MOTOROLA MC68HC908QY4, MC68HC908QT4, MC68HC908QY2, MC68HC908QT2, MC68HC908QY1 Technical data

...
M68HC08
Microcontrollers
MC68HC908QY4 MC68HC908QT4 MC68HC908QY2 MC68HC908QT2 MC68HC908QY1 MC68HC908QT1
Data Sheet
MC68HC908QY4/D Rev 3.0 1/2004
MOTOROLA.COM/SEMICONDUCTORS
MC68HC908QY4 MC68HC908QT4 MC68HC908QY2 MC68HC908QT2 MC68HC908QY1 MC68HC908QT1
Data Sheet
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:
http://motorola.com/semiconductors/
The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location.
Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc. DigitalDNA is a trademark of Motorola, Inc. This product incorporates SuperFlash® technology licensed from SST. © Motorola, Inc., 2004
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA 3

Revision History

Revision History
Date
September,
2002
December,
2002
Revision
Level
N/A Initial release N/A
1.2 Features — Added 8-pin dual flat no lead (DFN) packages to features list. 19 Figure 1-2. MCU Pin Assignments — Figure updated to include DFN
packages. Figure 2-1. Memory Map — Clarified illegal address and unimplemented
memory. Figure 2-2. Control, Status, and Data Registers — Corrected bit def in iti o ns
for Port A Data Register (PTA) and Data Direction Register A (DDRA). Table 13-3. Interrupt Sources — Corrected vector addresses for keyboard
interrupt and ADC conversion complete interrupt. Section 13. System Integration Module (SIM) — Removed reference to break
status register as it is duplicated in break module.
11.3.1 Internal Oscillator and 11.3.1.1 Internal Oscillator Trimming — Clarified oscillator trim option ordering information and what to expect with untrimmed device.
Figure 11-5. Oscillator Trim Register (OSCTRIM) — Bit 1 designation corrected.
Figure 15-13. Monitor Mode Circuit (Internal Clock, No High Voltage)
0.1
Diagram updated for clarity. Figure 12-1. I/O Port Register Summary — Corrected bit definitions for PTA7,
DDRA7, and DDRA6.
Description
Page
Number(s)
21
28
28
124
113
97
104
160
105
Figure 12-2. Port A Data Register (PTA) — Corrected bit definition for PTA7. 106 Figure 12-3. Data Direction Register A (DDRA) — Corrected bit definitions for
DDRA7 and DDRA6.
Figure 12-6. Port B Data Register (PTB) — Corrected bit definition for PTB1 109 Section 9. Keyboard Interrupt Module (KBI) — Section reworked after
deletion of auto wakeup for clarity.
Section 4. Auto Wakeup Module (AWU) — New section added for clarity. 49 Figure 10-1. LVI Module Block Diagram — Corrected LVI stop representation. 91 Section 16. Electrical Specification s — Extensive changes made to electrical
specifications.
17.5 8-Pin Dual Flat No Lead (DFN) Package (Case #1452) — Added case outline drawing for DFN package.
Section 17. Ordering Information and Mechanical Specifications — Added ordering information for DFN package.
January,
2003
Data Sheet MC68HC908QY/QT Family — Rev. 3
0.2 4.2 Features — Corrected third bulleted item. 49
107
83
169
187
185
4 Revision History MOTOROLA
Revision History (Continued)
Revision History
Date
August,
2003
Revision
Level
1.0
Description
Reformatted to meet latest M68HC08 documentation standards N/A Figure 1-1. Block Diagram — Diagram redrawn to include keyboard interrupt
module and TCLK pin designator.
Figure 1-2. MCU Pin Assignments — Added TCLK pin designator. 21 Table 1-2. Pin Functions — Added TCLK pin description. 22 Table 1-3. Function Priority in Shared Pins — Revised table for clarity and to
add TCLK. Figure 2-1. Memory Map — Corrected names for the IRQ status and control
register (INTSCR) bits 3–0.
3.7.3 ADC Input Clock Register — Clarified bit description for the ADC clock prescaler bits.
4.3 Functional Description — Updated periodic wakeup request values. 51 Figure 6-1. COP Block Diagram — Reworked for clarity 59 Section 8. External Interrupt (IRQ) — Corrected bit names for MODE, IRQF,
ACK, and IMASK
Section 14. Timer Interface Module (TIM) — Added TCLK function. 131–147
15.3 Monitor Module (MON) — Updated with additional data. 156 Section 16. Electrical Specifications — Updated with additional data. 169–183 Figure 2-2. Control, Status, and Data Registers — Deleted unimplemented
areas from $FFB0–$FFBD and $FFC2–$FFCF as they are actually available. Also corrected $FFBF designation from unimplemented to reserved.
Figure 6-1. COP Block Diagram — Reworked for clarity 59
6.3.2 STOP Instruction — Added subsection 60
Page
Number(s)
20
23
26
48
77–81
28
13.4.2 Active Resets from Internal Sources — Reworked notes for clarity. 117
October,
2003
January,
2004
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Revision History 5
2.0
3.0
Table 13-2. Reset Recovery Timing — Replaced previous table with new information.
Section 14. Timer Interface Module (TIM) — Updated with additional data. 131 Figure 15-3. Break I/O Register Summary — Corrected bit designators for the
BRKAR register
15.3 Monitor Module (MON) — Clarified seventh bullet. 156 Table 17-1. MC Order Numbers — Corrected temperature and package
designators.
Figure 2-2. Control, Status, and Data Registers — Corrected reset state for
the FLASH Block Protect Register at address location $FFBE and the Internal Oscillator Trim Value at $FFC0.
Figure 2-5. FLASH Block Protect Register (FLBPR) — Restated reset state
for clarity.
118
151
185
32
39
Revision History
Data Sheet MC68HC908QY/QT Family — Rev. 3
6 Revision History MOTOROLA
Data Sheet — MC68HC908QY/QT Family
Section 1. General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Section 2. Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Section 3. Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . .41
Section 4. Auto Wakeup Module (AWU) . . . . . . . . . . . . . . . . . . . . . . . .49
Section 5. Configuration Register (CONFIG) . . . . . . . . . . . . . . . . . . . .55
Section 6. Computer Operating Properly (COP) . . . . . . . . . . . . . . . . .59
Section 7. Central Processor Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . .63
Section 8. External Interrupt (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

List of Sections

Section 9. Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . .83
Section 10. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . . . . . . . . . . . . .91
Section 11. Oscillator Module (OSC). . . . . . . . . . . . . . . . . . . . . . . . . . .95
Section 12. Input/Output Ports (PORTS) . . . . . . . . . . . . . . . . . . . . . .105
Section 13. System Integration Module (SIM) . . . . . . . . . . . . . . . . . .113
Section 14. Timer Interface Module (TIM). . . . . . . . . . . . . . . . . . . . . .131
Section 15. Development Support. . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Section 16. Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . .169
Section 17. Ordering Information and Mechanical
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA List of Sections 7
List of Sections
Data Sheet MC68HC908QY/QT Family — Rev. 3
8 List of Sections MOTOROLA
Data Sheet — MC68HC908QY/QT Family
Section 1. General Description
1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 MCU Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Pin Function Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 FLASH Memory (FLASH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.1 FLASH Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.2 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6.3 FLASH Mass Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.4 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.5 FLASH Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.6 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6.8 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table of Contents

Section 2. Memory
Section 3. Analog-to-Digital Converter (ADC)
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 ADC Port I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 Conversion Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Table of Contents 9
Table of Contents
3.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.1 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Input/Output Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7.3 ADC Input Clock Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Section 4. Auto Wakeup Module (AWU)
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6.1 Port A I/O Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6.2 Keyboard Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . 52
4.6.3 Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . 53
Section 5. Configuration Register (CONFIG)
5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Section 6. Computer Operating Properly (COP)
6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.1 BUSCLKX4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.5 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.6 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.7.1 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.8 COP Module During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Data Sheet MC68HC908QY/QT Family — Rev. 3
10 Table of Contents MOTOROLA
Table of Contents
Section 7. Central Processor Unit (CPU)
7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3.2 Index Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.3.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.3.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3.5 Condition Code Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.5.1 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.6 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.7 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.8 Opcode Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Section 8. External Interrupt (IRQ)
8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.4 IRQ
Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.5 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.6 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Section 9. Keyboard Interrupt Module (KBI)
9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.3.1 Keyboard Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.3.2 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.4 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.5 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.6 Keyboard Module During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . 87
9.7 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.7.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . 88
9.7.2 Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . 89
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Table of Contents 11
Table of Contents
Section 10. Low-Voltage Inhibit (LVI)
10.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.3.1 Polled LVI Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.3.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.3.3 Voltage Hysteresis Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.3.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.4 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.5 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.6.1 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Section 11. Oscillator Module (OSC)
11.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.3.1 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.3.1.1 Internal Oscillator Trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.3.1.2 Internal to External Clock Switching . . . . . . . . . . . . . . . . . . . . . . . 97
11.3.2 External Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.3.3 XTAL Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.3.4 RC Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.4 Oscillator Module Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11.4.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . . . . . . . 100
11.4.2 Crystal Amplifier Output Pin (OSC2/PTA4/BUSCLKX4). . . . . . . . . 100
11.4.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . . . . . . . 101
11.4.4 XTAL Oscillator Clock (XTALCLK) . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.4.5 RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.4.6 Internal Oscillator Clock (INTCLK) . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.4.7 Oscillator Out 2 (BUSCLKX4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.4.8 Oscillator Out (BUSCLKX2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.5.1 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.6 Oscillator During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.7 CONFIG2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.8 Input/Output (I/O) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
11.8.1 Oscillator Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
11.8.2 Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . . . . . . . . 104
Data Sheet MC68HC908QY/QT Family — Rev. 3
12 Table of Contents MOTOROLA
Table of Contents
Section 12. Input/Output Ports (PORTS)
12.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
12.2 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
12.2.1 Port A Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
12.2.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
12.2.3 Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . . . . . . . 108
12.3 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
12.3.1 Port B Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
12.3.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
12.3.3 Port B Input Pullup Enable Register. . . . . . . . . . . . . . . . . . . . . . . . 111
Section 13. System Integration Module (SIM)
13.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
13.2 RST
13.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . . . . . . . 116
13.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
13.3.2 Clock Start-Up from POR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
13.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . . . . . . 116
13.4 Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
13.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
13.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . . . . . . 117
13.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
13.4.2.2 Computer Operating Properly (COP) Reset . . . . . . . . . . . . . . . . 119
13.4.2.3 Illegal Opcode Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
13.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
13.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . 120
13.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
13.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . . . . . . 120
13.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . . . . . . 121
13.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
13.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
13.6.1 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
13.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
13.6.1.2 SWI Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
13.6.2 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
13.6.2.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
13.6.2.2 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
13.6.2.3 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
13.6.3 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
13.6.4 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
13.6.5 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . . . . . . 126
13.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
13.7.1 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
13.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
and IRQ Pins Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Table of Contents 13
Table of Contents
13.8 SIM Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
13.8.1 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
13.8.2 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Section 14. Timer Interface Module (TIM)
14.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
14.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
14.3 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
14.4.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
14.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
14.4.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
14.4.3.1 Unbuffered Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
14.4.3.2 Buffered Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
14.4.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
14.4.4.1 Unbuffered PWM Signal Generation. . . . . . . . . . . . . . . . . . . . . . 137
14.4.4.2 Buffered PWM Signal Generation. . . . . . . . . . . . . . . . . . . . . . . . 138
14.4.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
14.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
14.6 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
14.7 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
14.8 Input/Output Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
14.8.1 TIM Clock Pin (PTA2/TCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
14.8.2 TIM Channel I/O Pins (PTA0/TCH0 and PTA1/TCH1). . . . . . . . . . 140
14.9 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
14.9.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . 141
14.9.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
14.9.3 TIM Counter Modulo Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
14.9.4 TIM Channel Status and Control Registers . . . . . . . . . . . . . . . . . . 144
14.9.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Section 15. Development Support
15.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
15.2 Break Module (BRK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
15.2.1 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
15.2.1.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . . . . . 152
15.2.1.2 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
15.2.1.3 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
15.2.2 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
15.2.2.1 Break Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . 153
15.2.2.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
15.2.2.3 Break Auxiliary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
15.2.2.4 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
15.2.2.5 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
15.2.3 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Data Sheet MC68HC908QY/QT Family — Rev. 3
14 Table of Contents MOTOROLA
Table of Contents
15.3 Monitor Module (MON). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
15.3.1 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
15.3.1.1 Normal Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
15.3.1.2 Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
15.3.1.3 Monitor Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
15.3.1.4 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
15.3.1.5 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
15.3.1.6 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
15.3.1.7 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
15.3.2 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Section 16. Electrical Specifications
16.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
16.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
16.3 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
16.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
16.5 5-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
16.6 Typical 5-V Output Drive Characteristics . . . . . . . . . . . . . . . . . . . . . . . 172
16.7 5-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
16.8 5-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
16.9 3-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
16.10 Typical 3.0-V Output Drive Characteristics. . . . . . . . . . . . . . . . . . . . . . 176
16.11 3-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
16.12 3-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
16.13 Supply Current Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
16.14 Analog-to-Digital Converter Characteristics . . . . . . . . . . . . . . . . . . . . . 181
16.15 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 182
16.16 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Section 17. Ordering Information
and Mechanical Specifications
17.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
17.2 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
17.3 8-Pin Plastic Dual In-Line Package (Case #626) . . . . . . . . . . . . . . . . . 186
17.4 8-Pin Small Outline Integrated Circuit Package (Case #968). . . . . . . . 186
17.5 8-Pin Dual Flat No Lead (DFN) Package (Case #1452). . . . . . . . . . . . 187
17.6 16-Pin Plastic Dual In-Line Package (Case #648D). . . . . . . . . . . . . . . 188
17.7 16-Pin Small Outline Integrated Circuit Package (Case #751G) . . . . . 188
17.8 16-Pin Thin Shrink Small Outline Package (Case #948F) . . . . . . . . . . 189
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Table of Contents 15
Table of Contents
Data Sheet MC68HC908QY/QT Family — Rev. 3
16 Table of Contents MOTOROLA
Data Sheet — MC68HC908QY/QT Family

1.1 Introduction

The MC68HC908QY4 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08 Family is a Complex Instruction Set Computer (CISC) with a Von Neumann architecture. All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types.
Table 1-1. Summary of Device Variations

Section 1. General Description

0.4

1.2 Features

Device
MC68HC908QT1 1536 bytes 8 pins MC68HC908QT2 1536 bytes 4 ch, 8 bit 8 pins MC68HC908QT4 4096 bytes 4 ch, 8 bit 8 pins MC68HC908QY1 1536 bytes 16 pins MC68HC908QY2 1536 bytes 4 ch, 8 bit 16 pins MC68HC908QY4 4096 bytes 4 ch, 8 bit 16 pins
FLASH
Memory Size
Analog-to-Digital
Converter
Features include:
High-performance M68HC08 CPU core
Fully upward-compatible object code with M68HC05 Family
5-V and 3-V operating voltages (V
DD
)
8-MHz internal bus operation at 5 V, 4-MHz at 3 V
Trimmable internal oscillator – 3.2 MHz internal bus operation – 8-bit trim capability allows 0.4% accuracy
(1)
± 25% untrimmed
Pin
Count
Auto wakeup from STOP capability
Configuration (CONFIG) register for MCU configuration options, including: – Low-voltage inhibit (LVI) trip point
1. The oscillator frequency is guaranteed to ±5% over temperature and voltage range after trimming.
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA General Description 17
General Description
In-system FLASH programming
FLASH security
(1)
On-chip in-application programmable FLASH memory (with internal program/erase voltage generation)
MC68HC908QY4 and MC68HC908QT4 — 4096 bytes – MC68HC908QY2, MC68HC908QY1, MC68HC908QT2, and
MC68HC908QT1 — 1536 bytes
128 bytes of on-chip random-access memory (RAM)
2-channel, 16-bit timer interface module (TIM)
4-channel, 8-bit analog-to-digital converter (ADC) on MC68HC908QY2, MC68HC908QY4, MC68HC908QT2, and MC68HC908QT4
5 or 13 bidirectional input/output (I/O) lines and one input only: – Six shared with keyboard interrupt function and ADC – Two shared with timer channels – One shared with external interrupt (IRQ) – Eight extra I/O lines on 16-pin package only – High current sink/source capability on all port pins – Selectable pullups on all ports, selectable on an individual bit basis – Three-state ability on all port pins
6-bit keyboard interrupt with wakeup feature (KBI)
Low-voltage inhibit (LVI) module features: – Software selectable trip point in CONFIG register
System protection features: – Computer operating properly (COP) watchdog – Low-voltage detection with reset – Illegal opcode detection with reset – Illegal address detection with reset
External asynchronous interrupt pin with internal pullup (IRQ general-purpose input pin
Master asynchronous reset pin (RST
) shared with general-purpose
input/output (I/O) pin
Power-on reset
Internal pullups on IRQ
and RST to reduce external components
Memory mapped I/O registers
Power saving stop and wait modes
) shared with
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users.
Data Sheet MC68HC908QY/QT Family — Rev. 3
18 General Description MOTOROLA
General Description
MCU Block Diagram
MC68HC908QY4, MC68HC908QY2, and MC68HC908QY1 are available in these packages:
16-pin plastic dual in-line package (PDIP) – 16-pin small outline integrated circuit (SOIC) package – 16-pin thin shrink small outline package (TSSOP)
MC68HC908QT 4, MC68HC908QT2, and MC68HC908QT1 are available in these packages:
8-pin PDIP – 8-pin SOIC – 8-pin dual flat no lead (DFN) package
Features of the CPU08 include the following:
Enhanced HC05 programming model
Extensive loop control functions
16 addressing modes (eight more than the HC05)
16-bit index register and stack pointer
Memory-to-memory data transfers
Fast 8 × 8 multiply instruction
Fast 16/8 divide instruction
Binary-coded decimal (BCD) instructions
Optimization for controller applications
Efficient C language support

1.3 MCU Block Diagram

Figure 1-1 shows the structure of the MC68HC908QY4.

1.4 Pin Assignments

The MC68HC908QT4, MC68HC908QT2, and MC68HC908QT1 are available in 8-pin packages and the MC68HC908QY4, MC68HC908QY2, and MC68HC908QY1 in 16-pin packages. Figure 1-2 shows the pin assignment for these packages.
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA General Description 19
General Description
PTA0/AD0/TCH0/KBI0
PTA1/AD1/TCH1/KBI1
PTA2/IRQ
/KBI2/TCLK
PTA3/RST
PTA4/OSC2/AD2/KBI4
PTA5/OSC1/AD3/KBI5
/KBI3
PTB0 PTB1 PTB2 PTB3 PTB4 PTB5 PTB6 PTB7
POWER SUPPLY
PTA
PTB
8-BIT ADC
128 BYTES RAM
DDRA
DDRB
V
DD
V
SS
M68HC08 CPU
MC68HC908QY4 AND MC68HC908QT4
4096 BYTES
MC68HC908QY2, MC68HC908QY1,
MC68HC908QT2, AND MC68HC908QT1:
1536 BYTES
USER FLASH
CLOCK
GENERATOR
(OSCILLATOR)
SYSTEM INTEGRATION
MODULE
SINGLE INTERRUPT
MODULE
BREAK
MODULE
POWER-ON RESET
MODULE
KEYBOARD INTERRUPT
MODULE
16-BIT TIMER
MODULE
COP
MODULE
MONITOR ROM
RST, IRQ: Pins have internal (about 30K Ohms) pull up PTA[0:5]: High current sink and source capability PTA[0:5]: Pins have programmable keyboard interrupt and pull up PTB[0:7]: Not available on 8-pin devices – MC68HC908QT1, MC68HC908QT2, and MC68HC908QT4 ADC: Not available on the MC68HC908QY1 and MC68HC908QT1
Figure 1-1. Block Diagram
Data Sheet MC68HC908QY/QT Family — Rev. 3
20 General Description MOTOROLA
General Description
Pin Assignments
V
PTA5/OSC1/KBI5
PTA4/OSC2/KBI4
PTA3/RST
/KBI3
V
PTB7
PTB6
PTA5/OSC1/KBI5
PTA4/OSC2/KBI4
PTB5
PTB4
PTA3/RST
/KBI3
DD
1
2
3
4
8
7
6
5
8-PIN ASSIGNMENT
MC68HC908QT1 PDIP/SOIC
1
DD
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
16-PIN ASSIGNMENT
MC68HC908QY1 PDIP/SOIC
V
SS
PTA0/TCH0/KBI0
PTA1/TCH1/KBI1
PTA2/IRQ/KBI2/TCLK
V
SS
PTB0
PTB1
PTA0/TCH0/KBI0
PTA1/TCH1/KBI1
PTB2
PTB3
/KBI2/TCLK
PTA2/IRQ
V
PTA5/OSC1/AD3/KBI5
PTA4/OSC2/AD2/KBI4
PTA3/RST
/KBI3
1
DD
2
3
4
8-PIN ASSIGNMENT
MC68HC908QT2 AND MC68HC908QT4 PDIP/SOIC
V
PTB7
PTB6
PTA5/OSC1/AD3/KBI5
PTA4/OSC2/AD2/KBI4
PTB5
PTB4
PTA3/RST
/KBI3
1
DD
2
3
4
5
6
7
8
16-PIN ASSIGNMENT
MC68HC908QY2 AND MC68HC908QY4 PDIP/SOIC
V
SS
8
PTA0/AD0/TCH0/KBI0
7
6
PTA1/AD1/TCH1/KBI1
PTA2/IRQ/KBI2/TCLK
5
V
16
SS
15
PTB0
14
PTB1
PTA0/AD0/TCH0/KBI0
13
PTA1/AD1/TCH1/KBI1
12
11
PTB2
10
PTB3
PTA2/IRQ
9
/KBI2/TCLK
PTA0/TCH0/KBI0
PTB1 PTB0
V V
PTB7 PTB6
PTA5/OSC1/KBI5
PTA0/TCH0/KBI0
PTA5/OSC1/KB15
1 2 3 4
SS
5
DD
6 7 8
16-PIN ASSIGNMENT
MC68HC908QY1 TSSOP
1
2
V
SS
V
3
DD
4
8-PIN ASSIGNMENT
MC68HC908QT1 DFN
PTA1/TCH1/KBI1
16
PTB2
15
PTB3
14
PTA2/IRQ
13
PTA3/RST
12 11
PTB4
10
PTB5
9
PTA4/OSC2/KBI4
8
PTA1/TCH1/KBI1
7
PTA2/IRQ/KBI2/TCLK
6
PTA3/RST
PTA4/OSC2/KBI4
5
/KBI2/TCLK
/KBI3
/KBI3
PTA0/AD0/TCH0/KBI0
PTA5/OSC1/AD3/KBI5
PTA0/AD0/TCH0/KBI0
PTA5//OSC1/AD3/KB15
Figure 1-2. MCU Pin Assignments
PTB1 PTB0
V
V
PTB7 PTB6
1 2 3 4
SS
5
DD
6 7 8
PTA1/AD1/TCH1/KBI1
16
PTB2
15
PTB3
14
PTA2/IRQ
13
PTA3/RST
12 11
PTB4
10
PTB5
9
PTA4/OSC2/AD2/KBI4
16-PIN ASSIGNMENT
MC68HC908QY2 AND MC68HC908QY4 TSSOP
1
V
2
SS
V
3
DD
4
8
PTA1/AD1/TCH1/KBI1
7
PTA2/IRQ/KBI2/TCLK
6
PTA3/RST
PTA4/OSC2/AD2/KBI4
5
8-PIN ASSIGNMENT
MC68HC908QT2 AND MC68HC908QT4 DFN
/KBI2/TCLK
/KBI3
/KBI3
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA General Description 21
General Description

1.5 Pin Functions

Table 1-2 provides a description of the pin functions.
Table 1-2. Pin Functions
Pin
Name
V
DD
V
SS
PTA0
PTA1
PTA2
PTA3
Description Input/Output
Pow er supply Power Pow er supply ground Power PTA0 — General purpose I/O port Input/Output
AD0 — A/D channel 0 input Input TCH0 — Timer Channel 0 I/O Input/Output KBI0 — Keyboard interrupt input 0 Input PTA1 — General purpose I/O port Input/Output AD1 — A/D channel 1 input Input TCH1 — Timer Channel 1 I/O Input/Output KBI1 — Keyboard interrupt input 1 Input PTA2 — General purpose input-only port Input
— External interrupt with programmable pullup and Schmitt trigger input Input
IRQ KBI2 — Keyboard interrupt input 2 Input TCLK — Timer clock input Input PTA3 — General purpose I/O port Input/Output RST — Reset input, active low with internal pullup and Schmitt trigger Input KBI3 — Keyboard interrupt input 3 Input PTA4 — General purpose I/O port Input/Output OSC2 — X TAL oscillator output (XTAL option only)
PTA4
AD2 — A/D channel 2 input Input KBI4 — Keyboard interrupt input 4 Input PTA5 — General purpose I/O port Input/Output
PTA5
PTB[0:7]
1. The PTB pins are not available on the 8-pin packages.
Data Sheet MC68HC908QY/QT Family — Rev. 3
22 General Description MOTOROLA
OSC1 — XTAL, RC, or external oscillator input Input AD3 — A/D channel 3 input Input KBI5 — Keyboard interrupt input 5 Input
(1)
8 general-purpose I/O ports Input/Output
RC or internal oscillator output (OSC2EN = 1 in PTAPUE register)
Output Output

1.6 Pin Function Priority

Table 1-3 is meant to resolve the priority if multiple functions are enabled on a
single pin.
NOTE: Upon reset all pins come up as input ports regardless of the priority table.
General Description
Pin Function Priority
Table 1-3. Function Priority in Shared Pins
Pin Name Highest-to-Lowest Priority Sequence
PTA0 AD0 TCH0 KBI0 PTA0 PTA1 AD1 TCH1 KBI1 PTA1 PTA2 IRQ PTA3 RST PTA4 OSC2 AD2 KBI4 PTA4 PTA5 OSC1 AD3 KBI5 PTA5
KBI2 TCLK PTA2
KBI3 PTA3
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA General Description 23
General Description
Data Sheet MC68HC908QY/QT Family — Rev. 3
24 General Description MOTOROLA
Data Sheet — MC68HC908QY/QT Family

2.1 Introduction

The central processor unit (CPU08) can address 64 Kbytes of memory space. The memory map, shown in Figure 2-1, includes:
4096 bytes of user FLASH for MC68HC908QT4 and MC68HC908QY4
1536 bytes of user FLASH for MC68HC908QT2, MC68HC908QT1, MC68HC908QY2, and MC68HC908QY1
128 bytes of random access memory (RAM)
48 bytes of user-defined vectors, located in FLASH
416 bytes of monitor read-only memory (ROM)
1536 bytes of FLASH program and erase routines, located in ROM

2.2 Unimplemented Memory Locations

Section 2. Memory

Accessing an unimplemented location can have unpredictable effects on MCU operation. In Figure 2-1 and in register figures in this document, unimplemented locations are shaded.

2.3 Reserved Memory Locations

Accessing a reserved location can have unpredictable effects on MCU operation. In Figure 2-1 and in register figures in this document, reserved locations are marked with the word Reserved or with the letter R.
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Memory 25
Memory
$0000
$003F
$0040
$007F
$0080
$00FF
$0100
$27FF
$2800
$2DFF
$2E00
$EDFF
$EE00
$FDFF
$FE00 BREAK STATUS REGISTER (BSR)
$FE01 RESET STATUS REGISTER (SRSR)
$FE02 BREAK AUXILIARY REGISTER (BRKAR)
$FE03 BREAK FLAG CONTROL REGISTER (BFCR)
$FE04 INTERRUPT STATUS REGISTER 1 (INT1)
$FE05 INTERRUPT STATUS REGISTER 2 (INT2)
$FE06 INTERRUPT STATUS REGISTER 3 (INT3)
$FE07
$FE08
$FE09 BREAK ADDRESS HIGH REGISTER (BRKH)
$FE0A BREAK ADDRESS LOW REGISTER (BRKL)
$FE0B BREAK STATUS AND CONTROL REGISTER (BRKSCR)
$FE0C LVISR
$FE0D
$FE0F
$FE10
$FFAF
$FFB0
$FFBD
$FFBE FLASH BLOCK PROTECT REGISTER (FLBPR)
$FFBF
$FFC0 INTERNAL OSCILLATOR TRIM VALUE
$FFC1
$FFC2
$FFCF
$FFD0
$FFFF
RESERVED FOR FLASH TEST CONTROL REGISTER (FLTCR)
MC68HC908QT4 AND MC68HC908QY4
FLASH CONTROL REGISTER (FLCR)
I/O REGISTERS
64 BYTES
RESERVED
64 BYTES
128 BYTES
UNIMPLEMENTED
9984 BYTES
AUXILIARY ROM
1536 BYTES
UNIMPLEMENTED
49152 BYTES
FLASH MEMORY
4096 BYTES
RESERVED FOR FLASH TEST
MONITOR ROM 416 BYTES
14 BYTES
RESERVED FLASH
RESERVED FLASH
14 BYTES
USER VECTORS
48 BYTES
(1)
RAM
(1)
(1)
3 BYTES
FLASH
FLASH
Note 1.
Attempts to execute code from addresses in this range will generate an illegal address reset.
UNIMPLEMENTED
51712 BYTES
FLASH MEMORY
1536 BYTES
MC68HC908QT1, MC68HC908QT2,
MC68HC908QY1, and MC68HC908QY2
Memory Map
$2E00
$F7FF
$F800
$FDFF
Figure 2-1. Memory Map
Data Sheet MC68HC908QY/QT Family — Rev. 3
26 Memory MOTOROLA

2.4 Input/Output (I/O) Section

Addresses $0000–$003F, shown in Figure 2-2, contain most of the control, status, and data registers. Additional I/O registers have these addresses:
$FE00 — Break status register, BSR
$FE01 — Reset status register, SRSR
$FE02 — Break auxiliary register, BRKAR
$FE03 — Break flag control register, BFCR
$FE04 — Interrupt status register 1, INT1
$FE05 — Interrupt status register 2, INT2
$FE06 — Interrupt status register 3, INT3
$FE07 — Reserved
$FE08 — FLASH control register, FLCR
$FE09 — Break address register high, BRKH
$FE0A — Break address register low, BRKL
Memory
Input/Output (I/O) Section
$FE0B — Break status and control register, BRKSCR
$FE0C — LVI status register, LVISR
•$FE0D Reserved
$FFBE — FLASH block protect register, FLBPR
$FFC0 — Internal OSC trim value — Optional
$FFFF — COP control register, COPCTL
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Memory 27
Memory
Addr.Register Name Bit 7654321Bit 0
Port A Data Register
$0000
Port B Data Register
$0001
$0002 Unimplemented
$0003 Unimplemented
(PTA)
See page 106.
(PTB)
See page 109.
Read:
Write:
Reset: Unaffected by reset
Read:
Write:
Reset: Unaffected by reset
R
PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0
AWUL
PTA5 PTA4 PTA3
PTA2
PTA1 PTA0
$0004
$0005
$0006
$000A
$000B
$000C
$000D
$0019
Data Direction Register A
(DDRA)
See page 107.
Data Direction Register B
(DDRB)
See page 109.
Unimplemented
Unimplemented
Port A Input Pullup Enable
Register (PTAPUE)
See page 108.
Port B Input Pullup Enable
Register (PTBPUE)
See page 111.
Unimplemented
Read:
Write:
Reset:00000000
Read:
Write:
Reset:00000000
Read:
Write:
Reset:00000000
Read:
Write:
Reset:00000000
R R DDRA5 DDRA4 DDRA3
DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0
OSC2EN
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE1 PTBPUE0
0
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0
0
DDRA1 DDRA0
Read: 0 0 0 0 KEYF 0
Write:
Reset:00000000
Read: 0
Write:
Reset:00000000
AWUIE KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0
= Unimplemented R = Reserved U = Unaffected
ACKK
IMASKK MODEK
$001A
$001B
Keyboard Status and
Control Register (KBSCR)
See page 88.
Keyboard Interrupt
Enable Register (KBIER)
See page 89.
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 5)
Data Sheet MC68HC908QY/QT Family — Rev. 3
28 Memory MOTOROLA
Memory
Input/Output (I/O) Section
Addr.Register Name Bit 7654321Bit 0
$001C Unimplemented
$001D
$001E
$001F
$0020
$0021
$0022
$0023
$0024
$0025
$0026
IRQ Status and Control
Register (INTSCR)
See page 81.
Configuration Register 2
(CONFIG2)
See page 56.
Configuration Register 1
(CONFIG1)
See page 56.
TIM Status and Control
Register (TSC)
See page 141.
TIM Counter Register High
(TCNTH)
See page 143.
TIM Counter Register Low
(TCNTL)
See page 143.
TIM Counter Modulo
Register High (TMODH)
See page 143.
TIM Counter Modulo
Register Low (TMODL)
See page 143.
TIM Channel 0 Status and
Control Register (TSC0)
See page 144.
TIM Channel 0
Register High (TCH0H)
See page 147.
Read: 0 0 0 0 IRQF 0
Write: ACK
IMASK MODE
Reset:00000000
Read:
(1)
Reset:00000000
IRQPUD IRQEN R OSCOPT1 OSCOPT0 R R RSTEN
Write:
(2)
1. One-time writable register after each reset.
2. RSTEN reset to 0 by a power-on reset (POR) only.
Read:
(1)
Write:
Reset:00000
COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3 SSREC STOP COPD
(2)
000
1. One-time writable register after each reset.
2. LVI5OR3 reset to 0 by a power-on reset (POR) only.
Read: TOF
Write: 0 TRST
TOIE TSTOP
00
PS2 PS1 PS0
Reset:00100000
Read: Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Write:
Reset:00000000
Read: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Write:
Reset:00000000
Read:
Write:
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Reset:11111111
Read:
Write:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset:11111111
Read: CH0F
Write: 0
CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX
Reset:00000000
Read:
Write:
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Reset: Indeterminate after reset
= Unimplemented R = Reserved U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 5)
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Memory 29
Memory
Addr.Register Name Bit 7654321Bit 0
Read:
Write:
Reset: Indeterminate after reset
Read: CH1F
Write: 0
Reset:00000000
Read:
Write:
Reset: Indeterminate after reset
Read:
Write:
Reset: Indeterminate after reset
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
CH1IE
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0
MS1A ELS1B ELS1A TOV1 CH1MAX
$0027
$0028
$0029
$002A
$002B
$0035
TIM Channel 0
Register Low (TCH0L)
See page 147.
TIM Channel 1 Status and
Control Register (TSC1)
See page 144.
TIM Channel 1
Register High (TCH1H)
See page 147.
TIM Channel 1
Register Low (TCH1L)
See page 147.
Unimplemented
Oscillator Status Register
$0036
$0037 Unimplemented Read:
Oscillator Trim Register
$0038
$0039
$003B
ADC Status and Control
$003C
$003D Unimplemented
$003E
(OSCSTAT)
See page 103.
(OSCTRIM)
See page 104.
Unimplemented
Register (ADSCR)
See page 46.
ADC Data Register
(ADR)
See page 47.
Read:
Write:
Reset:00000000
Read:
Write:
Reset:10000000
Read: COCO
Write:
Reset:00011111
Read:
Write:
Reset: Indeterminate after reset
RRRRRRECGON
TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 TRIM0
AIEN ADCO CH4 CH3 CH2 CH1 CH0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
= Unimplemented R = Reserved U = Unaffected
ECGST
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 5)
Data Sheet MC68HC908QY/QT Family — Rev. 3
30 Memory MOTOROLA
Memory
Input/Output (I/O) Section
Addr.Register Name Bit 7654321Bit 0
$003F
$FE00
ADC Input Clock Register
(ADICLK)
See page 48.
Break Status Register
(BSR)
See page 155.
Read:
Write:
Reset:00000000
Read:
Write: See note 1
Reset: 0
ADIV2 ADIV1 ADIV0
RRRRRR
1. Writing a 0 clears SBSW.
00000
SBSW
R
SIM Reset Status Register
$FE01
$FE02
$FE03
$FE04
$FE05
$FE06
$FE07 Reserved RRRRRRRR
Register (BRKAR)
Break Flag Control
Interrupt Status Register 1
Interrupt Status Register 2
Interrupt Status Register 3
(SRSR)
See page 129.
Break Auxiliary
See page 154.
Register (BFCR)
See page 155.
(INT1)
See page 81.
(INT2)
See page 81.
(INT3)
See page 81.
Read: POR PIN COP ILOP ILAD MODRST LVI 0
Write:
POR:10000000
Read:0000000
Write:
Reset:00000000
Read:
Write:
Reset: 0
Read: 0 IF5 IF4 IF3 0 IF1 0 0
Write:RRRRRRRR
Reset:00000000
Read:IF140000000
Write:RRRRRRRR
Reset:00000000
Read:0000000IF15
Write:RRRRRRRR
Reset:00000000
BCFERRRRRRR
BDCOP
Read: 0 0 0 0
Write:
Reset:00000000
Read:
Write:
Reset:00000000
Read:
Write:
Reset:00000000
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
= Unimplemented R = Reserved U = Unaffected
HVEN MASS ERASE PGM
$FE08
$FE09
$FE0A
FLASH Control Register
(FLCR)
See page 34.
Break Address High
Register (BRKH)
See page 154.
Break Address low
Register (BRKL)
See page 154.
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 5)
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Memory 31
Memory
Addr.Register Name Bit 7654321Bit 0
$FE0B
$FE0C
$FE0D
$FE0F
Break Status and Control
Register (BRKSCR)
See page 153.
LVI Status Register
(LVISR)
See page 93.
Reserved for FLASH Test RRRRRRRR
Read:
Write:
Reset:00000000
Read:LVIOUT000000R
Write:
Reset:00000000
BRKE BRKA
000000
FLASH Block Protect
$FFBE
$FFBF Reserved RRRRRRRR
$FFC0
$FFC1 Reserved RRRRRRRR
$FFFF
Register (FLBPR)
See page 39.
Internal Oscillator Trim
Value (Optional)
COP Control Register
(COPCTL)
See page 61.
Read:
Write:
Reset: Unaffected by reset
Read:
Write:
Reset: Unaffected by reset
Read: LOW BYTE OF RESET VECTOR
Write: WRITING CLEARS COP COUNTER (ANY VALUE)
Reset: Unaffected by reset
BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0
TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 TRIM0
= Unimplemented R = Reserved U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 5)
Data Sheet MC68HC908QY/QT Family — Rev. 3
32 Memory MOTOROLA
Memory
Random-Access Memory (RAM)
Table 2-1. Vector Addresses
Vector Priority Vector Address Vector
Lowest
IF15
IF14
IF13
IF6
IF5
IF4
IF3
IF2 Not used
IF1
$FFDE ADC conversion complete vector (high) $FFDF ADC conversion complete vector (low)
$FFE0 Keyboard vector (high) $FFE1 Keyboard vector (low)
Not used
$FFF2 TIM overflow vector (high) $FFF3 TIM overflow vector (low) $FFF4 TIM Channel 1 vector (high) $FFF5 TIM Channel 1 vector (low) $FFF6 TIM Channel 0 vector (high) $FFF7 TIM Channel 0 vector (low)
$FFF A IRQ
$FFFB IRQ
.
vector (high) vector (low)
Highest

2.5 Random-Access Memory (RAM)

Addresses $0080–$00FF are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space.
NOTE: For correct operation, the stack pointer must point only to RAM locations.
Before processing an interrupt, the central processor unit (CPU) uses five bytes of the stack to save the contents of the CPU registers.
NOTE: For M6805, M146805, and M68HC05 compatibility, the H register is not stacked.
During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls.
NOTE: Be careful when using nested subroutines. The CPU may overwrite data in the
RAM during a subroutine or during the interrupt stacking operation.
$FFFC SWI vector (high) $FFFD SWI vector (low) $FFFE Reset vector (high)
$FFFF Reset vector (low)
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Memory 33
Memory

2.6 FLASH Memory (FLASH)

This subsection describes the operation of the embedded FLASH memory. The FLASH memory can be read, programmed, and erased from a single external supply. The program and erase operations are enabled through the use of an internal charge pump.
The FLASH memory consists of an array of 4096 or 1536 bytes with an additional 48 bytes for user vectors. The minimum size of FLASH memory that can be erased is 64 bytes; and the maximum size of FLASH memory that can be programmed in a program cycle is 32 bytes (a row). Program and erase operations are facilitated through control bits in the FLASH control register (FLCR). Details for these operations appear later in this section. The address ranges for the user memory and vectors are:
$EE00 – $FDFF; user memory, 4096 bytes: MC68HC908QY4 and MC68HC908QT4
$F800 – $FDFF; user memory, 1536 bytes: MC68HC908QY2, MC68HC908QT2, MC68HC908QY1 and MC68HC908QT1
$FFD0 – $FFFF; user interrupt vectors, 48 bytes.
NOTE: An erased bit reads as a 1 and a programmed bit reads as a 0.
A security feature prevents viewing of the FLASH contents.

2.6.1 FLASH Control Register

The FLASH control register (FLCR) controls FLASH program and erase operations.
Address: $FE08
Read:0000
Write:
Reset:00000000
HVEN — High Voltage Enable Bit
This read/write bit enables high voltage from the charge pump to the memory for either program or erase operation. It can only be set if either PGM =1 or ERASE =1 and the proper sequence for program or erase is followed.
1 = High voltage enabled to array and charge pump on 0 = High voltage disabled to array and charge pump off
(1)
Bit 7654321Bit 0
HVEN MASS ERASE PGM
Figure 2-3. FLASH Control Register (FLCR)
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users.
Data Sheet MC68HC908QY/QT Family — Rev. 3
34 Memory MOTOROLA
MASS — Mass Erase Control Bit
This read/write bit configures the memory for mass erase operation.
1 = Mass erase operation selected 0 = Mass erase operation unselected
ERASE — Erase Control Bit
This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit such that both bits cannot be equal to 1 or set to 1 at the same time.
1 = Erase operation selected 0 = Erase operation unselected
PGM — Program Control Bit
This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE bit such that both bits cannot be equal to 1 or set to 1 at the same time.
1 = Program operation selected 0 = Program operation unselected

2.6.2 FLASH Page Erase Operation

Memory
FLASH Memory (FLASH)
Use the following procedure to erase a page of FLASH memory. A page consists of 64 consecutive bytes starting from addresses $XX00, $XX40, $XX80, or $XXC0. The 48-byte user interrupt vectors area also forms a page. Any FLASH memory page can be erased alone.
1. Set the ERASE bit and clear the MASS bit in the FLASH control register.
2. Read the FLASH block protect register.
3. Write any data to any FLASH location within the address range of the block to be erased.
4. Wait for a time, t
(minimum 10 µs).
NVS
5. Set the HVEN bit.
6. Wait for a time, t
(minimum 1 ms or 4 ms).
Erase
7. Clear the ERASE bit.
8. Wait for a time, t
(minimum 5 µs).
NVH
9. Clear the HVEN bit.
10. After time, t
(typical 1 µs), the memory can be accessed in read mode
RCV
again.
NOTE: Programming and erasing of FLASH locations cannot be performed by code being
executed from the FLASH memory. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps.
CAUTION: A page erase of the vector page will erase the internal oscillator trim value at
$FFC0.
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Memory 35
Memory
In applications that require more than 1000 program/erase cycles, use the 4 ms page erase specification to get improved long-term reliability. Any application can use this 4 ms page erase specification. However, in applications where a FLASH location will be erased and reprogrammed less than 1000 times, and speed is important, use the 1 ms page erase specification to get a shorter cycle time.

2.6.3 FLASH Mass Erase Operation

Use the following procedure to erase the entire FLASH memory to read as a 1:
1. Set both the ERASE bit and the MASS bit in the FLASH control register.
2. Read the FLASH block protect register.
3. Write any data to any FLASH address range.
4. Wait for a time, t
5. Set the HVEN bit.
6. Wait for a time, t
7. Clear the ERASE and MASS bits.
(minimum 10 µs).
NVS
MErase
(minimum 4 ms).
(1)
within the FLASH memory address
NOTE: Mass erase is disabled whenever any block is protected (FLBPR does not equal
$FF).
8. Wait for a time, t
9. Clear the HVEN bit.
10. After time, t again.
NOTE: Programming and erasing of FLASH locations cannot be performed by code being
executed from the FLASH memory. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps.
CAUTION: A mass erase will erase the internal oscillator trim value at $FFC0.

2.6.4 FLASH Program Operation

Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0, or $XXE0. Use the following step-by-step procedure to program a row of FLASH memory
Figure 2-4 shows a flowchart of the programming algorithm.
NOTE: Only bytes which are currently $FF may be programmed.
(minimum 100 µs).
NVHL
(typical 1 µs), the memory can be accessed in read mode
RCV
1. When in monitor mode, with security sequence failed (see 15.3.2 Security), write to the FLASH block protect register instead of any FLASH address.
Data Sheet MC68HC908QY/QT Family — Rev. 3
36 Memory MOTOROLA
Memory
FLASH Memory (FLASH)
1. Set the PGM bit. This configures the memory for program operation and enables the latching of address and data for programming.
2. Read the FLASH block protect register.
3. Write any data to any FLASH location within the address range desired.
4. Wait for a time, t
(minimum 10 µs).
NVS
5. Set the HVEN bit.
6. Wait for a time, t
7. Write data to the FLASH address being programmed
8. Wait for time, t
(minimum 5 µs).
PGS
(minimum 30 µs).
PROG
(1)
.
9. Repeat step 7 and 8 until all desired bytes within the row are programmed.
10. Clear the PGM bit
11. Wait for time, t
(1)
.
(minimum 5 µs).
NVH
12. Clear the HVEN bit.
13. After time, t
(typical 1 µs), the memory can be accessed in read mode
RCV
again.
NOTE: The COP register at location $FFFF should not be written between steps 5–12,
when the HVEN bit is set. Since this register is located at a valid FLASH address, unpredictable behavior may occur if this location is written while HVEN is set.
This program sequence is repeated throughout the memory until all data is programmed.
NOTE: Programming and erasing of FLASH locations cannot be performed by code being
executed from the FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Do not exceed t

2.6.5 FLASH Protection

Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made to protect blocks of memory from unintentional erase or program operations due to system malfunction. This protection is done by use of a FLASH block protect register (FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range of the protected area starts from a location defined by FLBPR and ends to the bottom of the FLASH memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or PROGRAM operations.
NOTE: In performing a program or erase operation, the FLASH block protect register must
be read after setting the PGM or ERASE bit and before asserting the HVEN bit.
maximum, see 16.16 Memory Characteristics.
PROG
1. The time between each FLASH address change, or the time between the last FLASH address programmed to clearing PGM bit, must not exceed the maximum programming time, t maximum.
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Memory 37
PROG
Memory
Algorithm for Programming a Row (32 Bytes) of FLASH Memory
1
2
READ THE FLASH BLOCK PROTECT REGISTER
3
WRITE ANY DATA TO ANY FLASH ADDRESS
WITHIN THE ROW ADDRESS RANGE DESIRED
4
5
6
7
WRITE DATA TO THE FLASH ADDRESS
8
SET PGM BIT
WAIT FOR A TIME, t
SET HVEN BIT
WAIT FOR A TIME, t
TO BE PROGRAMMED
WAIT FOR A TIME, t
PROG
NVS
PGS
9
NOTES:
The time between each FLASH address change (step 7 to step 7), or the time between the last FLASH address programmed to clearing PGM bit (step 7 to step 10) must not exceed the maximum programming
PROG
max.
time, t This row program algorithm assumes the row/s
to be programmed are initially erased.
Figure 2-4. FLASH Programming Flowchart
COMPLETED
PROGRAMMING
THIS ROW?
N
Y
10
11
12
13
CLEAR PGM BIT
WAIT FOR A TIME, t
CLEAR HVEN BIT
WAIT FOR A TIME, t
END OF PROGRAMMING
NVH
RCV
Data Sheet MC68HC908QY/QT Family — Rev. 3
38 Memory MOTOROLA
When the FLBPR is programmed with all 0 s, the entire memory is protected from being programmed and erased. When all the bits are erased (all 1’s), the entire memory is accessible for program and erase.
When bits within the FLBPR are programmed, they lock a block of memory. The address ranges are shown in 2.6.6 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than $FF, any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. Mass erase is disabled whenever any block is protected (FLBPR does not equal $FF). The FLBPR itself can be erased or programmed only with an external voltage, V present on the IRQ mode.

2.6.6 FLASH Block Protect Register

The FLASH block protect register is implemented as a byte within the FLASH memory, and therefore can only be written during a programming sequence of the FLASH memory. The value in this register determines the starting address of the protected range within the FLASH memory.
Memory
FLASH Memory (FLASH)
,
TST
pin. This voltage also allows entry from reset into the monitor
Address: $FFBE
Bit 7654321Bit 0
Read:
Write:
Reset: Unaffected by reset. Initial value from factory is 1.
Write to this register is by a programming sequence to the FLASH memory.
BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0
Figure 2-5. FLASH Block Protect Register (FLBPR)
BPR[7:0] — FLASH Protection Register Bits [7:0]
These eight bits in FLBPR represent bits [13:6] of a 16-bit memory a ddress. Bits [15:14] are 1s and bits [5:0] are 0s.
The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF. With this mechanism, the protect start address can be XX00, XX40, XX80, or XXC0 within the FLASH memory. See Figure 2-6 and Table 2-2.
16-BIT MEMORY ADDRESS
START ADDRESS OF
FLASH BLOCK PROTECT
FLBPR VALUE
0
0
00011
0
Figure 2-6. FLASH Block Protect Start Address
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Memory 39
Memory

2.6.7 Wait Mode

Table 2-2. Examples of Protect Start Address
BPR[7:0] Start of Address of Protect Range
$00–$B8 The entire FLASH memory is protected.
$B9 (1011 1001) $EE40 (1110 1110 0100 0000) $BA (1011 1010) $EE80 (1110 1110 1000 0000) $BB (1011 1011) $EEC0 (1110 1110 1100 0000) $BC (1011 1100) $EF00 (1110 1111 0000 0000)
and so on... $DE (1101 1110) $F780 (1111 0111 1000 0000) $DF (1101 1111)$F7C0 (1111 0111 1100 0000)
$FE (1111 1110)
$FF The entire FLASH memory is not protected.
$FF80 (1111 1111 1000 0000)
FLBPR, OSCTRIM, and vectors are protected

2.6.8 Stop Mode

NOTE: Standby mode is the power-saving mode of the FLASH module in which all internal
Putting the MCU into wait mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive.
The WAIT instruction should not be executed while performing a program or erase operation on the FLASH, or the operation will discontinue and the FLASH will be on standby mode.
Putting the MCU into stop mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive.
The STOP instruction should not be executed while performing a program or erase operation on the FLASH, or the operation will discontinue and the FLASH will be on standby mode
control signals to the FLASH are inactive and the current consumption of the FLASH is at a minimum.
Data Sheet MC68HC908QY/QT Family — Rev. 3
40 Memory MOTOROLA
Data Sheet — MC68HC908QY/QT Family

Section 3. Analog-to-Digital Converter (ADC)

3.1 Introduction

This section describes the analog-to-digital converter (ADC). The ADC is an 8-bit, 4-channel analog-to-digital converter. The ADC module is only available on the MC68HC908QY2, MC68HC908QT2, MC68HC908QY4, and MC68HC908QT4.

3.2 Features

Features of the ADC module include:
4 channels with multiplexed input
Linear successive approximation with monotonicity
8-bit resolution
Single or continuous conversion
Conversion complete flag or conversion complete interrupt
Selectable ADC clock frequency
Figure 3-1 provides a summary of the input/output (I/O) registers.
Addr.Register Name Bit 7654321Bit 0
ADC Status and Control
$003C
$003D Unimplemented
$003E
$003F
Register (ADSCR)
See page 46.
ADC Data Register
(ADR)
See page 47.
ADC Input Clock Register
(ADICLK)
See page 48.
Read: COCO
Write:
Reset:00011111
Read: AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
Write:
Reset: Indeterminate after reset
Read:
Write:
Reset:00000000
ADIV2 ADIV1 ADIV0
AIEN ADCO CH4 CH3 CH2 CH1 CH0
00000
= Unimplemented
Figure 3-1. ADC I/O Register Summary
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Analog-to-Digital Converter (ADC) 41
Analog-to-Digital Converter (ADC)
PTA0/AD0/TCH0/KBI0
PTA1/AD1/TCH1/KBI1
PTA2/IRQ
/KBI2/TCLK
PTA3/RST
PTA4/OSC2/AD2/KBI4
PTA5/OSC1/AD3/KBI5
/KBI3
PTB0 PTB1 PTB2 PTB3 PTB4 PTB5 PTB6 PTB7
POWER SUPPLY
PTA
PTB
8-BIT ADC
128 BYTES RAM
DDRA
DDRB
V
DD
V
SS
M68HC08 CPU
MC68HC908QY4 AND MC68HC908QT4
4096 BYTES
MC68HC908QY2, MC68HC908QY1,
MC68HC908QT2, AND MC68HC908QT1:
1536 BYTES
USER FLASH
CLOCK
GENERATOR
(OSCILLATOR)
SYSTEM INTEGRATION
MODULE
SINGLE INTERRUPT
MODULE
BREAK
MODULE
POWER-ON RESET
MODULE
KEYBOARD INTERRUPT
MODULE
16-BIT TIMER
MODULE
COP
MODULE
MONITOR ROM
RST, IRQ: Pins have internal (about 30K Ohms) pull up
PTA[0:5]: High current sink and source capability PTA[0:5]: Pins have programmable keyboard interrupt and pull up
PTB[0:7]: Not available on 8-pin devices – MC68HC908QT1, MC68HC908QT2, and MC68HC908QT4
ADC: Not available on the MC68HC908QY1 and MC68HC908QT1
Figure 3-2. Block Diagram Highlighting ADC Block and Pins
Data Sheet MC68HC908QY/QT Family — Rev. 3
42 Analog-to-Digital Converter (ADC) MOTOROLA

3.3 Functional Description

Four ADC channels are available for sampling external sources at pins PTA0, PTA1, PTA4, and PTA5. An analog multiplexer allows the single ADC converter to select one of the four ADC channels as an ADC voltage input (ADCVIN). ADCVIN is converted by the successive approximation register-based counters. The ADC resolution is eight bits. When the conversion is completed, ADC puts the result in the ADC data register and sets a flag or generates an interrupt.
Figure 3-3 shows a block diagram of the ADC.
INTERNAL DATA BUS
READ DDRA
Analog-to-Digital Converter (ADC)
Functional Description
WRITE DDRA
WRITE PTA
READ PTA
INTERRUPT
LOGIC
AIEN COCO
CONVERSION COMPLETE
RESET
ADC DATA REGISTER
ADC
DDRAx
PTAx
ADC CLOCK
ADC VOLTAGE IN ADCVIN
DISABLE
DISABLE
ADC CHANNEL x
CHANNEL
SELECT
(1 OF 4 CHANNELS)
ADCx
CH[4:0]
BUS CLOCK
CLOCK
GENERATOR
ADIV[2:0]
Figure 3-3. ADC Block Diagram
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Analog-to-Digital Converter (ADC) 43
Analog-to-Digital Converter (ADC)

3.3.1 ADC Port I/O Pins

PTA0, PTA1, PTA4, and PTA5 are general-purpose I/O pins that are shared with the ADC channels. The channel select bits (ADC status and control register (ADSCR), $003C), define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port register or data direction register (DDR) will not have any affect on the port pin that is selected by the ADC. Read of a port pin which is in use by the ADC will return a 0 if the corresponding DDR bit is at 0. If the DDR bit is at 1, the value in the port data latch is read.

3.3.2 Voltage Conversion

When the input voltage to the ADC equals V (full scale). If the input voltage equals V voltages between V voltages will result in $FF if greater than V
NOTE: Input voltage should not exceed the analog supply voltages.

3.3.3 Conversion Time

Sixteen ADC internal clocks are required to perform one conversion. The ADC starts a conversion on the first rising edge of the ADC internal clock immediately following a write to the ADSCR. If the ADC internal clock is selected to run at 1 MHz, then one conversion will take 16 µs to complete. With a 1-MHz ADC internal clock the maximum sample rate is 62.5 kHz.

3.3.4 Continuous Conversion

In the continuous conversion mode (ADCO = 1), the ADC continuously converts the selected channel filling the ADC data register (ADR) with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The COCO bit (ADSCR, $003C) is set after each conversion and will stay set until the next read of the ADC data register.
, the ADC converts the signal to $FF
DD
the ADC converts it to $00. Input
SS,
and V
DD
Conversion Time =
Number of Bus Cycles = Conversion Time × Bus Frequency
are a straight-line linear conversion. All other input
SS
and $00 if less than VSS.
DD
16 ADC Clock Cycles
ADC Clock Frequency
When a conversion is in process and the ADSCR is written, the current conversion data should be discarded to prevent an incorrect reading.

3.3.5 Accuracy and Precision

The conversion process is monotonic and has no missing codes.
Data Sheet MC68HC908QY/QT Family — Rev. 3
44 Analog-to-Digital Converter (ADC) MOTOROLA

3.4 Interrupts

When the AIEN bit is set, the ADC module is capable of generating a central processor unit (CPU) interrupt after each ADC conversion. A CPU interrupt is generated if the COCO bit is at 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled.

3.5 Low-Power Modes

The following subsections describe the ADC in low-power modes.

3.5.1 Wait Mode

The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the microcontroller unit (MCU) out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting the CH[4:0] bits in ADSCR to 1s before executing the WAIT instruction.

3.5.2 Stop Mode

Analog-to-Digital Converter (ADC)
Interrupts
The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the analog circuitry before using ADC data after exiting stop mode.

3.6 Input/Output Signals

The ADC module has four channels that are shared with I/O port A. ADC voltage in (ADCVIN) is the input voltage signal from one of the four ADC
channels to the ADC module.

3.7 Input/Output Registers

These I/O registers control and monitor ADC operation:
ADC status and control register (ADSCR)
ADC data register (ADR)
ADC clock register (ADICLK)
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Analog-to-Digital Converter (ADC) 45
Analog-to-Digital Converter (ADC)

3.7.1 ADC Status and Control Register

The following paragraphs describe the function of the ADC status and control register (ADSCR). When a conversion is in process and the ADSCR is written, the current conversion data should be discarded to prevent an incorrect reading.
Address: $003C
Bit 7654321Bit 0
Read: COCO
Write:
Reset:00011111
Figure 3-4. ADC Status and Control Register (ADSCR)
COCO — Conversions Complete Bit
In non-interrupt mode (AIEN = 0), COCO is a read-only bit that is set at the end of each conversion. COCO will stay set until cleared by a read of the ADC data register. Reset clears this bit.
AIEN ADCO CH4 CH3 CH2 CH1 CH0
= Unimplemented
In interrupt mode (AIEN = 1), COCO is a read-only bit that is not set at the end of a conversion. It always reads as a 0.
1 = Conversion completed (AIEN = 0) 0 = Conversion not completed (AIEN = 0) or CPU interrupt enabled
(AIEN = 1)
NOTE: The write function of the COCO bit is reserved. When writing to the ADSCR
register, always have a 0 in the COCO bit position.
AIEN — ADC Interrupt Enable Bit
When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when ADR is read or ADSCR is written. Reset clears the AIEN bit.
1 = ADC interrupt enabled 0 = ADC interrupt disabled
ADCO — ADC Continuous Conversion Bit
When set, the ADC will convert samples continuously and update ADR at the end of each conversion. Only one conversion is allo wed when this bit is cleared. Reset clears the ADCO bit.
1 = Continuous ADC conversion 0 = One ADC conversion
CH[4:0] — ADC Channel Select Bits
CH4, CH3, CH2, CH1, and CH0 form a 5-bit field which is used to select one of the four ADC channels. The five select bits are detailed in Table 3-1. Care should be taken when using a port pin as both an analog and a digital input simultaneously to prevent switching noise from corrupting the analog signal.
Data Sheet MC68HC908QY/QT Family — Rev. 3
46 Analog-to-Digital Converter (ADC) MOTOROLA
Analog-to-Digital Converter (ADC)
Input/Output Registers
The ADC subsystem is turned off when the channel select bits are all set to 1. This feature allows for reduced power consumption for the MCU when the ADC is not used. Reset sets all of these bits to 1.
NOTE: Recovery from the disabled state requires one conversion cycle to stabilize.
Table 3-1. MUX Channel Select

3.7.2 ADC Data Register

CH4 CH3 CH2 CH1 CH0
00000ADC0 PTA0 00001ADC1 PTA1 00010ADC2 PTA4 00011ADC3 PTA5 00100 — ↓↓↓↓↓ — 11010 — 11011 — Reserved 11
11 11
111 1 1—ADC power off
1. If any unused channels are selected, the resulting ADC conversi on will be unknown.
2. The voltage levels supplied from internal reference nodes, as specified in the table, are used to verify the operation of the ADC converter both in produc­tion test and for user applications.
1 0 0 Unused 1 0 1—
1 1 0—
ADC
Channel
Input Select
V V
DDA
SSA
(1)
(2)
(2)
Unused
One 8-bit result register is provided. This register is updated each time an ADC conversion completes.
Address: $003E
Bit 7654321Bit 0
Read: AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
Write:
Reset: Indeterminate after reset
= Unimplemented
Figure 3-5. ADC Data Register (ADR)
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Analog-to-Digital Converter (ADC) 47
Analog-to-Digital Converter (ADC)

3.7.3 ADC Input Clock Register

This register selects the clock frequency for the ADC.
Address: $003F
Bit 7654321Bit 0
Read:
Write:
Reset:00000000
ADIV2–ADIV0 — ADC Clock Prescaler Bits
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 3-2 shows the available clock configurations. The ADC clock frequency should be set between f
and f conversion time (maximum = 17 ADC clock cycles).
ADIV2 ADIV1 ADIV0
Figure 3-6. ADC Input Clock Register (ADICLK)
ADIC(MAX)
00000
= Unimplemented
ADIC(MIN)
. The analog input level should remain stable for the entire
Table 3-2. ADC Clock Divide Ratio
ADIV2 ADIV1 ADIV0 ADC Clock Rate
0 0 0 Bus clock ÷ 1 0 0 1 Bus clock ÷ 2 0 1 0 Bus clock ÷ 4 0 1 1 Bus clock ÷ 8 1 X X Bus clock ÷ 16
X = don’t care
Data Sheet MC68HC908QY/QT Family — Rev. 3
48 Analog-to-Digital Converter (ADC) MOTOROLA
Data Sheet — MC68HC908QY/QT Family

4.1 Introduction

This section describes the auto wakeup module (AWU). The AWU generates a periodic interrupt during stop mode to wake the part up without requiring an external signal. Figure 4-2 is a block diagram of the AWU.

4.2 Features

Features of the auto wakeup module include:
One internal interrupt with separate interrupt enable bit, sharing the same keyboard interrupt vector and keyboard interrupt mask bit
Exit from low-power stop mode without external signals
Selectable timeout periods
Dedicated low-power internal oscillator separate from the main system clock sources

Section 4. Auto Wakeup Module (AWU)

Figure 4-1 provides a summary of the input/output (I/O) registers used in
conjuction with the AWU.
Addr.Register Name Bit 7654321Bit 0
$0000
$001A
$001B
Port A Data Register
(PTA)
See page 52.
Keyboard Status
and Control Register
(KBSCR)
See page 52.
Keyboard Interrupt Enable
Register (KBIER)
See page 53.
Read: 0 AWUL
Write:
Reset: Unaffected by reset
Read:0000KEYF 0
Write:
Reset:00000000
Read: 0
Write:
Reset:00000000
AWUIE KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0
= Unimplemented
PTA5 PTA4 PTA3
PTA2
ACKK
PTA1 PTA0
IMASKK MODEK
Figure 4-1. AWU Register Summary
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Auto Wakeup Module (AWU) 49
Auto Wakeup Module (AWU)

4.3 Functional Description

The function of the auto wakeup logic is to generate periodic wakeup requests to bring the microcontroller unit (MCU) out of stop mode. The wakeup requests are treated as regular keyboard interrupt requests, with the differe nce that instead of a pin, the interrupt signal is generated by an internal logic.
Writing the AWUIE bit in the keyboard interrupt enable register enables or disables the auto wakeup interrupt input (see Figure 4-2). A logic 1 applied to the AWUIREQ input with auto wakeup interrupt request enabled, latches an auto wakeup interrupt request.
Auto wakeup latch, AWUL, can be read directly from the bit 6 position of port A data register (PTA). This is a read-only bit which is occupying an empty bit position on PTA. No PTA associated registers, such as PTA6 data direction or PTA6 pullup exist for this bit.
Entering stop mode will enable the auto wakeup generation logic. An internal RC oscillator (exclusive for the auto wakeup feature) drives the wakeup request generator. Once the overflow count is reached in the generator counter, a wakeup request, AWUIREQ, is latched and sent to the KBI logic. See Figure 4-1.
(CGMXCLK)
BUSCLKX4
Wakeup interrupt requests will only be serviced if the associated interrupt enable bit, AWUIE, in KBIER is set. The AWU shares the keyboard interrupt vector.
COPRS (FROM CONFIG1)
INT RC OSC
EN 32 kHz
CLRLOGIC
CLEAR
CLK
RST
RESET
AUTOWUGE N
SHORT
OVERFLOW
CLK
RST
ISTOP
1 = DIV 2 0 = DIV 2
V
DD
9 14
RESET
ACKK
D
Q
E
R
TO PTA READ, BIT 6
AWUL
AWUIREQ
TO KBI INTERRUPT LOGIC (SEE
Figure 9-3. Keyboard Interrupt Block Diagram)
RESET
AWUI E
Figure 4-2. Auto Wakeup Interrupt Request Generation Logic
Data Sheet MC68HC908QY/QT Family — Rev. 3
50 Auto Wakeup Module (AWU) MOTOROLA
Auto Wakeup Module (AWU)
Wait Mode
The overflow count can be selected from two options d efined by the COPRS bit in CONFIG1. This bit was “borrowed” from the computer operating properly (COP) using the fact that the COP feature is idle (no MCU clock available) in stop mode. The typical values of the periodic wakeup request are (at room temperature):
COPRS = 0: 650 ms @ 5 V, 875 ms @ 3 V
COPRS = 1: 16 ms @ 5 V, 22 ms @ 3 V
The auto wakeup RC oscillator is highly dependent on operating voltage and temperature. This feature is not recommended for use as a time-keeping function.
The wakeup request is latched to allow the interrupt source identification. The latched value, AWUL, can be read directly from the bit 6 position of PTA data register. This is a read-only bit which is occupying an empty bit position on PTA. No PTA associated registers, such as PTA6 data, PTA6 direction, and PTA6 pullup exist for this bit. The latch can be cleared by writing to the ACKK bit in the KBSCR register. Reset also clears the latch. AWUIE bit in KBI interrupt enable register (see
Figure 4-2) has no effect on AWUL reading.
The AWU oscillator and counters are inactive in normal operating mode and become active only upon entering stop mode.

4.4 Wait Mode

The AWU module remains inactive in wait mode.

4.5 Stop Mode

When the AWU module is enabled (AWUIE = 1 in the keyboard interrupt enable register) it is activated automatically upon entering stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode. The AWU counters start from ‘0’ each time stop mode is entered.

4.6 Input/Output Registers

The AWU shares registers with the keyboard interrupt (KBI) module and the port A I/O module. The following I/O registers control and monitor operation of the AWU:
Port A data register (PTA)
Keyboard interrupt status and control register (KBSCR)
Keyboard interrupt enable register (KBIER)
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Auto Wakeup Module (AWU) 51
Auto Wakeup Module (AWU)

4.6.1 Port A I/O Register

The port A data register (PTA) contains a data latch for the state of the AWU interrupt request, in addition to the data latches for port A.
Address: $0000
Read: 0 AWUL
Write:
Reset: 0 0 Unaffected by reset
AWUL — Auto Wakeup Latch
This is a read-only bit which has the value of the auto wakeup interrupt request latch. The wakeup request signal is generated internally. There is no PTA6 port or any of the associated bits such as PTA6 data direction or pullup bits.
1 = Auto wakeup interrupt request is pending 0 = Auto wakeup interrupt request is not pending
Bit 7654321Bit 0
PTA5 PTA4 PTA3
= Unimplemented
PTA2
PTA1 PTA0
Figure 4-3. Port A Data Register (PTA)
NOTE: PTA5–PTA0 bits are not used in conjuction with the auto wakeup feature. To see
a description of these bits, see 12.2.1 Port A Data Register.

4.6.2 Keyboard Status and Control Register

The keyboard status and control register (KBSCR):
Flags keyboard/auto wakeup interrupt requests
Acknowledges keyboard/auto wakeup interrupt requests
Masks keyboard/auto wakeup interrupt requests
Address: $001A
Bit 7654321Bit 0
Read:0000KEYF0
Write: ACKK
Reset:00000000
= Unimplemented
Figure 4-4. Keyboard Status and Control Register (KBSCR)
Bits 7–4 — Not used
These read-only bits always read as 0s.
KEYF — Keyboard Flag Bit
This read-only bit is set when a keyboard interrupt is pending on port A or auto wakeup. Reset clears the KEYF bit.
1 = Keyboard/auto wakeup interrupt pending 0 = No keyboard/auto wakeup interrupt pending
IMASKK MODEK
Data Sheet MC68HC908QY/QT Family — Rev. 3
52 Auto Wakeup Module (AWU) MOTOROLA
ACKK — Keyboard Acknowledge Bit
Writing a 1 to this write-only bit clears the keyboard/auto wakeup interrupt request on port A and auto wakeup logic. ACKK always reads as 0.Reset clears ACKK.
IMASKK— Keyboard Interrupt Mask Bit
Writing a 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests on port A or auto wakeup. Reset clears the IMASKK bit.
1 = Keyboard/auto wakeup interrupt requests masked 0 = Keyboard/auto wakeup interrupt requests not masked
NOTE: MODEK is not used in conjuction with the auto wakeup feature. To see a
description of this bit, see 9.7.1 Keyboard Status and Control Register.

4.6.3 Keyboard Interrupt Enable Register

The keyboard interrupt enable register (KBIER) enables or disables the auto wakeup to operate as a keyboard/auto wakeup interrupt input.
Auto Wakeup Module (AWU)
Input/Output Registers
Address: $001B
Bit 7654321Bit 0
Read: 0
Write:
Reset:00000000
AWUIE KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0
= Unimplemented
Figure 4-5. Keyboard Interrupt Enable Register (KBIER)
AWUIE — Auto Wakeup Interrupt Enable Bit
This read/write bit enables the auto wakeup interrupt input to latch interrupt requests. Reset clears AWUIE.
1 = Auto wakeup enabled as interrupt input 0 = Auto wakeup not enabled as interrupt input
NOTE: KBIE5–KBIE0 bits are not used in conjuction with the auto wakeup feature. To see
a description of these bits, see 9.7.2 Keyboard Interrupt Enable Register.
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Auto Wakeup Module (AWU) 53
Auto Wakeup Module (AWU)
Data Sheet MC68HC908QY/QT Family — Rev. 3
54 Auto Wakeup Module (AWU) MOTOROLA
Data Sheet — MC68HC908QY/QT Family

Section 5. Configuration Register (CONFIG)

5.1 Introduction

This section describes the configuration registers (CONFIG1 and CONFIG2). The configuration registers enable or disable the following options:
Stop mode recovery time (32 × BUSCLKX4 cycles or 4096 × BUSCLKX4 cycles)
•STOP instruction
Computer operating properly module (COP)
COP reset period (COPRS): (2
18–24
(2
Low-voltage inhibit (LVI) enable and trip voltage selection
OSC option selection
) × BUSCLKX4
13–24
) × BUSCLKX4 or
•IRQ
•RST
Auto wakeup timeout period

5.2 Functional Description

The configuration registers are used in the initialization of various options. The configuration registers can be written once after each reset. Most of the configuration register bits are cleared during reset. Since the various options affect the operation of the microcontroller unit (MCU) it is recommended that this register be written immediately after reset. The configuration registers are located at $001E and $001F, and may be read at anytime.
NOTE: The CONFIG registers are one-time writable by the user after each reset. Upon
a reset, the CONFIG registers default to predetermined settings as shown in
Figure 5-1 and Figure 5-2.
pin
pin
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Configuration Register (CONFIG) 55
Configuration Register (CONFIG)
Address:
$001E
Bit 7654 321Bit 0
Read:
Reset:000 0 0 00U
IRQPUD IRQEN R OSCOPT1 OSCOPT0 R R RSTEN
Write:
POR:000 0 0 000
= Reserved U = Unaffected
R
Figure 5-1. Configuration Register 2 (CONFIG2)
IRQPUD — IRQ Pin Pullup Control Bit
1 = Internal pullup is disconnected 0 = Internal pullup is connected between IRQ
pin and V
DD
IRQEN — IRQ Pin Function Selection Bit
1 = Interrupt request function active in pin 0 = Interrupt request function inactive in pin
OSCOPT1 and OSCOPT0 — Selection Bits for Oscillator Option
(0, 0) Internal oscillator (0, 1) External oscillator (1, 0) External RC oscillator (1, 1) External XTAL oscillator
RSTEN — RST
Pin Function Selection 1 = Reset function active in pin 0 = Reset function inactive in pin
NOTE: The RSTEN bit is cleared by a power-on reset (POR) only. Other resets will leave
this bit unaffected.
Address:
$001F
Bit 7 6 5 4 3 2 1 Bit 0
Read:
Write:
Reset:0000U000
COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3 SSREC STOP COPD
POR:00000000
U = Unaffected
Figure 5-2. Configuration Register 1 (CONFIG1)
COPRS (Out of STOP Mode) — COP Reset Period Selection Bit
1 = COP reset short cycle = (2 0 = COP reset long cycle = (2
13
– 24) × BUSCLKX4
18
– 24) × BUSCLKX4
COPRS (In STOP Mode) — Auto Wakeup Period Selection Bit
1 = Auto wakeup short cycle = (2 0 = Auto wakeup long cycle = (2
9
) × INTRCOSC
14
) × INTRCOSC
Data Sheet MC68HC908QY/QT Family — Rev. 3
56 Configuration Register (CONFIG) MOTOROLA
Configuration Register (CONFIG)
Functional Description
LVISTOP — LVI Enable in Stop Mode Bit
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode. Reset clears LVISTOP.
1 = LVI enabled during stop mode 0 = LVI disabled during stop mode
LVIRSTD — LVI Reset Disable Bit
LVIRSTD disables the reset signal from the LVI module.
1 = LVI module resets disabled 0 = LVI module resets enabled
LVIPWRD — LVI Power Disable Bit
LVIPWRD disables the LVI module.
1 = LVI module power disabled 0 = LVI module power enabled
LVI5OR3 — LVI 5-V or 3-V Operating Mode Bit
LVI5OR3 selects the voltage operating mode of the LVI module. The voltage mode selected for the LVI should match the operating V
for the LVI’s voltage
DD
trip points for each of the modes.
1 = LVI operates in 5-V mode 0 = LVI operates in 3-V mode
NOTE: The LVI5OR3 bit is cleared by a power-on reset (POR) only. Other resets will leave
this bit unaffected.
SSREC — Short Stop Recovery Bit
SSREC enables the CPU to exit stop mode with a delay of 32 BUSCLKX4 cycles instead of a 4096 BUSCLKX4 cycle delay.
1 = Stop mode recovery after 32 BUSCLKX4 cycles 0 = Stop mode recovery after 4096 BUSCLKX4 cycles
NOTE: Exiting stop mode by an LVI reset will result in the long stop recovery.
When using the LVI during normal operation but disabling du ring stop mode, the LVI will have an enable time of t
. The system stabilization time for power-on
EN
reset and long stop recovery (both 4096 BUSCLKX4 cycles) gives a delay longer than the LVI enable time for these startup scenarios. There is no period where the MCU is not protected from a low-power condition. However, when using the short stop recovery configuration option, the 32 BUSCLKX4 delay must be greater than the LVI’s turn on time to avoid a period in startup where the LVI is not protecting the MCU.
STOP — STOP Instruction Enable Bit
STOP enables the STOP instruction.
1 = STOP instruction enabled 0 = STOP instruction treated as illegal opcode
COPD — COP Disable Bit
COPD disables the COP module.
1 = COP module disabled 0 = COP module enabled
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Configuration Register (CONFIG) 57
Configuration Register (CONFIG)
Data Sheet MC68HC908QY/QT Family — Rev. 3
58 Configuration Register (CONFIG) MOTOROLA
Data Sheet — MC68HC908QY/QT Family

Section 6. Computer Operating Properly (COP)

6.1 Introduction

The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the configuration 1 (CONFIG1) register.

6.2 Functional Description

BUSCLKX4
STOP INSTRUCTION
INTERNAL RESET SOURCES
COPCTL WRITE
COPEN (FROM SIM)
COP DISABLE (COPD FROM CONFIG1)
RESET
COPCTL WRITE
COP RATE SELECT
(COPRS FROM CONFIG1)
12-BIT SIM COUNTER
CLEAR ALL STAGES
COP CLOCK
CLEAR STAGES 5–12
6-BIT COP COUNTER
CLEAR
COP COUNTER
Figure 6-1. COP Block Diagram
RESET CIRCUIT
RESET STATUS REGISTER
COP TIMEOUT
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Computer Operating Properly (COP) 59
Computer Operating Properly (COP)
The COP counter is a free-running 6-bit counter preceded by the 12-bit system integration module (SIM) counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 2 BUSCLKX4 cycles; depending on the state of the COP rate select bit, COPRS, in configuration register 1. With a 2 internal 12.8-MHz oscillator gives a COP timeout period of 20.48 ms. Writing any value to location $FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 12–5 of the SIM counter.
NOTE: Service the COP immediately after reset and before entering or after exiting stop
mode to guarantee the maximum time before the first COP counter overflow.
18–24
18–24
or 213–24
BUSCLKX4 cycle overflow option, the
A COP reset pulls the RST for 32 × BUSCLKX4 cycles and sets the COP bit in the reset status register (RSR). See 13.8.1 SIM Reset Status Register.
NOTE: Place COP clearing instructions in the main program and not in an interrupt
subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly.

6.3 I/O Signals

The following paragraphs describe the signals shown in Figure 6-1.

6.3.1 BUSCLKX4

BUSCLKX4 is the oscillator output signal. BUSCLKX4 frequency is equal to the crystal frequency or the RC-oscillator frequency.

6.3.2 STOP Instruction

The STOP instruction clears the SIM counter.

6.3.3 COPCTL Write

Writing any value to the COP control register (COPCTL) (see 6.4 COP Control
Register) clears the COP counter and clears stages 12–5 of the SIM counter.
Reading the COP control register returns the low byte of the reset vector.
pin low (if the RSTEN bit is set in the CONFIG1 register)

6.3.4 Power-On Reset

The power-on reset (POR) circuit in the SIM clears the SIM counter 4096 × BUSCLKX4 cycles after power up.

6.3.5 Internal Reset

An internal reset clears the SIM counter and the COP counter.
Data Sheet MC68HC908QY/QT Family — Rev. 3
60 Computer Operating Properly (COP) MOTOROLA

6.3.6 COPD (COP Disable)

The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register 1 (CONFIG1). See Section 5. Configuration Register
(CONFIG).

6.3.7 COPRS (COP Rate Select)

The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register 1 (CONFIG1). See Section 5. Configuration Register
(CONFIG).

6.4 COP Control Register

The COP control register (COPCTL) is located at address $FFFF and overlaps the reset vector. Writing any value to $FFFF clears the COP counter and sta rts a new timeout period. Reading location $FFFF returns the low byte of the reset vector.
Address: $FFFF
Read: LOW BYTE OF RESET VECTOR
Write: CLEAR COP COUNTER
Reset: Unaffected by reset
Computer Operating Properly (COP)
COP Control Register
Bit 7654321Bit 0

6.5 Interrupts

The COP does not generate CPU interrupt requests.

6.6 Monitor Mode

The COP is disabled in monitor mode when V

6.7 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power-consumption standby modes.

6.7.1 Wait Mode

The COP continues to operate during wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter.
Figure 6-2. COP Control Register (COPCTL)
is present on the IRQ pin.
TST
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Computer Operating Properly (COP) 61
Computer Operating Properly (COP)

6.7.2 Stop Mode

Stop mode turns off the BUSCLKX4 input to the COP and clears the SIM counter. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode.

6.8 COP Module During Break Mode

The COP is disabled during a break interrupt with monitor mode when BDCOP bit is set in break auxiliary register (BRKAR).
Data Sheet MC68HC908QY/QT Family — Rev. 3
62 Computer Operating Properly (COP) MOTOROLA
Data Sheet — MC68HC908QY/QT Family

7.1 Introduction

The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The CPU08 Reference Manual (Motorola document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture.

7.2 Features

Features of the CPU include:
Object code fully upward-compatible with M68HC05 Family
16-bit stack pointer with stack manipulation instructions
16-bit index register with x-register manipulation instructions
8-MHz CPU internal bus frequency
64-Kbyte program/data memory space

Section 7. Central Processor Unit (CPU)

16 addressing modes
Memory-to-memory data moves without using accumulator
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions
Enhanced binary-coded decimal (BCD) data handling
Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes
Low-power stop and wait modes
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Central Processor Unit (CPU) 63
Central Processor Unit (CPU)

7.3 CPU Registers

Figure 7-1 shows the five CPU registers. CPU registers are not part of the memory
map.

7.3.1 Accumulator

7
15
H X
15
15
70
V11HINZC
0
ACCUMULATOR (A)
0
INDEX REGISTER (H:X)
0
STACK POINTER (SP)
0
PROGRAM COUNTER (PC)
CONDITION CODE REGISTER (CCR)
CARRY/BORROW FLAG
ZERO FLAG
NEGATIVE FLAG
INTERRUPT MASK
HALF-CARRY FLAG
TWO’S COMPLEMENT OVERFLOW FLAG
Figure 7-1. CPU Registers
The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations.
Bit 7654321Bit 0
Read:
Write:
Reset: Unaffected by reset
Figure 7-2. Accumulator (A)
Data Sheet MC68HC908QY/QT Family — Rev. 3
64 Central Processor Unit (CPU) MOTOROLA

7.3.2 Index Register

Central Processor Unit (CPU)
CPU Registers
The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.
In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand.
The index register can serve also as a temporary data storage location.

7.3.3 Stack Pointer

Bit 151413121110987654321
Read:
Write:
Reset:00000000XXXXXXXX
X = Indeterminate
Bit
0
Figure 7-3. Index Register (H:X)
The stack pointer is a 16-bit register that contains the address of the next locatio n on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack.
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand.
Bit 151413121110987654321
Bit
0
Read:
Write:
Reset:0000000011111111
Figure 7-4. Stack Pointer (SP)
NOTE: The location of the stack is arbitrary and may be relocated anywhere in
random-access memory (RAM). Moving the SP out of page 0 ($0000 to $00FF) frees direct address (page 0) space. For correct operation, the stack pointer must point only to RAM locations.
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Central Processor Unit (CPU) 65
Central Processor Unit (CPU)

7.3.4 Program Counter

The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched.
Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location.
During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state.
Bit 151413121110987654321
Read:
Write:
Reset: Loaded with vector from $FFFE and $FFFF

7.3.5 Condition Code Register

The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and 5 are set permanently to 1. The following paragraphs describe the functions o f the condition code register.
Read:
Write:
Reset:X11X1XXX
X = Indeterminate
Bit
0
Figure 7-5. Program Counter (PC)
Bit 7654321Bit 0
V11H I NZC
Figure 7-6. Condition Code Register (CCR)
V — Overflow Flag
The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag.
1 = Overflow 0 = No overflow
Data Sheet MC68HC908QY/QT Family — Rev. 3
66 Central Processor Unit (CPU) MOTOROLA
Central Processor Unit (CPU)
CPU Registers
H — Half-Carry Flag
The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor.
1 = Carry between bits 3 and 4 0 = No carry between bits 3 and 4
I — Interrupt Mask
When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched.
1 = Interrupts disabled 0 = Interrupts enabled
NOTE: To maintain M6805 Family compatibility, the upper byte of the index register (H) is
not stacked automatically. If the interrupt service routine modifies H, then th e user must stack and unstack H using the PSHH and PULH instructions.
After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI).
N — Negative flag
The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result.
1 = Negative result 0 = Non-negative result
Z — Zero flag
The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of $00.
1 = Zero result 0 = Non-zero result
C — Carry/Borrow Flag
The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag.
1 = Carry out of bit 7 0 = No carry out of bit 7
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Central Processor Unit (CPU) 67
Central Processor Unit (CPU)

7.4 Arithmetic/Logic Unit (ALU)

The ALU performs the arithmetic and logic operations defined by the instruction set.
Refer to the CPU08 Reference Manual (Motorola document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU.

7.5 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power-consumption standby modes.

7.5.1 Wait Mode

The WAIT instruction:
Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.
Disables the CPU clock

7.5.2 Stop Mode

The STOP instruction:
Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.
Disables the CPU clock
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.

7.6 CPU During Break Interrupts

If a break module is present on the MCU, the CPU starts a break interrupt by:
Loading the instruction register with the SWI instruction
Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode
The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.
A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted.
Data Sheet MC68HC908QY/QT Family — Rev. 3
68 Central Processor Unit (CPU) MOTOROLA

7.7 Instruction Set Summary

Table 7-1 provides a summary of the M68HC08 instruction set.
Table 7-1. Instruction Set Summary (Sheet 1 of 7)
Central Processor Unit (CPU)
Instruction Set Summary
Source
Form
ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP
ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP
AIS #opr Add Immediate Value (Signed) to SP AIX #opr Add Immediate Value (Signed) to H:X
AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP
ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP
ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP
BCC rel Branch if Carry Bit Clear PC (PC) + 2 + rel ? (C) = 0 ––––––REL 24 rr 3
BCLR n, opr Clear Bit n in M Mn 0 ––––––
BCS rel Branch if Carry Bit Set (Same as BLO) PC (PC) + 2 + rel ? (C) = 1 ––––––REL 25 rr 3 BEQ rel Branch if Equal PC (PC) + 2 + rel ? (Z) = 1 ––––––REL 27 rr 3
Add with Carry A (A) + (M) + (C) – 
Add without Carry A (A) + (M) – 
Logical AND A (A) & (M) 0 – – –
Arithmetic Shift Left (Same as LSL)
Arithmetic Shift Right  ––
Operation Description
SP (SP) + (16
H:X (H:X) + (16
C
b7
b7
« M)
« M)
0
b0
C
b0
on CCR
VHI NZC
––––––IMM A7 ii 2 ––––––IMM AF ii 2
––
Address
IMM DIR EXT IX2 IX1 IX SP1 SP2
IMM DIR EXT IX2 IX1 IX SP1 SP2
IMM DIR EXT IX2 IX1 IX SP1 SP2
DIR INH INH IX1 IX SP1
DIR INH INH IX1 IX SP1
DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)
Mode
A9
B9 C9 D9
E9
F9
9EE9 9ED9
AB BB CB DB EB FB
9EEB
9EDB
A4
B4 C4 D4
E4
F4
9EE4 9ED4
38
48
58
68
78
9E68
37
47
57
67
77
9E67
11
13
15
17
19
1B 1D
1F
Opcode
ii dd hh ll ee ff ff
ff ee ff
ii dd hh ll ee ff ff
ff ee ff
ii dd hh ll ee ff ff
ff ee ff
dd
ff ff dd
ff ff
dd dd dd dd dd dd dd dd
Operand
2 3 4 4 3 2 4 5
2 3 4 4 3 2 4 5
2 3 4 4 3 2 4 5
4 1 1 4 3 5
4 1 1 4 3 5
4 4 4 4 4 4 4 4
Effect
Cycles
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Central Processor Unit (CPU) 69
Central Processor Unit (CPU)
Table 7-1. Instruction Set Summary (Sheet 2 of 7)
Source
Form
BGE opr
BGT opr
BHCC rel Branch if Half Carry Bit Clear PC (PC) + 2 + rel ? (H) = 0 ––––––REL 28 rr 3 BHCS rel Branch if Half Carry Bit Set PC (PC) + 2 + rel ? (H) = 1 ––––––REL 29 rr 3 BHI rel Branch if Higher PC (PC) + 2 + rel ? (C) | (Z) = 0 ––––––REL 22 rr 3
BHS rel
BIH rel Branch if IRQ BIL rel Branch if IRQ BIT #opr
BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP
BLE opr
BLO rel Branch if Lower (Same as BCS) PC (PC) + 2 + rel ? (C) = 1 ––––––REL 25 rr 3 BLS rel Branch if Lower or Same PC (PC) + 2 + rel ? (C) | (Z) = 1 ––––––REL 23 rr 3
Branch if Greater Than or Equal To (Signed Operands)
Branch if Greater Than (Signed Operands)
Branch if Higher or Same (Same as BCC)
Bit Test (A) & (M) 0 – – –
Branch if Less Than or Equal To (Signed Operands)
Operation Description
PC (PC) + 2 + rel ? (N
PC ← (PC) + 2 + rel ? (Z) | (N
PC (PC) + 2 + rel ? (C) = 0 ––––––REL 24 rr 3
Pin High PC (PC) + 2 + rel ? IRQ = 1 ––––––REL 2F rr 3 Pin Low PC (PC) + 2 + rel ? IRQ = 0 ––––––REL 2E rr 3
PC (PC) + 2 + rel ? (Z) | (N
V) = 0
V) = 0
V) = 1
on CCR
VHI NZC
––––––REL 90 rr 3
––––––REL 92 rr 3
––––––REL 93 rr 3
Address
IMM DIR EXT IX2 IX1 IX SP1 SP2
Mode
A5
B5 C5 D5
E5
F5
9EE5 9ED5
Opcode
ii dd hh ll ee ff ff
ff ee ff
Operand
2 3 4 4 3 2 4 5
Effect
Cycles
BLT opr Branch if Less Than (Signed Operand s) BMC rel Branch if Interrupt Mask Clear PC (PC) + 2 + rel ? (I) = 0 ––––––REL 2C rr 3 BMI rel Branch if Minus PC (PC) + 2 + rel ? (N) = 1 ––––––REL 2B rr 3
BMS rel Branch if Interrupt Mask Set PC (PC) + 2 + rel ? (I) = 1 ––––––REL 2D rr 3 BNE rel Branch if Not Equal PC (PC) + 2 + rel ? (Z) = 0 ––––––REL 26 rr 3 BPL rel Branch if Plus PC (PC) + 2 + rel ? (N) = 0 ––––––REL 2A rr 3 BRA rel Branch Always PC (PC) + 2 + rel ––––––REL 20 rr 3
BRCLR n,opr,rel Branch if Bit n in M Clear PC (PC) + 3 + rel ? (Mn) = 0 –––––
BRN rel Branch Never PC (PC) + 2 ––––––REL 21 rr 3
PC (PC) + 2 + rel ? (N
V) =1
––––––REL 91 rr 3
DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)
01
03
05
07
09
0B 0D
0F
dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr
5 5 5 5 5 5 5 5
Data Sheet MC68HC908QY/QT Family — Rev. 3
70 Central Processor Unit (CPU) MOTOROLA
Table 7-1. Instruction Set Summary (Sheet 3 of 7)
Central Processor Unit (CPU)
Instruction Set Summary
Source
Form
BRSET n,opr,rel Branch if Bit n in M Set PC (PC) + 3 + rel ? (Mn) = 1 –––––
BSET n,opr Set Bit n in M Mn 1 ––––––
BSR rel Branch to Subroutine
CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel
CLC Clear Carry Bit C 0 –––––0INH 98 1 CLI Clear Interrupt Mask I 0 ––0–––INH 9A 2 CLR opr
CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP
CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP
COM opr COMA COMX COM opr,X COM ,X COM opr,SP
CPHX #opr CPHX opr
Compare and Branch if Equal
Clear
Compare A with M (A) – (M)  ––
Complement (One’s Complement)
Compare H:X with M (H:X) – (M:M + 1)  ––
Operation Description
PC (PC) + 2; push (PCL) SP (SP) – 1; push (PCH)
SP (SP) – 1
PC (PC) + rel
PC (PC) + 3 + rel ? (A) – (M) = $00 PC (PC) + 3 + rel ? (A) – (M) = $00 PC (PC) + 3 + rel ? (X) – (M) = $00 PC (PC) + 3 + rel ? (A) – (M) = $00 PC (PC) + 2 + rel ? (A) – (M) = $00 PC (PC) + 4 + rel ? (A) – (M) = $00
M $00 A $00 X $00 H $00 M $00 M $00 M $00
M (M
) = $FF – (M)
A (A
) = $FF – (M)
X (X) = $FF – (M)
) = $FF – (M)
M (M M (M
) = $FF – (M)
M (M) = $FF – (M)
on CCR
VHI NZC
––––––REL AD rr 4
––––––
0––01–
0––1
Address
DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)
DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)
DIR IMM IMM IX1+ IX+ SP1
DIR INH INH INH IX1 IX SP1
IMM DIR EXT IX2 IX1 IX SP1 SP2
DIR INH INH IX1 IX SP1
IMM DIR
Mode
Opcode
00
02
04
06
08
0A 0C
0E
10
12
14
16
18
1A 1C
1E
31
41
51
61
71
9E61
3F
4F
5F 8C
6F
7F
9E6F
A1
B1 C1 D1
E1
F1
9EE1 9ED1
33
43
53
63
73
9E63
6575ii ii+1dd3
dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr
dd dd dd dd dd dd dd dd
dd rr ii rr ii rr ff rr rr ff rr
dd
ff ff ii
dd hh ll ee ff ff
ff ee ff
dd
ff ff
Operand
5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4
5 4 4 5 4 6
3 1 1 1 3 2 4
2 3 4 4 3 2 4 5
4 1 1 4 3 5
4
Effect
Cycles
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Central Processor Unit (CPU) 71
Central Processor Unit (CPU)
Table 7-1. Instruction Set Summary (Sheet 4 of 7)
Source
Form
CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP
DAA Decimal Adjust A
DBNZ opr,rel DBNZA rel DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel
DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP
DIV Divide
EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP
INC opr INCA INCX INC opr,X INC ,X INC opr,SP
JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X
JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X
LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP
Compare X with M (X) – (M)  ––
Decrement and Branch if Not Zero
Decrement
Exclusive OR M with A
Increment
Jump PC Jump Address ––––––
Jump to Subroutine
Load A from M A (M) 0–––
Operation Description
(A)
10
A (A) – 1 or M (M) – 1 or X (X) – 1
PC (PC) + 3 + rel ? (result) 0 PC (PC) + 2 + rel ? (result) 0 PC (PC) + 2 + rel ? (result) 0 PC (PC) + 3 + rel ? (result) 0 PC (PC) + 2 + rel ? (result) 0 PC (PC) + 4 + rel ? (result) 0
M (M) – 1
A (A) – 1
X (X) – 1 M (M) – 1 M (M) – 1 M (M) – 1
A ← (H:A)/(X)
H Remainder
A (A
M)
M (M) + 1
A (A) + 1
X (X) + 1
M (M) + 1 M (M) + 1 M (M) + 1
PC (PC) + n (n = 1, 2, or 3)
Push (PCL); SP (SP) – 1 Push (PCH); SP (SP) – 1
PC Unconditional Address
Effect
on CCR
VHI NZC
U––INH 72 2
––––––
––
––––INH 52 7
0––
––
––––––
Address
IMM DIR EXT IX2 IX1 IX SP1 SP2
DIR INH INH IX1 IX SP1
DIR INH INH IX1 IX SP1
IMM DIR EXT IX2 IX1 IX SP1 SP2
DIR INH INH IX1 IX SP1
DIR EXT IX2 IX1 IX
DIR EXT IX2 IX1 IX
IMM DIR EXT IX2 IX1 IX SP1 SP2
Mode
A3
B3 C3 D3
E3
F3
9EE3 9ED3
3B
4B
5B
6B
7B
9E6B
3A
4A
5A
6A
7A
9E6A
A8
B8 C8 D8
E8
F8
9EE8 9ED8
3C 4C 5C 6C 7C
9E6C
BC CC DC EC FC
BD CD DD ED FD
A6
B6 C6 D6
E6
F6
9EE6 9ED6
Opcode
ii dd hh ll ee ff ff
ff ee ff
dd rr rr rr ff rr rr ff rr
dd
ff ff
ii dd hh ll ee ff ff
ff ee ff
dd
ff ff dd
hh ll ee ff ff
dd hh ll ee ff ff
ii dd hh ll ee ff ff
ff ee ff
Operand
Cycles
2 3 4 4 3 2 4 5
5 3 3 5 4 6
4 1 1 4 3 5
2 3 4 4 3 2 4 5
4 1 1 4 3 5
2 3 4 3 2
4 5 6 5 4
2 3 4 4 3 2 4 5
Data Sheet MC68HC908QY/QT Family — Rev. 3
72 Central Processor Unit (CPU) MOTOROLA
Table 7-1. Instruction Set Summary (Sheet 5 of 7)
Central Processor Unit (CPU)
Instruction Set Summary
Source
Form
LDHX #opr LDHX opr
LDX #opr LDX opr LDX opr LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP
LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP
LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP
MOV opr,opr MOV opr,X+ MOV #opr,opr MOV X+,opr
MUL Unsigned multiply X:A (X) × (A) –0–––0INH 42 5 NEG opr
NEGA NEGX NEG opr,X NEG ,X NEG opr,SP
NOP No Operation None ––––––INH 9D 1 NSA Nibble Swap A A (A[3:0]:A[7:4]) ––––––INH 62 3 ORA #opr
ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP
PSHA Push A onto Stack Push (A); SP ← (SP) – 1 ––––––INH 87 2 PSHH Push H onto Stack Push (H); SP ← (SP) – 1 ––––––INH 8B 2 PSHX Push X onto Stack Push (X); SP ← (SP) – 1 ––––––INH 89 2 PULA Pull A from Stack SP ← (SP + 1); Pull (A) ––––––INH 86 2 PULH Pull H from Stack SP ← (SP + 1); Pull (H) ––––––INH 8A 2 PULX Pull X from Stack SP ← (SP + 1); Pull (X) ––––––INH 88 2
Load H:X from M H:X ← (M:M + 1) 0––
Load X from M X (M) 0–––
Logical Shift Left (Same as ASL)
Logical Shift Right  ––0
Move
Negate (Two’s Complement)
Inclusive OR A and M A (A) | (M) 0 – – –
Operation Description
C
b7
b7
(M)
Destination
H:X (H:X) + 1 (IX+D, DIX+)
M –(M) = $00 – (M)
A –(A) = $00 – (A)
X –(X) = $00 – (X) M –(M) = $00 – (M) M –(M) = $00 – (M)
b0
(M)
0
b0
C0
Source
on CCR
VHI NZC
––
0––
––
Address
IMM DIR
IMM DIR EXT IX2 IX1 IX SP1 SP2
DIR INH INH IX1 IX SP1
DIR INH INH IX1 IX SP1
DD DIX+ IMD IX+D
DIR INH INH IX1 IX SP1
IMM DIR EXT IX2 IX1 IX SP1 SP2
Mode
Opcode
4555ii jjdd3
AE BE CE DE EE
FE 9EEE 9EDE
38 48 58 68 78
9E68
34 44 54 64 74
9E64
4E 5E 6E 7E
30 40 50 60 70
9E60
AA
BA
CA
DA
EA
FA 9EEA 9EDA
ii dd hh ll ee ff ff
ff ee ff
dd
ff ff dd
ff ff dd dd
dd ii dd dd
dd
ff ff
ii dd hh ll ee ff ff
ff ee ff
Operand
4 2
3 4 4 3 2 4 5
4 1 1 4 3 5
4 1 1 4 3 5
5 4 4 4
4 1 1 4 3 5
2 3 4 4 3 2 4 5
Effect
Cycles
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Central Processor Unit (CPU) 73
Central Processor Unit (CPU)
Table 7-1. Instruction Set Summary (Sheet 6 of 7)
Source
Form
ROL opr ROLA ROLX ROL opr,X ROL ,X ROL opr,SP
ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP
RSP Reset Stack Pointer SP $FF ––––––INH 9C 1
RTI Return from Interrupt
RTS Return from Subroutine
SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP
SEC Set Carr y Bit C 1 –––––1INH 99 1 SEI Set Interrupt Mask I 1 ––1–––INH 9B 2 STA opr
STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP
STHX opr Store H:X in M (M:M + 1) ← (H:X) 0 – – – DIR 35 dd 4 STOP Enable IRQ STX opr
STX opr STX opr,X STX opr,X STX ,X STX opr,SP STX opr,SP
SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP
Rotate Left through Carry  ––
Rotate Right through Carry  ––
Subtract with Carry A (A) – (M) – (C)  ––
Store A in M M ← (A) 0––
Store X in M M ← (X) 0––
Subtract A ← (A) – (M)  ––
Operation Description
C
b7
b7
SP (SP) + 1; Pull (CCR)
SP (SP) + 1; Pull (A)
SP (SP) + 1; Pull (X) SP (SP) + 1; Pull (PCH) SP (SP) + 1; Pull (PCL)
SP ← SP + 1; Pull (PCH)
SP SP + 1; Pull (PCL)
Pin; Stop Oscillator I 0; Stop Oscillator ––0–––INH 8E 1
b0
C
b0
on CCR
VHI NZC
INH 80 7
––––––INH 81 4
Address
DIR INH INH IX1 IX SP1
DIR INH INH IX1 IX SP1
IMM DIR EXT IX2 IX1 IX SP1 SP2
DIR EXT IX2 IX1 IX SP1 SP2
DIR EXT IX2 IX1 IX SP1 SP2
IMM DIR EXT IX2 IX1 IX SP1 SP2
Mode
39 49 59 69 79
9E69
36 46 56 66 76
9E66
A2
B2 C2 D2
E2
F2
9EE2 9ED2
B7 C7 D7
E7
F7
9EE7 9ED7
BF CF DF EF
FF
9EEF 9EDF
A0
B0 C0 D0
E0
F0
9EE0 9ED0
Opcode
dd
ff ff dd
ff ff
ii dd hh ll ee ff ff
ff ee ff
dd hh ll ee ff ff
ff ee ff
dd hh ll ee ff ff
ff ee ff
ii dd hh ll ee ff ff
ff ee ff
Operand
4 1 1 4 3 5
4 1 1 4 3 5
2 3 4 4 3 2 4 5
3 4 4 3 2 4 5
3 4 4 3 2 4 5
2 3 4 4 3 2 4 5
Effect
Cycles
Data Sheet MC68HC908QY/QT Family — Rev. 3
74 Central Processor Unit (CPU) MOTOROLA
Table 7-1. Instruction Set Summary (Sheet 7 of 7)
Central Processor Unit (CPU)
Opcode Map
Source
Form
SWI Software Interrupt
TAP Transfer A to CCR CCR (A) INH 84 2 TAX Transfer A to X X (A) ––––––INH 97 1 TPA Transfer CCR to A A (CCR) ––––––INH 85 1 TST opr
TSTA TSTX TST opr,X TST ,X TST opr,SP
TSX Transfer SP to H:X H:X (SP) + 1 ––––––INH 95 2 TXA Transfer X to A A (X) ––––––INH 9F 1 TXS Transfer H:X to SP (SP) (H:X) – 1 ––––––INH 94 2 A Accumulator n Any bit
C Carry/borrow bit opr Operand (one or two bytes) CCR Condition code register PC Program counter dd Direct address of operand PCH Program counter high byte dd rr Direct address of operand and relative offset of branch instruction PCL Program counter low byte DD Direct to direct addressing mode REL Relative addressing mode DIR Direct addressing mode rel Relative program counter offset byte DIX+ Direct to indexed with post increment addressing mode rr Relative program counter offset byte ee ff High and low bytes of offset in indexed, 16-bit offset addressing SP1 Stack pointer, 8-bit offset addressing mode EXT Extended addressing mode SP2 Stack pointer 16-bit offset addressing mode ff Offset byte in indexed, 8-bit offset addressing SP Stack pointer H Half-carry bit U Undefined H Index register high byte V Overflow bit hh ll High and low bytes of operand address in extended addressing X Index register low byte I Interrupt mask Z Zero bit ii Immediate operand byte & Logical AND IMD Immediate source to direct destination addressing mode | Logical OR
IMM Immediate addressing mode INH Inherent addressing mode ( ) Contents of IX Indexed, no offset addressing mode –( ) Negation (two’s complement) IX+ Indexed, no offset, post increment addressing mode # Immediate value IX+D Indexed with post increment to direct addressing mode IX1 Indexed, 8-bit offset addressing mode Loaded with IX1+ Indexed, 8-bit offset, post increment addressing mode ? If IX2 Indexed, 16-bit offset addressing mode : Concatenated with M Memory location Set or cleared N Negative bit Not affected
Test for Negative or Zero (A) – $00 or (X) – $00 or (M) – $00 0 – – –
Operation Description
PC (PC) + 1; Push (PCL) SP (SP) – 1; Push (PCH)
SP (SP) – 1; Push (X) SP (SP) – 1; Push (A)
SP (SP) – 1; Push (CCR)
SP (SP) – 1; I 1
PCH Interrupt Vector High Byte
PCL Interrupt Vector Low Byte
Logical EXCLUSIVE OR
« Sign extend
on CCR
VHI NZC
––1–––INH 83 9
Address
DIR INH INH IX1 IX SP1
Mode
3D 4D 5D 6D 7D
9E6D
Opcode
dd
ff ff
Operand
3 1 1 3 2 4
Effect
Cycles

7.8 Opcode Map

See Table 7-2.
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Central Processor Unit (CPU) 75
Data Sheet MC68HC908QY/QT Family — Rev. 3
76 Central Processor Unit (CPU) MOTOROLA
MSB
LSB
05BRSET0
3DIR
15BRCLR0
3DIR
25BRSET1
3DIR
35BRCLR1
3DIR
45BRSET2
3DIR
55BRCLR2
3DIR
65BRSET3
3DIR
75BRCLR3
3DIR
85BRSET4
3DIR
95BRCLR4
3DIR
A5BRSET5
3DIR
B5BRCLR5
3DIR
C5BRSET6
3DIR
D5BRCLR6
3DIR
E5BRSET7
3DIR
F5BRCLR7
3DIR
Table 7-2. Opcode Map
Bit Manipulation Branch Read-Modify-Write Control Register/Memory
DIR DIR REL DIR INH INH IX1 SP1 IX INH INH IMM DIR EXT IX2 SP2 IX1 SP1 IX
0 1 2 3 4 5 6 9E6 7 8 9 A B C D 9ED E 9EE F
4
BSET0
2DIR
4
BCLR0
2DIR
4
BSET1
2DIR
4
BCLR1
2DIR
4
BSET2
2DIR
4
BCLR2
2DIR
4
BSET3
2DIR
4
BCLR3
2DIR
4
BSET4
2DIR
4
BCLR4
2DIR
4
BSET5
2DIR
4
BCLR5
2DIR
4
BSET6
2DIR
4
BCLR6
2DIR
4
BSET7
2DIR
4
BCLR7
2DIR
3
BRA
2REL
3
BRN
2REL
3
BHI
2REL
3
BLS
2REL
3
BCC
2REL
3
BCS
2REL
3
BNE
2REL
3
BEQ
2REL
3
BHCC
2REL
3
BHCS
2REL
3
BPL
2REL
3
BMI
2REL
3
BMC
2REL
3
BMS
2REL
3
BIL
2REL
3
BIH
2REL
4
NEG
2DIR
5
CBEQ
3DIR
4
COM
2DIR
4
LSR
2DIR
4
STHX
2DIR
4
ROR
2DIR
4
ASR
2DIR
4
LSL
2DIR
4
ROL
2DIR
4
DEC
2DIR
5
DBNZ
3DIR
4
INC
2DIR
3
TST
2DIR
3
CLR
2DIR
1
NEGA
1INH
4
CBEQA
3IMM
5
MUL
1INH
1
COMA
1INH
1
LSRA
1INH
3
LDHX
3IMM
1
RORA
1INH
1
ASRA
1INH
1
LSLA
1INH
1
ROLA
1INH
1
DECA
1INH
3
DBNZA
2INH
1
INCA
1INH
1
TSTA
1INH
5
MOV
3DD
1
CLRA
1INH
1
NEGX
1INH
4
CBEQX
3IMM
7
DIV
1INH
1
COMX
1INH
1
LSRX
1INH
4
LDHX
2DIR
1
RORX
1INH
1
ASRX
1INH
1
LSLX
1INH
1
ROLX
1INH
1
DECX
1INH
3
DBNZX
2INH
1
INCX
1INH
1
TSTX
1INH
4
MOV
2DIX+
1
CLRX
1INH
4
NEG
2IX1
3IX1+
1INH
2IX1
2IX1
3IMM
2IX1
2IX1
2IX1
2IX1
2IX1
3IX1
2IX1
2IX1
3IMD
2IX1
5
CBEQ
3
NSA
4
COM
4
LSR
3
CPHX
4
ROR
4
ASR
4
LSL
4
ROL
4
DEC
5
DBNZ
4
INC
3
TST
4
MOV
3
CLR
3 SP1
4 SP1
3 SP1
3 SP1
3 SP1
3 SP1
3 SP1
3 SP1
3 SP1
4 SP1
3 SP1
3 SP1
3 SP1
NEG
CBEQ
COM
LSR
ROR
ASR
LSL
ROL
DEC
DBNZ
INC
TST
CLR
5
6
5
5
5
5
5
5
5
6
5
4
4
3
NEG
1IX
4
CBEQ
2IX+
2
DAA
1INH
3
COM
1IX
3
LSR
1IX
4
CPHX
2DIR
3
ROR
1IX
3
ASR
1IX
3
LSL
1IX
3
ROL
1IX
3
DEC
1IX
4
DBNZ
2IX
3
INC
1IX
2
TST
1IX
4
MOV
2IX+D
2
CLR
1IX
7
RTI
1INH
4
RTS
1INH
9
SWI
1INH
2
TAP
1INH
1
TPA
1INH
2
PULA
1INH
2
PSHA
1INH
2
PULX
1INH
2
PSHX
1INH
2
PULH
1INH
2
PSHH
1INH
1
CLRH
1INH
1
STOP
1INH
1
WAIT
1INH
3
BGE
2REL
3
BLT
2REL
3
BGT
2REL
3
BLE
2REL
2
TXS
1INH
2
TSX
1INH
1
TAX
1INH
1
CLC
1INH
1
SEC
1INH
2
CLI
1INH
2
SEI
1INH
1
RSP
1INH
1
NOP
1INH
*
1
TXA
1INH
2
SUB
2IMM
2
CMP
2IMM
2
SBC
2IMM
2
CPX
2IMM
2
AND
2IMM
2
BIT
2IMM
2
LDA
2IMM
2
AIS
2IMM
2
EOR
2IMM
2
ADC
2IMM
2
ORA
2IMM
2
ADD
2IMM
4
BSR
2REL
2
LDX
2IMM
2
AIX
2IMM
3
SUB
2DIR
3
CMP
2DIR
3
SBC
2DIR
3
CPX
2DIR
3
AND
2DIR
3
BIT
2DIR
3
LDA
2DIR
3
STA
2DIR
3
EOR
2DIR
3
ADC
2DIR
3
ORA
2DIR
3
ADD
2DIR
2
JMP
2DIR
4
JSR
2DIR
3
LDX
2DIR
3
STX
2DIR
4
SUB
3EXT
4
CMP
3EXT
4
SBC
3EXT
4
CPX
3EXT
4
AND
3EXT
4
BIT
3EXT
4
LDA
3EXT
4
STA
3EXT
4
EOR
3EXT
4
ADC
3EXT
4
ORA
3EXT
4
ADD
3EXT
3
JMP
3EXT
5
JSR
3EXT
4
LDX
3EXT
4
STX
3EXT
4
SUB
3IX2
4
CMP
3IX2
4
SBC
3IX2
4
CPX
3IX2
4
AND
3IX2
4
BIT
3IX2
4
LDA
3IX2
4
STA
3IX2
4
EOR
3IX2
4
ADC
3IX2
4
ORA
3IX2
4
ADD
3IX2
4
JMP
3IX2
6
JSR
3IX2
4
LDX
3IX2
4
STX
3IX2
5
SUB
4 SP2
5
CMP
4 SP2
5
SBC
4 SP2
5
CPX
4 SP2
5
AND
4 SP2
5
BIT
4 SP2
5
LDA
4 SP2
5
STA
4 SP2
5
EOR
4 SP2
5
ADC
4 SP2
5
ORA
4 SP2
5
ADD
4 SP2
5
LDX
4 SP2
5
STX
4 SP2
3
SUB
2IX1
3
CMP
2IX1
3
SBC
2IX1
3
CPX
2IX1
3
AND
2IX1
3
BIT
2IX1
3
LDA
2IX1
3
STA
2IX1
3
EOR
2IX1
3
ADC
2IX1
3
ORA
2IX1
3
ADD
2IX1
3
JMP
2IX1
5
JSR
2IX1
3
LDX
2IX1
3
STX
2IX1
4
SUB
3 SP1
4
CMP
3 SP1
4
SBC
3 SP1
4
CPX
3 SP1
4
AND
3 SP1
4
BIT
3 SP1
4
LDA
3 SP1
4
STA
3 SP1
4
EOR
3 SP1
4
ADC
3 SP1
4
ORA
3 SP1
4
ADD
3 SP1
4
LDX
3 SP1
4
STX
3 SP1
2
SUB
1IX
2
CMP
1IX
2
SBC
1IX
2
CPX
1IX
2
AND
1IX
2
BIT
1IX
2
LDA
1IX
2
STA
1IX
2
EOR
1IX
2
ADC
1IX
2
ORA
1IX
2
ADD
1IX
2
JMP
1IX
4
JSR
1IX
2
LDX
1IX
2
STX
1IX
Central Processor Unit (CPU)
INH Inherent REL Relative SP1 Stack Pointer, 8-Bit Offset IMM Immediate IX Indexed, No Offset SP2 Stack Pointer, 16-Bit Off set DIR Direct IX1 Inde xed, 8-Bit Offset IX+ Indexed, No Offset with EXT Extended IX2 Indexed, 16-Bit Offset Post Increment DD Direct-Direct IMD Immediate-Direct IX1+ Indexed, 1-Byte Offset with IX+D Indexed-Direct DIX+ Direct-Indexed Post Increment
*Pre-byte for stack pointer indexed instructions
MSB
LSB
Low Byte of Opcode in Hexadecimal 05BRSET0
0 High Byte of Opcode in Hexadecimal
3DIR
Cycles Opcode Mnemonic Number of Bytes / Addressing Mode
Data Sheet — MC68HC908QY/QT Family

8.1 Introduction

The IRQ pin (external interrupt), shared with PTA2 (general purpose input) and keyboard interrupt (KBI), provides a maskable interrupt input

8.2 Features

Features of the IRQ module include the following:
External interrupt pin, IRQ
•IRQ interrupt control bits
Hysteresis buffer
Programmable edge-only or edge and level interrupt sensitivity
Automatic interrupt acknowledge
Selectable internal pullup resistor

Section 8. External Interrupt (IRQ)

8.3 Functional Description

IRQ pin functionality is enabled by setting configuration register 2 (CONFIG2) IRQEN bit accordingly. A zero disables the IRQ function and IRQ other shared functionalities. A one enables the IRQ function.
A falling edge on the external interrupt pin can latch a central processor unit (CPU) interrupt request. Figure 8-2 shows the structure of the IRQ module.
Interrupt signals on the IRQ remains set until one of the following actions occurs:
Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears the IRQ latch.
Software clear — Software can clear the interrupt latch by writing to the acknowledge bit in the interrupt status and control register (INTSCR). Writing a 1 to the ACK bit clears the IRQ latch.
Reset — A reset automatically clears the interrupt latch.
The external interrupt pin is falling-edge-triggered out of reset and is software­configurable to be either falling-edge or falling-edge and low-level triggered. The MODE bit in the INTSCR controls the triggering sensitivity of the IRQ
When the interrupt pin is edge-triggered only (MODE = 0), the CPU interrupt request remains set until a vector fetch, software clear, or reset occurs.
will assume the
pin are latched into the IRQ latch. An interrupt latch
pin.
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA External Interrupt (IRQ) 77
External Interrupt (IRQ)
PTA0/AD0/TCH0/KBI0
PTA1/AD1/TCH1/KBI1
PTA2/IRQ
PTA4/OSC2/AD2/KBI4
PTA5/OSC1/AD3/KBI5
/KBI2/TCLK
PTA3/RST
/KBI3
PTB0 PTB1 PTB2 PTB3 PTB4 PTB5 PTB6 PTB7
POWER SUPPLY
PTA
PTB
8-BIT ADC
128 BYTES RAM
DDRA
DDRB
V
DD
V
SS
M68HC08 CPU
MC68HC908QY4 AND MC68HC908QT4
4096 BYTES
MC68HC908QY2, MC68HC908QY1,
MC68HC908QT2, AND MC68HC908QT1:
1536 BYTES
USER FLASH
CLOCK
GENERATOR
(OSCILLATOR)
SYSTEM INTEGRATION
MODULE
SINGLE INTERRUPT
MODULE
BREAK
MODULE
POWER-ON RESET
MODULE
KEYBOARD INTERRUPT
MODULE
16-BIT TIMER
MODULE
COP
MODULE
MONITOR ROM
RST, IRQ: Pins have internal (about 30K Ohms) pull up
PTA[0:5]: High current sink and source capability PTA[0:5]: Pins have programmable keyboard interrupt and pull up PTB[0:7]: Not available on 8-pin devices – MC68HC908QT1, MC68HC908QT2, and MC68HC908QT4 ADC: Not available on the MC68HC908QY1 and MC68HC908QT1
Figure 8-1. Block Diagram Highlighting IRQ Block and Pins
Data Sheet MC68HC908QY/QT Family — Rev. 3
78 External Interrupt (IRQ) MOTOROLA
INTERNAL ADDRESS BUS
IRQPUD
IRQ
ACK
RESET
VECTOR
FETCH
DECODER
V
DD
INTERNAL PULLUP DEVICE
V
DD
DQ
MODE
CK
CLR
IRQ
FF
IMASK
SYNCHRO-
NIZER
HIGH
VOLTAGE
DETECT
External Interrupt (IRQ)
Functional Description
TO CPU FOR BIL/BIH INSTRUCTIONS
IRQF
IRQ INTERRUPT REQUEST
TO MODE SELECT LOGIC
Figure 8-2. IRQ Module Block Diagram
When the interrupt pin is both falling-edge and low-level triggered (MODE = 1), the CPU interrupt request remains set until both of the following occur:
Vector fetch or software clear
Return of the interrupt pin to logic 1
The vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low.
When set, the IMASK bit in the INTSCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK bit is clear.
NOTE: The interrupt mask (I) in the condition code register (CCR) masks all interrupt
requests, including external interrupt requests. See 13.6 Exception Control.
Figure 8-3 provides a summary of the IRQ I/O register.
Addr.Register Name Bit 7654321Bit 0
Read:0000IRQF0
Write:
ACK
IMASK MODE
Reset:00000000
= Unimplemented
$001D
IRQ Status and Control
Register (INTSCR)
See page 81.
Figure 8-3. IRQ I/O Register Summary
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA External Interrupt (IRQ) 79
External Interrupt (IRQ)

8.4 IRQ Pin

A falling edge on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch.
If the MODE bit is set, the IRQ
pin is both falling-edge sensitive and low-level
sensitive. With MODE set, both of the following actions must occur to clear IRQ:
Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a 1 to the ACK bit in the interrupt statu s and control register (INTSCR). The ACK bit is useful in applications that poll the IRQ
pin and require software to clear the IRQ latch. Writing to the ACK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ
pin. A falling edge that occurs after writing to the ACK bit latches another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the vector address at locations $FFFA and $FFFB.
Return of the IRQ
pin to logic 1 — As long as the IRQ pin is at logic 0, IRQ
remains active.
The vector fetch or software clear and the return of the IRQ in any order. The interrupt request remains pending as long as the IRQ
pin to logic 1 may occur
pin is at logic 0. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low.
If the MODE bit is clear, the IRQ
pin is falling-edge sensitive only. With MODE
clear, a vector fetch or software clear immediately clears the IRQ latch. The IRQF bit in the INTSCR register can be used to check for pending interrupts.
The IRQF bit is not affected by the IMASK bit, which makes it useful in applications where polling is preferred.
NOTE: When the IRQ
instructions can be used to read the logic level on the IRQ is disabled, these instructions will behave as if the IRQ of the actual level on the pin. Conversely, when the IRQ
function is enabled in the CONFIG2 register, the BIH and BIL
pin. If the IRQ function
pin is a logic 1, regardless
function is enabled, bit 2
of the port A data register will always read a 0.
NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by masking
interrupt requests in the interrupt routine. An internal pullup resistor to V connected to the IRQ
pin; this can be disabled by setting the IRQPUD bit in the
DD
is
CONFIG2 register ($001E).
Data Sheet MC68HC908QY/QT Family — Rev. 3
80 External Interrupt (IRQ) MOTOROLA

8.5 IRQ Module During Break Interrupts

The system integration module (SIM) controls whether the IRQ latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear the latches during the break state. See
Section 13. System Integration Module (SIM).
To allow software to clear the IRQ latch during a break interrupt, write a 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state.
To protect the latches during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state), writing to the ACK bit in the IRQ status and control register during the break state has no effect on the IRQ latch.

8.6 IRQ Status and Control Register

The IRQ status and control register (ISCR) controls and monitors operation of the IRQ module, see Section 5. Configuration Register (CONFIG).
External Interrupt (IRQ)
IRQ Module During Break Interrupts
The ISCR has the following functions:
Shows the state of the IRQ flag
Clears the IRQ latch
Masks IRQ and interrupt request
Controls triggering sensitivity of the IRQ
Address: $001D
Bit 7654321Bit 0
Read:0000IRQF0
Write: ACK
Reset:00000000
= Unimplemented
interrupt pin
IMASK MODE
Figure 8-4. IRQ Status and Control Register (INTSCR)
IRQF — IRQ Flag
This read-only status bit is high when the IRQ interrupt is pending.
1 = IRQ 0 = IRQ
interrupt pending interrupt not pending
ACK — IRQ Interrupt Request Acknowledge Bit
Writing a 1 to this write-only bit clears the IRQ latch. ACK always reads as 0. Reset clears ACK.
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA External Interrupt (IRQ) 81
External Interrupt (IRQ)
IMASK — IRQ Interrupt Mask Bit
Writing a 1 to this read/write bit disables IRQ interrupt requests. Reset clears IMASK.
MODE — IRQ Edge/Level Select Bit
This read/write bit controls the triggering sensitivity of the IRQ MODE.
1 = IRQ interrupt requests disabled 0 = IRQ interrupt requests enabled
1 = IRQ 0 = IRQ
interrupt requests on falling edges and low levels interrupt requests on falling edges only
pin. Reset clears
Data Sheet MC68HC908QY/QT Family — Rev. 3
82 External Interrupt (IRQ) MOTOROLA
Data Sheet — MC68HC908QY/QT Family

Section 9. Keyboard Interrupt Module (KBI)

9.1 Introduction

The keyboard interrupt module (KBI) provides six independently maskable external interrupts, which are accessible via the PTA0–PTA5 pins.

9.2 Features

Features of the keyboard interrupt module include:
Six keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt mask
Software configurable pullup device if input pin is configured as input port bit
Programmable edge-only or edge and level interrupt sensitivity
Exit from low-power modes
Figure 9-1 provides a summary of the input/output (I/O) registers
Addr.Register Name Bit 7654321Bit 0
Keyboard Status and Control
$001A
Keyboard Interrupt Enable
$001B
Register (KBSCR)
See page 88.
Register (KBIER)
See page 89.
Read:0000KEYF 0
Write:
Reset:00000000
Read: 0
AWUIE KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0
Write:
Reset:00000000
= Unimplemented
ACKK
IMASKK MODEK
Figure 9-1. KBI I/O Register Summary
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Keyboard Interrupt Module (KBI) 83
Keyboard Interrupt Module (KBI)
PTA0/AD0/TCH0/KBI0
PTA1/AD1/TCH1/KBI1
PTA2/IRQ
PTA4/OSC2/AD2/KBI4
PTA5/OSC1/AD3/KBI5
/KBI2/TCLK
PTA3/RST
/KBI3
PTB0 PTB1 PTB2 PTB3 PTB4 PTB5 PTB6 PTB7
POWER SUPPLY
PTA
PTB
8-BIT ADC
128 BYTES RAM
DDRA
DDRB
V
DD
V
SS
M68HC08 CPU
MC68HC908QY4 AND MC68HC908QT4
4096 BYTES
MC68HC908QY2, MC68HC908QY1,
MC68HC908QT2, AND MC68HC908QT1:
1536 BYTES
USER FLASH
CLOCK
GENERATOR
(OSCILLATOR)
SYSTEM INTEGRATION
MODULE
SINGLE INTERRUPT
MODULE
BREAK
MODULE
POWER-ON RESET
MODULE
KEYBOARD INTERRUPT
MODULE
16-BIT TIMER
MODULE
COP
MODULE
MONITOR ROM
RST, IRQ: Pins have internal (about 30K Ohms) pull up PTA[0:5]: High current sink and source capability PTA[0:5]: Pins have programmable keyboard interrupt and pull up PTB[0:7]: Not available on 8-pin devices – MC68HLC908QT1, MC68HLC908QT2, and MC68HLC908QT4
ADC: Not available on the MC68HC908QY1 and MC68HC908QT1
Figure 9-2. Block Diagram Highlighting KBI Block and Pins
Data Sheet MC68HC908QY/QT Family — Rev. 3
84 Keyboard Interrupt Module (KBI) MOTOROLA

9.3 Functional Description

The keyboard interrupt module controls the enabling/disabling of interrupt functions on the six port A pins. These six pins can be enabled/disabled independently of each other.
KBI0
.
KBIE0
TO PULLUP ENABLE
.
.
KBI5
V
DD
DQ
CK
CLR
KEYBOARD
INTERRUPT FF
ACKK
RESET
Keyboard Interrupt Module (KBI)
Functional Description
INTERNAL BUS
VECTOR FETCH
DECODER
KEYF
SYNCHRONIZER
IMASKK
KEYBOARD INTERRUPT REQUEST
KBIE5
TO PULLUP ENABLE
AWUIREQ
(1)

9.3.1 Keyboard Operation

Writing to the KBIE0–KBIE5 bits in the keyboard interrupt enable register (KBIER) independently enables or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin in port A also enables its internal pullup device irrespective of PTAPUEx bits in the port A input pullup enable register (se e 12.2.3
Port A Input Pullup Enable Register). A logic 0 applied to an enabled keyboa rd
interrupt pin latches a keyboard interrupt request. A keyboard interrupt is latched when one or more keyboard interrupt inputs goes
low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt.
If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard
MODEK
1. For AWUGEN logic refer to Figure 4-2. Auto Wakeup Interrupt Request Generation Logic.
Figure 9-3. Keyboard Interrupt Block Diagram
interrupt input does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one input because another input is still low, software can disable the latter input while it is low.
If the keyboard interrupt is falling edge and low-level sensitive, an interrupt request is present as long as any keyboard interrupt input is low.
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Keyboard Interrupt Module (KBI) 85
Keyboard Interrupt Module (KBI)
If the MODEK bit is set, the keyboard interrupt inputs are both falling edge and low-level sensitive, and both of the following actions must occur to clear a keyboard interrupt request:
Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the interrupt request. Software may generate the interrupt acknowledge signal by writing a 1 to the ACKK bit in the keyboard status and control register (KBSCR). The ACKK bit is useful in applications that poll the keyboard interrupt inputs and require software to clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the keyb oard interrupt inputs. A falling edge that occurs after writing to the ACKK bit latches another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the central processor unit (CPU) loads the program counter with the vector address at locations $FFE0 and $FFE1.
Return of all enabled keyboard interrupt inputs to logic 1 — As long as any enabled keyboard interrupt pin is at logic 0, the keyboard interrupt remains set. The auto wakeup interrupt input, AWUIREQ, will be cleared only by writing to ACKK bit in KBSCR or reset.
The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur in any order.
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge sensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request.
Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt input stays at logic 0.
The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred.
To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the pin as an input and then read the data register.
NOTE: Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard
interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a 0 for software to read the pin.
Data Sheet MC68HC908QY/QT Family — Rev. 3
86 Keyboard Interrupt Module (KBI) MOTOROLA

9.3.2 Keyboard Initialization

When a keyboard interrupt pin is enabled, it takes time for the internal pullup to reach a logic 1. Therefore a false interrupt can occur as soon as the pin is enabled.
To prevent a false interrupt on keyboard initialization:
1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status
2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard
3. Write to the ACKK bit in the keyboard status and control registe r to clear any
4. Clear the IMASKK bit.
An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load.
Another way to avoid a false interrupt:
1. Configure the keyboard pins as outputs by setting the appropriate DDRA
2. Write 1s to the appropriate port A data register bits.
3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard
Keyboard Interrupt Module (KBI)
Wait Mode
and control register.
interrupt enable register.
false interrupts.
bits in the data direction register A.
interrupt enable register.

9.4 Wait Mode

The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode.

9.5 Stop Mode

The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode.

9.6 Keyboard Module During Break Interrupts

The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state.
To allow software to clear the keyboard interrupt latch during a break interrupt, write a 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state.
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Keyboard Interrupt Module (KBI) 87
Keyboard Interrupt Module (KBI)
To protect the latch during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has no effect.

9.7 Input/Output Registers

The following I/O registers control and monitor operation of the keyboard interrupt module:
Keyboard interrupt status and control register (KBSCR)
Keyboard interrupt enable register (KBIER)

9.7.1 Keyboard Status and Control Register

The keyboard status and control register (KBSCR):
Flags keyboard interrupt requests
Acknowledges keyboard interrupt requests
Masks keyboard interrupt requests
Controls keyboard interrupt triggering sensitivity
Address: $001A
Bit 7654321Bit 0
Read:0000KEYF0
Write: ACKK
Reset:00000000
= Unimplemented
IMASKK MODEK
Figure 9-4. Keyboard Status and Control Register (KBSCR)
Bits 7–4 — Not used
These read-only bits always read as 0s.
KEYF — Keyboard Flag Bit
This read-only bit is set when a keyboard interrupt is pending on port A or auto wakeup. Reset clears the KEYF bit.
1 = Keyboard interrupt pending 0 = No keyboard interrupt pending
ACKK — Keyboard Acknowledge Bit
Writing a 1 to this write-only bit clears the keyboard interrupt request on port A and auto wakeup logic. ACKK always reads as 0. Reset clears ACKK.
IMASKK— Keyboard Interrupt Mask Bit
Writing a 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests on port A or auto wakeup. Reset clears the IMASKK bit.
1 = Keyboard interrupt requests masked 0 = Keyboard interrupt requests not masked
Data Sheet MC68HC908QY/QT Family — Rev. 3
88 Keyboard Interrupt Module (KBI) MOTOROLA
MODEK — Keyboard Triggering Sensitivity Bit
This read/write bit controls the triggering sensitivity of the keyboard interrupt pins on port A and auto wakeup. Reset clears MODEK.
1 = Keyboard interrupt requests on falling edges and low levels 0 = Keyboard interrupt requests on falling edges only

9.7.2 Keyboard Interrupt Enable Register

The port A keyboard interrupt enable register (KBIER) enables or disables each port A pin or auto wakeup to operate as a keyboard interrupt input.
Address: $001B
Bit 7654321Bit 0
Read: 0
Write:
Reset:00000000
= Unimplemented
Figure 9-5. Keyboard Interrupt Enable Register (KBIER)
Keyboard Interrupt Module (KBI)
Input/Output Registers
AWUIE KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0
KBIE5–KBIE0 — Port A Keyboard Interrupt Enable Bits
Each of these read/write bits enables the corresponding keyboard interrupt pin on port A to latch interrupt requests. Reset clears the keyboard interrupt enable register.
1 = KBIx pin enabled as keyboard interrupt pin 0 = KBIx pin not enabled as keyboard interrupt pin
NOTE: AWUIE bit is not used in conjunction with the keyboard interrupt feature. To see a
description of this bit, see Section 4. Auto Wakeup Module (AWU).
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Keyboard Interrupt Module (KBI) 89
Keyboard Interrupt Module (KBI)
Data Sheet MC68HC908QY/QT Family — Rev. 3
90 Keyboard Interrupt Module (KBI) MOTOROLA
Data Sheet — MC68HC908QY/QT Family

10.1 Introduction

This section describes the low-voltage inhibit (LVI) module, which monitors the voltage on the V
pin and can force a reset when the V
DD
LVI trip falling voltage, V

10.2 Features

Features of the LVI module include:
Programmable LVI reset
Programmable power consumption
Selectable LVI trip voltage
Programmable stop mode operation
TRIPF

Section 10. Low-Voltage Inhibit (LVI)

voltage falls below the
DD
.

10.3 Functional Description

Figure 10-1 shows the structure of the LVI module. LVISTOP, LVIPWRD,
LVI5OR3, and LVIRSTD are user selectable options found in the configuration register (CONFIG1). See Section 5. Configuration Register (CONFIG).
FROM CONFIG
V
DD
LOW V
DD
DETECTOR
LVI5OR3
STOP INSTRUCTION
FROM CONFIG
LVIRSTD
LVIPWRD
FROM CONFIG
> LVITRIP = 0
V
DD
LVITRIP = 1
V
DD
LVIOUT
Figure 10-1. LVI Module Block Diagram
LVISTOP
FROM CONFIG
LVI RESET
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Low-Voltage Inhibit (LVI) 91
Low-Voltage Inhibit (LVI)
The LVI is enabled out of reset. The LVI module contains a bandgap reference circuit and comparator. Clearing the LVI power disable bit, LVIPWRD, enables the LVI to monitor V the LVI module to generate a reset when V the LVI enable in stop mode bit, LVISTOP, enables the LVI to operate in stop mode. Setting the LVI 5-V or 3-V trip point bit, LVI5OR3, enables the trip point voltage, V enables the trip point voltage, V actual trip thresholds are specified in 16.5 5-V DC Electrical Characteristics and
16.9 3-V DC Electrical Characteristics.
NOTE: After a power-on reset, the LVI’s default mode of operation is 3 volts. If a 5-V
system is used, the user must set the LVI5OR3 bit to raise the trip point to 5-V operation.
If the user requires 5-V mode and sets the LVI5OR3 bit after power-on reset while the V (MCU) will immediately go into reset. The next time the LVI releases the reset, the supply will be above the V
voltage. Clearing the LVI reset disable bit, LVIRSTD, enables
DD
, to be configured for 5-V operation. Clearing the LVI5OR3 bit
TRIPF
supply is not above the V
DD
TRIPR
falls below a voltage, V
DD
, to be configured for 3-V operation. The
TRIPF
for 5-V mode, the microcontroller unit
TRIPR
for 5-V mode.
TRIPF
. Setting
Once an LVI reset occurs, the MCU remains in reset until V voltage, V
, which causes the MCU to exit reset. See Section 13. System
TRIPR
Integration Module (SIM) for the reset recovery sequence.
The output of the comparator controls the state of the LVIOUT flag in the LVI status register (LVISR) and can be used for polling LVI operation when the LVI reset is disabled.

10.3.1 Polled LVI Operation

In applications that can operate at V monitor V
by polling the LVIOUT bit. In the configuration register, the LVIPWRD
DD
bit must be cleared to enable the LVI module, and the LVIRSTD bit must be at set to disable LVI resets.

10.3.2 Forced Reset Operation

In applications that require V resets allows the LVI module to reset the MCU when V level. In the configuration register, the LVIPWRD and LVIRSTD bits must be cleared to enable the LVI module and to enable LVI resets.

10.3.3 Voltage Hysteresis Protection

levels below the V
DD
to remain above the V
DD
rises above a
DD
level, software can
TRIPF
level, enabling LVI
TRIPF
falls below the V
DD
TRIPF
Once the LVI has triggered (by having V a reset condition until V
rises above the rising trip point voltage, V
DD
fall below V
DD
), the LVI will maintain
TRIPF
TRIPR
. This prevents a condition in which the MCU is continually entering and exiting reset if V
is approximately equal to V
DD
hysteresis voltage, V
Data Sheet MC68HC908QY/QT Family — Rev. 3
92 Low-Voltage Inhibit (LVI) MOTOROLA
HYS
.
TRIPF
. V
is greater than V
TRIPR
TRIPF
by the

10.3.4 LVI Trip Selection

The LVI5OR3 bit in the configuration register selects whether the LVI is configured for 5-V or 3-V protection.
NOTE: The microcontroller is guaranteed to operate at a minimu m supply voltage. The trip
point (V
Electrical Characteristics and 16.9 3-V DC Electrical Characteristics for the
actual trip point voltages.

10.4 LVI Status Register

The LVI status register (LVISR) indicates if the VDD voltage was detected below the V
Address: $FE0C
Reset:00000000
Low-Voltage Inhibit (LVI)
LVI Status Register
[5 V] or V
TRIPF
level while LVI resets have been disabled.
TRIPF
[3 V]) may be lower than this. See 16.5 5-V DC
TRIPF
Bit 7654321Bit 0
Read:LVIOUT000000R
Write:
= Unimplemented R = Reserved

10.5 LVI Interrupts

Figure 10-2. LVI Status Register (LVISR)
LVIOUT — LVI Output Bit
This read-only flag becomes set when the V trip voltage and is cleared when V
voltage rises above V
DD
voltage falls below the V
DD
. The difference
TRIPR
in these threshold levels results in a hysteresis that prevents oscillation into and out of reset (see Table 10-1). Reset clears the LVIOUT bit.
Table 10-1. LVIOUT Bit Indication
V
TRIPF
V
V
> V
DD
VDD < V
< VDD < V
DD
TRIPR
TRIPF
TRIPR
LVIOUT
0 1
Previous value
The LVI module does not generate interrupt requests.
TRIPF
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Low-Voltage Inhibit (LVI) 93
Low-Voltage Inhibit (LVI)

10.6 Low-Power Modes

The STOP and WAIT instructions put the MCU in low power-consumption standby modes.

10.6.1 Wait Mode

If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of wait mode.

10.6.2 Stop Mode

When the LVIPWRD bit in the configuration register is cleared and the LVISTOP bit in the configuration register is set, the LVI module remains active in stop mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of stop mode.
Data Sheet MC68HC908QY/QT Family — Rev. 3
94 Low-Voltage Inhibit (LVI) MOTOROLA
Data Sheet — MC68HC908QY/QT Family

11.1 Introduction

The oscillator module is used to provide a stable clock source for the microcontroller system and bus. The oscillator module generates two output clocks, BUSCLKX2 and BUSCLKX4. The BUSCLKX4 clock is used by the system integration module (SIM) and the computer operating properly module (COP). The BUSCLKX2 clock is divided by two in the SIM to be used as the bus clock for the microcontroller. Therefore the bus frequency will be one fourth of the BUSCLKX4 frequency.

11.2 Features

The oscillator has these four clock source options available:
1. Internal oscillator: An internally generated, fixed frequency clock, trimmable to ±5%.This is the default option out of reset.
2. External oscillator: An external clock that can be driven directly into OSC1.
3. External RC: A built-in oscillator module (RC oscillator) that requires an external R connection only. The capacitor is internal to the chip.
4. External crystal: A built-in oscillator module (XTAL oscillator) that requires an external crystal or ceramic-resonator.

Section 11. Oscillator Module (OSC)

11.3 Functional Description

The oscillator contains these major subsystems:
Internal oscillator circuit
Internal or external clock switch control
External clock circuit
External crystal circuit
External RC clock circuit
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Oscillator Module (OSC) 95
Oscillator Module (OSC)
PTA0/AD0/TCH0/KBI0
PTA1/AD1/TCH1/KBI1
PTA2/IRQ
/KBI2/TCLK
PTA3/RST
PTA4/OSC2/AD2/KBI4
PTA5/OSC1/AD3/KBI5
/KBI3
PTB0 PTB1 PTB2 PTB3 PTB4 PTB5 PTB6 PTB7
POWER SUPPLY
PTA
PTB
8-BIT ADC
128 BYTES RAM
DDRA
DDRB
V
DD
V
SS
M68HC08 CPU
MC68HC908QY4 AND MC68HC908QT4
4096 BYTES
MC68HC908QY2, MC68HC908QY1,
MC68HC908QT2, AND MC68HC908QT1:
1536 BYTES
USER FLASH
CLOCK
GENERATOR
(OSCILLATOR)
SYSTEM INTEGRATION
MODULE
SINGLE INTERRUPT
MODULE
BREAK
MODULE
POWER-ON RESET
MODULE
KEYBOARD INTERRUPT
MODULE
16-BIT TIMER
MODULE
COP
MODULE
MONITOR ROM
RST, IRQ: Pins have internal (about 30K Ohms) pull up
PTA[0:5]: High current sink and source capability PTA[0:5]: Pins have programmable keyboard interrupt and pull up
PTB[0:7]: Not available on 8-pin devices – MC68HC908QT1, MC68HC908QT2, and MC68HC908QT4 ADC: Not available on the MC68HC908QY1 and MC68HC908QT1
Figure 11-1. Block Diagram Highlighting OSC Block and Pins
Data Sheet MC68HC908QY/QT Family — Rev. 3
96 Oscillator Module (OSC) MOTOROLA

11.3.1 Internal Oscillator

The internal oscillator circuit is designed for use with no external components to provide a clock source with tolerance less than ±25% untrimmed.An 8-bit trimming register allows adjustment to a tolerance of less than ±5%.
The internal oscillator will generate a clock of 12.8 MHz typical (INTCLK) resulting in a bus speed (internal clock ÷ 4) of 3.2 MHz. 3.2 MHz came from the maximum bus speed guaranteed at 3 V which is 4 MHz.Since the internal oscillator will have a ±25% tolerance (pre-trim), then the +25% case should not allow a frequency higher than 4 MHz:
3.2 MHz + 25% = 4 MHz
Figure 11-3 shows how BUSCLKX4 is derived from INTCLK and, like the RC
oscillator, OSC2 can output BUSCLKX4 by setting OSC2EN in PTAPUE register.See Section 12. Input/Output Ports (PORTS)
11.3.1.1 Internal Oscillator Trimming
The 8-bit trimming register, OSCTRIM, allows a clock period adjust of +127 and –128 steps. Increasing OSCTRIM value increases the clock period. Trimming allows the internal clock frequency to be set to 12.8 MHz ± 5%.
Oscillator Module (OSC)
Functional Description
All devices are programmed with a trim value in a reserved FLASH location, $FFC0. This value can be copied from the FLASH to the OSCTRIM register ($0038) during reset initialization.
Reset loads OSCTRIM with a default value of $80.
WARNING: Bulk FLASH erasure will set location $FFC0 to $FF and the factory
programmed value will be lost.
11.3.1.2 Internal to External Clock Switching
When external clock source (external OSC, RC, or XTAL) is desired, the user must perform the following steps:
1. For external crystal circuits only, OSCOPT[1:0] = 1:1: To help precharge an external crystal oscillator, set PTA4 (OSC2) as an output and drive high for several cycles. This may help the crystal circuit start more robustly.
2. Set CONFIG2 bits OSCOPT[1:0] according to Table 11-2. The oscillator module control logic will then set OSC1 as an external clock input and, if the external crystal option is selected, OSC2 will also be set as the clock output.
3. Create a software delay to wait the stabilization time needed for the selected clock source (crystal, resonator, RC) as recommended by the component manufacturer. A good rule of thumb for crystal oscillators is to wait 4096 cycles of the crystal frequency, i.e., for a 4-MHz crystal, wait approximately 1 msec.
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Oscillator Module (OSC) 97
Oscillator Module (OSC)
4. After the manufacturer’s recommended delay has ela psed , th e ECGON bit
5. After ECGON set is detected, the OSC module checks for oscillator activity
6. The OSC module then switches to the external clock. Logic pr ovides a glitch
7. The OSC module first sets the ECGST bit in the OSCSTAT register and the n
NOTE: Once transition to the external clock is done, the internal oscillator will only be
reactivated with reset. No post-switch clock monitor feature is implemented (clock does not switch back to internal if external clock dies).

11.3.2 External Oscillator

The external clock option is designed for use when a clock signal is available in the application to provide a clock source to the microcontroller. The OSC1 pin is enabled as an input by the oscillator module. The clock signal is used directly to create BUSCLKX4 and also divided by two to create BUSCLKX2.
in the OSC status register (OSCSTAT) needs to be set by the user software.
by waiting two external clock rising edges.
free transition.
stops the internal oscillator.
In this configuration, the OSC2 pin cannot output BUSCLKX4.So the OSC2EN bit in the port A pullup enable register will be clear to enable PTA4 I/O functions on the pin

11.3.3 XTAL Oscillator

The XTAL oscillator circuit is designed for use with an external crystal or ceramic resonator to provide an accurate clock source. In this co nfiguration, t he OSC2 pin is dedicated to the external crystal circuit. The OSC2EN bit in the port A pullup enable register has no effect when this clock mode is selected.
In its typical configuration, the XTAL oscillator is connected in a Pierce oscillator configuration, as shown in Figure 11-2. This figure shows only the logical representation of the internal components and may not represent actual circuitry. The oscillator configuration uses five components:
NOTE: The series resistor (R
guidelines and may not be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal manufacturer’s data for more information.
•Crystal, X
Fixed capacitor, C
1
1
Tuning capacitor, C2 (can also be a fixed capacitor)
Feedback resistor, R
B
Series resistor, RS (optional)
) is included in the diagram to follow strict Pierce oscillator
S
Data Sheet MC68HC908QY/QT Family — Rev. 3
98 Oscillator Module (OSC) MOTOROLA
Oscillator Module (OSC)
Functional Description
FROM SIM
BUSCLKX2BUSCLKX4
XTALCLK
SIMOSCEN
MCU
OSC2OSC1
(1)
R
R
B
X
1
C
1
Note 1.
can be zero (shorted) when used with higher-frequency crystals. Refer to manufacturer’s
R
S
data. See Section 16. Electrical Specifications for component value recommendations.
S
C
2
TO SIMTO SIM
÷ 2
Figure 11-2. XTAL Oscillator External Connections

11.3.4 RC Oscillator

The RC oscillator circuit is designed for use with external R to provide a clock source with tolerance less than 25%.
In its typical configuration, the RC oscillator requires two external components, one R and one C. In the MC68HC908QY4, the capacitor is internal to the chip. The R value should have a tolerance of 1% or less, to obtain a clock source with less than 25% tolerance. The oscillator configuration uses one component, R
EXT
.
In this configuration, the OSC2 pin can be left in the reset state as PTA4. Or, the OSC2EN bit in the port A pullup enable register can be set to enable the OSC2 output function on the pin. Enabling the OSC2 output slightly increases the external RC oscillator frequency, f
RCCLK
.
See Figure 11-3
MC68HC908QY/QT Family — Rev. 3 Data Sheet
MOTOROLA Oscillator Module (OSC) 99
Oscillator Module (OSC)
OSCRCOPT
INTCLK
SIMOSCEN
MCU
V
DD
See Section 16. Electrical Specifications for component value requirements.
EXTERNAL RC
EN
OSCILLATOR
OSC1
R
EXT
RCCLK
PTA4/BUSCLKX4 (OSC2)
0
1
1
0
Figure 11-3. RC Oscillator External Connections
TO SIM
PTA4
I/O
TO SIMFROM SIM
BUSCLKX2BUSCLKX4
÷ 2
PTA4
OSC2EN

11.4 Oscillator Module Signals

The following paragraphs describe the signals that are inputs to and outputs from the oscillator module.

11.4.1 Crystal Amplifier Input Pin (OSC1)

The OSC1 pin is either an input to the crystal oscillator amplifier, an input to the RC oscillator circuit, or an external clock source.
For the internal oscillator configuration, the OSC1 pin can assume other functions according to Table 1-3. Function Priority in Shared Pins.

11.4.2 Crystal Amplifier Output Pin (OSC2/PTA4/BUSCLKX4)

For the XTAL oscillator device, the OSC2 pin is the crystal oscillator inverting amplifier output.
For the external clock option, the OSC2 pin is dedicated to the PTA4 I/O function. The OSC2EN bit has no effect.
For the internal oscillator or RC oscillator options, the OSC2 pin can assume other functions according to Table 1-3. Function Priority in Shared Pins, or the output of the oscillator clock (BUSCLKX4).
Data Sheet MC68HC908QY/QT Family — Rev. 3
100 Oscillator Module (OSC) MOTOROLA
Loading...