reset
÷ 2 and ÷ 5
X L Increment
÷ 2
X L Increment
÷ 5
D SUFFIX
SOIC PACKAGE
CASE 751B–05
N SUFFIX
PLASTIC PACKAGE
CASE 648–08
ORDERING INFORMATION
MC54HCXXXAJ MC74HCXXXAN MC74HCXXXAD MC74HCXXXADT
Ceramic Plastic SOIC TSSOP
1
16
1
16
J SUFFIX
CERAMIC PACKAGE
CASE 620–10
1
16
1
16
DT SUFFIX
TSSOP PACKAGE
CASE 948F–01
MC54/74HC390A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
2
MAXIMUM RATINGS*
Symbol
Parameter
Value
Unit
V
CC
DC Supply Voltage (Referenced to GND)
– 0.5 to + 7.0
V
V
in
DC Input Voltage (Referenced to GND)
– 0.5 to VCC + 0.5
V
V
out
DC Output Voltage (Referenced to GND)
– 0.5 to VCC + 0.5
V
I
in
DC Input Current, per Pin
± 20
mA
I
out
DC Output Current, per Pin
± 25
mA
I
CC
DC Supply Current, VCC and GND Pins
± 50
mA
P
D
Power Dissipation in Still Air,Plastic or Ceramic DIP†
SOIC Package†
TSSOP Package†
750 500 450
mW
T
stg
Storage Temperature
– 65 to + 150
_
C
T
L
Lead Temperature, 1 mm from Case for 10 Seconds
Plastic DIP, SOIC or TSSOP Package
(Ceramic DIP)
260 300
_
C
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
Ceramic DIP: – 10 mW/_C from 100_ to 125_C SOIC Package: – 7 mW/_C from 65_ to 125_C TSSOP Package: – 6.1 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Max
Unit
V
CC
DC Supply Voltage (Referenced to GND)
2.0
6.0
V
Vin, V
out
DC Input Voltage, Output Voltage (Referenced to GND)
0
V
CC
V
T
A
Operating Temperature, All Package Types
– 55
+ 125
_
C
tr, t
f
Input Rise and Fall Time VCC = 2.0 V
(Figure 1) VCC = 3.0 V
VCC = 4.5 V VCC = 6.0 V
0 0 0 0
1000
600 500 400
ns
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Guaranteed Limit
Symbol
Parameter
Test Conditions
V
CC V
– 55 to
25_C
v
85_Cv 125_C
Unit
V
IH
Minimum High–Level Input Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
2.0
3.0
4.5
6.0
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
V
V
IL
Maximum Low–Level Input Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
2.0
3.0
4.5
6.0
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
V
V
OH
Minimum High–Level Output Voltage
Vin = VIH or V
IL
|I
out
| v 20 µA
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
V
Vin = VIH or VIL|I
out
| v 2.4 mA
|I
out
| v 4.0 mA
|I
out
| v 5.2 mA
3.0
4.5
6.0
2.48
3.98
5.48
2.34
3.84
5.34
2.20
3.70
5.20
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance cir­cuit. For proper operation, Vin and V
out
should be constrained to the
range GND v (Vin or V
out
) v VCC.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open.
MC54/74HC390A
High–Speed CMOS Logic Data DL129 — Rev 6
3 MOTOROLA
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Unit
Guaranteed Limit
V
CC
V
Test Conditions
Parameter
Symbol
Unit
v
125_C
v
85_C
– 55 to
25_C
V
CC
V
Test Conditions
Parameter
Symbol
V
OL
Maximum Low–Level Output Voltage
Vin = VIH or V
IL
|I
out
| v 20 µA
2.0
4.5
6.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
V
Vin = VIH or VIL|I
out
| v 2.4 mA
|I
out
| v 4.0 mA
|I
out
| v 5.2 mA
3.0
4.5
6.0
0.26
0.26
0.26
0.33
0.33
0.33
0.40
0.40
0.40
I
in
Maximum Input Leakage Current
Vin = VCC or GND
6.0
± 0.1
± 1.0
± 1.0
µA
I
CC
Maximum Quiescent Supply Current (per Package)
Vin = VCC or GND I
out
= 0 µA
6.0
4
40
160
µA
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
AC ELECTRICAL CHARACTERISTICS (C
L
= 50 pF, Input tf = tf = 6 ns)
Guaranteed Limit
Symbol
Parameter
V
CC V
– 55 to
25_C
v
85_Cv 125_C
Unit
f
max
Maximum Clock Frequency (50% Duty Cycle)
(Figures 1 and 3)
2.0
3.0
4.5
6.0
10 15 30 50
9 14 28 45
8 12 25 40
MHz
t
PLH
,
t
PHL
Maximum Propagation Delay, Clock A to QA
(Figures 1 and 3)
2.0
3.0
4.5
6.0
70 40 20 16
80 45 25 21
90 50 30 27
ns
t
PLH
,
t
PHL
Maximum Propagation Delay, Clock A to QC (QA connected to Clock B)
(Figures 1 and 3)
2.0
3.0
4.5
6.0
200 160
35 30
250 185
45 40
300 210
60 50
ns
t
PLH
,
t
PHL
Maximum Propagation Delay, Clock B to QB
(Figures 1 and 3)
2.0
3.0
4.5
6.0
70 40 20 16
80 45 25 21
90 50 30 27
ns
t
PLH
,
t
PHL
Maximum Propagation Delay, Clock B to QC
(Figures 1 and 3)
2.0
3.0
4.5
6.0
90 56 32 25
105
70 38 31
180 100
45 40
ns
t
PLH
,
t
PHL
Maximum Propagation Delay, Clock B to QD
(Figures 1 and 3)
2.0
3.0
4.5
6.0
70 40 20 16
80 45 25 21
90 50 30 27
ns
t
PHL
Maximum Propagation Delay, Reset to any Q
(Figures 2 and 3)
2.0
3.0
4.5
6.0
80 48 28 21
95 65 32 25
110
75 40 30
ns
MC54/74HC390A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
4
AC ELECTRICAL CHARACTERISTICS (C
L
= 50 pF, Input tf = tf = 6 ns)
Unit
Guaranteed Limit
V
CC
V
Parameter
Symbol
Unit
v
125_C
v
85_C
– 55 to
25_C
V
CC
V
Parameter
Symbol
t
TLH
,
t
THL
Maximum Output Transition Time, Any Output
(Figures 1 and 3)
2.0
3.0
4.5
6.0
75 27 15 13
95 32 19 15
110
36 22 19
ns
C
in
Maximum Input Capacitance
10
10
10
pF
NOTES:
1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
2. Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
C
PD
Power Dissipation Capacitance (Per Counter)*
35
pF
*Used to determine the no–load dynamic power consumption: PD = CPD V
CC
2
f + ICC VCC. For load considerations, see Chapter 2 of the
Motorola High–Speed CMOS Data Book (DL129/D).
TIMING REQUIREMENTS (Input t
r
= tf = 6 ns)
Guaranteed Limit
Symbol
Parameter
V
CC V
– 55 to
25_C
v
85_Cv 125_C
Unit
t
rec
Minimum Recovery Time, Reset Inactive to Clock A or Clock B
(Figure 2)
2.0
3.0
4.5
6.0
25 15
5 5
30 20
6 5
40 30 10
7
ns
t
w
Minimum Pulse Width, Clock A, Clock B
(Figure 1)
2.0
3.0
4.5
6.0
75 27 15 13
95 32 19 15
110
36 22 19
ns
t
w
Minimum Pulse Width, Reset
(Figure 2)
2.0
3.0
4.5
6.0
75 27 15 13
95 32 19 15
110
36 22 19
ns
tf, t
f
Maximum Input Rise and Fall Times
(Figure 1)
2.0
3.0
4.5
6.0
1000
800 500 400
1000
800 500 400
1000
800 500 400
ns
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
MC54/74HC390A
High–Speed CMOS Logic Data DL129 — Rev 6
5 MOTOROLA
PIN DESCRIPTIONS
INPUTS Clock A (Pins 1, 15) and Clock B (Pins 4, 15)
Clock A is the clock input to the ÷ 2 counter; Clock B is the clock input to the ÷ 5 counter. The internal flip–flops are toggled by high–to–low transitions of the clock input.
CONTROL INPUTS Reset (Pins 2, 14)
Asynchronous reset. A high at the Reset input prevents counting, resets the internal flip–flops, and forces QA through QD low.
OUTPUTS QA (Pins 3, 13)
Output of the ÷ 2 counter.
QB, QC, QD (Pins 5, 6, 7, 9, 10, 11)
Outputs of the ÷ 5 counter. QD is the most significant bit. QA is the least significant bit when the counter is connected for BCD output as in Figure 4. QB is the least significant bit when the counter is operating in the bi–quinary mode as in Figure 5.
SWITCHING WAVEFORMS
Q
t
r
t
f
t
PLH
t
PHL
t
TLH
t
THL
V
CC
GND
CLOCK
10%
50%
90%
1/f
max
t
w
t
rec
RESET
Figure 1. Figure 2.
V
CC
GND
V
CC
GND
10%
50%
90%
Q
CLOCK
50%
50%
50%
t
PHL
t
w
10%
TEST CIRCUIT
*Includes all probe and jig capacitance
CL*
TEST POINT
DEVICE
UNDER
TEST
OUTPUT
Figure 3.
MC54/74HC390A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
6
C
D
R
Q Q
0 1 2 3 4 5 6 7 8 9
EXPANDED LOGIC DIAGRAM
TIMING DIAGRAM
(QA Connected to Clock B)
Q
A
Q
B
Q
C
Q
D
CLOCK A
RESET
Q
A
Q
B
Q
C
Q
D
CLOCK A
CLOCK B
RESET
3, 13
5, 11
6, 10
7, 9
1, 15
4, 12
2, 14
C
D
R
Q Q
C
D
R
Q Q
C
DRQ
0 1 2 3 4 5 6
MC54/74HC390A
High–Speed CMOS Logic Data DL129 — Rev 6
7 MOTOROLA
APPLICATIONS INFORMATION
Each half of the MC54/74HC390A has independent ÷ 2 and ÷ 5 sections (except for the Reset function). The ÷ 2 and ÷ 5 counters can be connected to give BCD or bi–quinary (2–5) count sequences. If Output QA is connected to the Clock B input (Figure 4), a decade divider with BCD output is obtained. The function table for the BCD count sequence is given in Table 1.
To obtain a bi–quinary count sequence, the input signals connected to the Clock B input, and output QD is connected to the Clock A input (Figure 5). QA provides a 50% duty cycle output. T he bi–quinary count sequence function t able is given in Table 2.
Table 1. BCD Count Sequence*
Output
Count
Q
D
Q
C
Q
B
Q
A
0 L L L L 1 L L L H 2 L L H L 3 L L H H 4 L H L L 5 L H L H 6 L H H L 7 L H H H 8 H L L L 9 H L L H
*QA connected to Clock B input.
Table 2. Bi–Quinary Count Sequence**
Output
Count
Q
A
Q
D
Q
C
Q
B
0 L L L L 1 L L L H 2 L L H L 3 L L H H 4 L H L L 8 H L L L
9 H L L H 10 H L H L 11 H L H H 12 H H L L
**QD connected to Clock A input.
CONNECTION DIAGRAMS
1, 15
÷
2
COUNTER
CLOCK A
RESET
Figure 4. BCD Count Figure 5. Bi-Quinary Count
÷
2
COUNTER
÷
5
COUNTER
÷
5
COUNTER
CLOCK B
CLOCK A
RESET
CLOCK B
1, 15
Q
A
Q
B
Q
C
Q
D
3, 13
5, 11 6, 10
7, 9
4, 12
2, 14
Q
A
Q
B
Q
C
Q
D
3, 13
5, 11 6, 10
7, 9
4, 12
2, 14
MC54/74HC390A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
8
OUTLINE DIMENSIONS
J SUFFIX
CERAMIC PACKAGE
CASE 620–10
ISSUE V
N SUFFIX
PLASTIC PACKAGE
CASE 648–08
ISSUE R
19.05
6.10 —
0.39
1.40
0.21
3.18
19.93
7.49
5.08
0.50
1.65
0.38
4.31
0
°
0.51
15
°
1.01
1.27 BSC
2.54 BSC
7.62 BSC
MIN MINMAX MAX
INCHES MILLIMETERS
DIM
0.750
0.240 —
0.015
0.055
0.008
0.125
0.785
0.295
0.200
0.020
0.065
0.015
0.170
0.050 BSC
0.100 BSC
0.300 BSC
A B C D E F G J K L M N
0
°
0.020
15
°
0.040
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.
1 8
916
–A
–B
C
K
N
G
E
F
D 16 PL
–T
SEATING
PLANE
M
L
J 16 PL
0.25 (0.010) T A
M
S
0.25 (0.010) T B
M
S
MIN MINMAX MAX
INCHES MILLIMETERS
DIM
A B C D F G H
J K L M S
18.80
6.35
3.69
0.39
1.02
0.21
2.80
7.50 0
°
0.51
19.55
6.85
4.44
0.53
1.77
0.38
3.30
7.74 10
°
1.01
0.740
0.250
0.145
0.015
0.040
0.008
0.110
0.295 0
°
0.020
0.770
0.270
0.175
0.021
0.070
0.015
0.130
0.305 10
°
0.040
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
2.54 BSC
1.27 BSC
0.100 BSC
0.050 BSC
–A
B
1 8
916
F
H
G
D
16 PL
S
C
–T
SEATING PLANE
K
J
M
L
T A0.25 (0.010)
M M
0.25 (0.010) T B A
M
S S
MIN MINMAX MAX
MILLIMETERS INCHES
DIM
A B C D F G
J K M P R
9.80
3.80
1.35
0.35
0.40
0.19
0.10 0
°
5.80
0.25
10.00
4.00
1.75
0.49
1.25
0.25
0.25 7
°
6.20
0.50
0.386
0.150
0.054
0.014
0.016
0.008
0.004 0
°
0.229
0.010
0.393
0.157
0.068
0.019
0.049
0.009
0.009 7
°
0.244
0.019
1.27 BSC 0.050 BSC
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
1
8
916
–A
–B
D 16 PL
K
C
G
–T
SEATING
PLANE
R X 45°
M
J
F
P 8 PL
0.25 (0.010) B
M M
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B–05
ISSUE J
MC54/74HC390A
High–Speed CMOS Logic Data DL129 — Rev 6
9 MOTOROLA
OUTLINE DIMENSIONS
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948F–01
ISSUE O
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 4.90 5.10 0.193 0.200 B 4.30 4.50 0.169 0.177 C ––– 1.20 ––– 0.047 D 0.05 0.15 0.002 0.006 F 0.50 0.75 0.020 0.030 G 0.65 BSC 0.026 BSC H 0.18 0.28 0.007 0.011
J 0.09 0.20 0.004 0.008 J1 0.09 0.16 0.004 0.006 K 0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L 6.40 BSC 0.252 BSC M 0 8 0 8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.
_ _ _ _
SECTION N–N
SEATING PLANE
IDENT.
PIN 1
1
8
16
9
DETAIL E
J
J1
B
C
D
A
K
K1
H
G
ÉÉ
ÉÉ
ÉÉ
DETAIL E
F
M
L
2X L/2
–U–
S
U0.15 (0.006) T
S
U0.15 (0.006) T
S
U
M
0.10 (0.004) V
S
T
0.10 (0.004)
–T–
–V–
–W–
0.25 (0.010)
16X REFK
N
N
How to reach us: USA/EUROPE: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters can and do vary in different applications. All operating parameters, including “T ypicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
MC54/74HC390A/D
*MC54/74HC390A/D*
CODELINE
Loading...