
SEMICONDUCTOR TECHNICAL DATA
1
REV 0.1
Motorola, Inc. 1997
3/97
% !! #!
" $!
High–Performance Silicon–Gate CMOS
The MC74HC365A is identical in pinout to the LS365. The device inputs
are compatible with standard CMOS outputs; with pullup resistors, they are
compatible with LSTTL outputs.
This device is a high–speed hex buffer with 3–state outputs and two
common active–low Output Enables. When either of the enables is high, the
buffer outputs are placed into high–impedance states. The HC365A has
noninverting outputs.
• Output Drive Capability: 15 LSTTL Loads
• Outputs Directly Interface to CMOS, NMOS, and TTL
• Operating Voltage Range: 2 to 6 V
• Low Input Current: 1 µA
• High Noise Immunity Characteristic of CMOS Devices
• In Compliance with the Requirements Defined by JEDEC Standard
No. 7A
• Chip Complexity: 90 FETs or 22.5 Equivalent Gates
LOGIC DIAGRAM
A3
A4
A5
A0
A1
A2
2
4
6
10
12
14
OUTPUT ENABLE 1
1
15
PIN 16 = V
CC
PIN 8 = GND
OUTPUT ENABLE 2
Y3
Y4
Y5
Y0
Y1
Y2
3
5
7
9
11
13
This document contains information on a new product. Specifications and information herein are subject to
change without notice.
PIN ASSIGNMENT
FUNCTION TABLE
X = don’t care
Z = high impedance
13
14
15
16
9
10
11
125
4
3
2
1
8
7
6
A4
Y5
A5
OUTPUT
ENABLE 2
V
CC
Y3
A3
Y4
A1
Y0
A0
OUTPUT
ENABLE 1
GND
Y2
A2
Y1
Inputs Output
Enable1Enable
2AY
L
L
H
X
L
L
X
H
L
H
X
X
L
H
Z
Z
D SUFFIX
SOIC PACKAGE
16–LEAD
CASE 751B–05
N SUFFIX
PLASTIC PACKAGE
16–LEAD
CASE 648–08
ORDERING INFORMATION
MC74HCXXXAN
MC74HCXXXAD
MC74HCXXXADT
Plastic
SOIC
TSSOP
DT SUFFIX
TSSOP PACKAGE
16–LEAD
CASE 948F–01

MC74HC365A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
2
DC Supply Voltage (Referenced to GND)
DC Input Voltage (Referenced to GND)
DC Output Voltage (Referenced to GND)
DC Input Current, per Pin
DC Output Current, per Pin
DC Supply Current, VCC and GND Pins
Power Dissipation in Still Air, Plastic DIP†
SOIC Package†
TSSOP Package†
Lead Temperature, 1 mm from Case for 10 Seconds
Plastic DIP, SOIC or TSSOP Package
_
C
*Maximum Ratings are those values beyond which damage to the device may occur .
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
SOIC Package: – 7 mW/_C from 65_ to 125_C
TSSOP Package: – 6.1 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
Operating Temperature, All Package Types
Input Rise and Fall Time VCC = 2.0 V
(Figure 1) VCC = 4.5 V
VCC = 6.0 V
ns
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Minimum High–Level Input
Voltage
V
out
= VCC – 0.1 V
|I
out
| v 20 µA
Maximum Low–Level Input
Voltage
V
out
= 0.1 V
|I
out
| v 20 µA
Minimum High–Level Output
Voltage
Vin = V
IH
|I
out
| v 20 µA
Vin = V
IH
|I
out
| v 3.6 mA
|I
out
| v 6.0 mA
|I
out
| v 7.8 mA
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
V
out
should be constrained to the
range GND v (Vin or V
out
) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.

MC74HC365A
High–Speed CMOS Logic Data
DL129 — Rev 6
3 MOTOROLA
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Maximum Low–Level Output
Voltage
Vin = V
IL
|I
out
| v 20 µA
Vin = V
IL
|I
out
| v 3.6 mA
|I
out
| v 6.0 mA
|I
out
| v 7.8 mA
Maximum Input Leakage Current
Maximum Three–State
Leakage Current
Output in High–Impedance State
Vin = VIL or V
IH
V
out
= VCC or GND
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
I
out
= 0 µA
µA
NOTE:Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
AC ELECTRICAL CHARACTERISTICS (C
L
= 50 pF, Input tr = tf = 6 ns)
Maximum Propagation Delay, Input A to Output Y
(Figures 1 and 3)
Maximum Propagation Delay, Output Enable to Output Y
(Figures 2 and 4)
Maximum Propagation Delay, Output Enable to Output Y
(Figures 2 and 4)
Maximum Output Transition Time, Any Output
(Figures 1 and 3)
Maximum Input Capacitance
Maximum Three–State Output Capacitance
(Output in High–Impedance State)
pF
NOTES:
1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
2. Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
C
PD
Power Dissipation Capacitance (Per Buffer)*
35
pF
*Used to determine the no–load dynamic power consumption: PD = CPD V
CC
2
f + ICC VCC. For load considerations, see Chapter 2 of the
Motorola High–Speed CMOS Data Book (DL129/D).

MC74HC365A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
4
SWITCHING W AVEFORMS
V
CC
GND
t
f
t
r
INPUT A
OUTPUT Y
10%
50%
90%
10%
50%
90%
t
TLH
t
PLH
t
PHL
t
THL
OUTPUT ENABLE
OUTPUT Y
OUTPUT Y
50%
50%
50%
90%
10%
t
PZL
t
PLZ
t
PZHtPHZ
V
CC
GND
HIGH
IMPEDANCE
V
OL
V
OH
HIGH
IMPEDANCE
Figure 1. Figure 2.
TEST CIRCUITS
*Includes all probe and jig capacitance
CL*
TEST POINT
DEVICE
UNDER
TEST
OUTPUT
*Includes all probe and jig capacitance
CL*
TEST POINT
DEVICE
UNDER
TEST
OUTPUT
CONNECT TO VCC WHEN
TESTING t
PLZ
AND t
PZL
.
CONNECT TO GND WHEN
TESTING t
PHZ
AND t
PZH
.
1 k
Ω
Figure 3. Figure 4.
INPUT A
OUTPUT ENABLE 1
OUTPUT ENABLE 2
V
CC
TO OTHER
FIVE BUFFERS
Y
LOGIC DETAIL
ONE OF 6
BUFFERS

MC74HC365A
High–Speed CMOS Logic Data
DL129 — Rev 6
5 MOTOROLA
OUTLINE DIMENSIONS
N SUFFIX
PLASTIC PACKAGE
CASE 648–08
ISSUE R
MIN MINMAX MAX
INCHES MILLIMETERS
DIM
A
B
C
D
F
G
H
J
K
L
M
S
18.80
6.35
3.69
0.39
1.02
0.21
2.80
7.50
0
°
0.51
19.55
6.85
4.44
0.53
1.77
0.38
3.30
7.74
10
°
1.01
0.740
0.250
0.145
0.015
0.040
0.008
0.110
0.295
0
°
0.020
0.770
0.270
0.175
0.021
0.070
0.015
0.130
0.305
10
°
0.040
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
2.54 BSC
1.27 BSC
0.100 BSC
0.050 BSC
–A
–
B
18
916
F
H
G
D
16 PL
S
C
–T
–
SEATING
PLANE
K
J
M
L
TA0.25 (0.010)
M M
0.25 (0.010) T B A
M
S S
MIN MINMAX MAX
MILLIMETERS INCHES
DIM
A
B
C
D
F
G
J
K
M
P
R
9.80
3.80
1.35
0.35
0.40
0.19
0.10
0
°
5.80
0.25
10.00
4.00
1.75
0.49
1.25
0.25
0.25
7
°
6.20
0.50
0.386
0.150
0.054
0.014
0.016
0.008
0.004
0
°
0.229
0.010
0.393
0.157
0.068
0.019
0.049
0.009
0.009
7
°
0.244
0.019
1.27 BSC 0.050 BSC
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
1
8
916
–A
–
–B
–
D 16 PL
K
C
G
–T
–
SEATING
PLANE
R X 45°
M
J
F
P 8 PL
0.25 (0.010) B
M M
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B–05
ISSUE J

MC74HC365A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
6
OUTLINE DIMENSIONS
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948F–01
ISSUE O
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 4.90 5.10 0.193 0.200
B 4.30 4.50 0.169 0.177
C ––– 1.20 ––– 0.047
D 0.05 0.15 0.002 0.006
F 0.50 0.75 0.020 0.030
G 0.65 BSC 0.026 BSC
H 0.18 0.28 0.007 0.011
J 0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K 0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L 6.40 BSC 0.252 BSC
M 0 8 0 8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH OR
GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER
SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MA TERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT
DATUM PLANE –W–.
____
SECTION N–N
SEATING
PLANE
IDENT.
PIN 1
1
8
16
9
DETAIL E
J
J1
B
C
D
A
K
K1
H
G
DETAIL E
F
M
L
2X L/2
–U–
S
U0.15 (0.006) T
S
U0.15 (0.006) T
S
U
M
0.10 (0.004) V
S
T
0.10 (0.004)
–T–
–V–
–W–
0.25 (0.010)
16X REFK
N
N
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315
Mfax: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
INTERNET: http://www.mot.com/SPS/
MC74HC365A/D
◊