Motorola MC33364D, MC33364D1, MC33364D2 Datasheet

Order this document by MC33364/D
 
    
The MC33364 series are variable frequency SMPS controllers that operate in the critical conduction mode. They are optimized for low power, high density power supplies requiring minimum board area, reduced component count, and low power dissipation. Each narrow body SOIC package provides a small footprint. Integration of the high voltage startup saves approximately 0.7 W of power compared to resistor bootstrapped circuits.
Each MC33364 features an on–board reference, UVLO function, a watchdog timer to initiate output switching, a zero current detector to ensure critical conduction operation, a current sensing comparator, leading edge blanking, and a CMOS driver. Protection features include the ability to shut down switching, and cycle–by–cycle current limiting.
The MC33364D1 is available in a surface mount SO–8 package. It has an internal 126 kHz frequency clamp. For loads which have a low power operating condition, the frequency clamp limits the maximum operating frequency , preventing excessive switching losses and EMI radiation.
The MC33364D2 is available in the SO–8 package without an internal frequency clamp.
The MC33364D is available in the SO–16 package. It has an internal 126 kHz frequency clamp which is pinned out, so that the designer can adjust the clamp frequency by connecting appropriate values of resistance.
Lossless Off–Line Startup
Leading Edge Blanking for Noise Immunity
Watchdog T imer to Initiate Switching
Minimum Number of Support Components
Shutdown Capability
Over Temperature Protection
Optional Frequency Clamp

CRITICAL CONDUCTION
GREENLINE SMPS
CONTROLLER
SEMICONDUCTOR
TECHNICAL DATA
8
1
D1, D2 SUFFIX
PLASTIC PACKAGE
(SO–8)
16
1
D SUFFIX
PLASTIC PACKAGE
CASE 751B
(SO–16)
PIN CONNECTIONS
ORDERING INFORMATION
Operating
Device
MC33364D1 MC33364D2 MC33364D SO–16
Temperature Range
TJ = –25° to +125°C
Package
SO–8 SO–8
Representative Block Diagram
Restart
Delay
PWM
Comparator
FB
Current
Sense
ZC Det
This document contains information on a new product. Specifications and information herein are subject to change without notice.
MOTOROLA ANALOG IC DEVICE DATA
Leading
Edge
Blanking
Zero
Current
Detector
This device contains 335 active transistors.
S R
Q
R
Watchdog
Timer
Thermal
Shutdown
V
ref
UVLO
V
UVLO
Bandgap
Reference
Frequency
Clamp
CC
Line
V
CC
V
ref
Gnd
Gate
Optional Frequency Clamp
MC33364D1 MC33364D2
Zero Current
Current Sense
Voltage FB
Zero Current
Current Sense
Voltage FB
Freq Clamp
Motorola, Inc. 1997 Rev 0
18 2 3
V
4
ref
(Top View)
MC33364D
116
N/C
2 3 4
N/C
5
V
6
ref
7
N/C
8
(Top View)
Line V
7
CC
Gate Drive
6
P Gnd
5
Line
A V
13
CC
P V
12
CC
11
Gate Drive
10
P Gnd
9
A Gnd
1
MAXIMUM RATINGS
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁÁ ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
Á
Á
Á
Á
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Á
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
(TA = 25°C, unless otherwise noted.)
Rating Symbol Value Unit
Power Supply Voltage (Transient) Power Supply Voltage (Operating) Line Voltage Current Sense, Compensation,
Voltage Feedback, Restart Delay and Zero
Current Input Voltage Zero Current Detect Input Restart Diode Current Power Dissipation and Thermal Characteristics
D1 and D2 Suffix, Plastic Package Case 751
Maximum Power Dissipation @ TA = 70°C P Thermal Resistance, Junction–to–Air R
D Suffix, Plastic Package Case 751B–05
Maximum Power Dissipation @ TA = 70°C P Thermal Resistance, Junction–to–Air R
Operating Junction Temperature
ББББББББББББ
Operating Ambient Temperature
ББББББББББББ
Storage Temperature Range
ББББББББББББ
NOTE: ESD data available upon request.
V
CC
V
CC
V
Line
V
in1
I
in
I
in
D
θJA
D
θJA
T
J
ÁÁ
T
A
ÁÁ
T
stg
ÁÁ
MC33364
700
–1.0 to +10 V
±5.0
450 mW 178 °C/W
550 mW 145 °C/W
150
ÁÁÁ
–25 to +125
ÁÁÁ
–55 to +150
ÁÁÁ
20 16
5.0
mA mA
°C
Á
°C
Á
°C
Á
V V V
ELECTRICAL CHARACTERISTICS (V
= 12 V, for typical values TA = 25°C, for min/max values TJ = –25 to 125°C)
CC
Characteristic
VOLTAGE REFERENCE
Reference Output Voltage (I
= 0 mA, TJ = 25°C)
Out
Line Regulation (VCC = 10 V to 20 V) Load Regulation (I Maximum V
ref
= 0 mA to 5.0 mA)
Out
Output Current
Reference Undervoltage Lockout Threshold
ZERO CURRENT DETECTOR
Input Threshold Voltage (Vin Increasing) Hysteresis (Vin Decreasing) Input Clamp Voltage
High State (I Low State (I
= 3.0 mA) V
DET
= –3.0 mA) V
DET
CURRENT SENSE COMPARATOR
Input Bias Current (VCS = 0 to 2.0 V)
БББББББББББББББ
Built In Offset
БББББББББББББББ
Feedback Pin Input Range
БББББББББББББББ
Feedback Pin to Output Delay
БББББББББББББББ
DRIVE OUTPUT
БББББББББББББББ
Source Resistance (Drive = 0 V, V Sink Resistance (Drive = VCC, V
= VCC – 1.0 V)
Gate
= 1.0 V) R
Gate
Output Voltage Rise T ime (25% – 75%) (CL = 1.0 nF) Output Voltage Fall Time (75% – 25%) (CL = 1.0 nF) Output Voltage in Undervoltage (VCC = 7.0 V, I
Sink
= 1.0 mA)
Symbol Min Typ Max Unit
V
ref
Reg
line
Reg
load
I
O
V
th
V
th
V
H
IH IL
I
IB
ÁÁÁ
V
IO
ÁÁÁ
V
FB
ÁÁÁ
t
DLY
ÁÁÁ
ÁÁÁ
R
OH OL
t
r
t
f
V
O(UV)
4.90 – – – –
0.9 –
5.05
2.0
0.3 5
4.5
1.0
200
5.20 50 50
– –
1.1 –
9.0 10.33 12
–0.5 –0.75 –1.1
–0.5
ÁÁÁ
50
ÁÁÁ
1.1
ÁÁÁ
100
ÁÁÁ
ÁÁÁ
10
0.02
ÁÁÁ
108
ÁÁÁ
1.24
ÁÁÁ
232
ÁÁÁ
ÁÁÁ
36
0.5
ÁÁ
170
ÁÁ
1.4
ÁÁ
400
ÁÁ
ÁÁ
70
5 11 25
– –
67 28
0.01
150
50
0.03
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
V mV mV mA
V
V mV
V
µA
mV
V
ns
ns ns
V
2
MOTOROLA ANALOG IC DEVICE DATA
MC33364
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
Á
Á
Á
Á
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Á
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
Á
Á
Á
Á
ÁÁÁ
Á
ÁÁÁ
ELECTRICAL CHARACTERISTICS (continued) (V
= 12 V, for typical values TA = 25°C, for min/max values TJ = –25 to 125°C)
CC
Characteristic UnitMaxTypMinSymbol
LEADING EDGE BLANKING
Delay to Current Sense Comparator Input
(VFB = 2.0 V, VCS = 0 V to 4.0 V step, CL = 1.0 nF)
TIMER
Watchdog Timer
UNDERVOLTAGE LOCKOUT
Startup Threshold (VCC Increasing)
БББББББББББББББ
Minimum Operating Voltage After Turn–On (VCC Decreasing)
БББББББББББББББ
FREQUENCY CLAMP
БББББББББББББББ
Internal FC Function (pin open)
БББББББББББББББ
Internal FC Function (pin grounded)
БББББББББББББББ
Frequency Clamp Input Threshold
БББББББББББББББ
Frequency Clamp Control Current Range
БББББББББББББББ
TOTAL DEVICE
Line Startup Current (V
= 50 V) (VCC = V
Line
th(on)
– 1.0 V)
Restart Delay Time t Line Pin Leakage (V
Line Startup Current (VCC = 0 V, V
= 575 V) I
Line
= 50 V) I
Line
VCC Dynamic Operating Current (50 kHz, CL = 1.0 nF) VCC Static Operating Current (VCC = 16 V, V
БББББББББББББББ
ref
= 0)
VCC Pin Leakage (VCC = 11 V)
t
PHL(in/out)
t
DLY
V
th(on)
ÁÁÁ
V
Shutdown
ÁÁÁ
ÁÁÁ
f
max
ÁÁÁ
f
max
ÁÁÁ
V
th(FC)
ÁÁÁ
I
Control
ÁÁÁ
I
Line DLY
Line Line
I
CC
ÁÁÁ
ICC
Lkg
200
14
ÁÁÁ
6.5
ÁÁÁ
ÁÁÁ
ÁÁÁ90ÁÁÁ
400
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ30ÁÁÁ70ÁÁ
5.0
250
410
15
ÁÁÁ
7.6
ÁÁÁ
ÁÁÁ
126 564
ÁÁÁ
2.0
8.5
700
16
ÁÁ
8.5
ÁÁ
ÁÁ
160
ÁÁ
700
ÁÁ
ÁÁ
110
12
100 ms
0.5 32 70 µA
6.0 10 12 mA
1.5 –
ÁÁÁ
300
2.75
3.0
ÁÁÁ
544
4.5 –
ÁÁ
800
ns
µs
V
ÁÁ
V
ÁÁ
ÁÁ
kHz
ÁÁ
kHz
ÁÁ
V
ÁÁ
µA
ÁÁ
mA
mA
ÁÁ
µA
MOTOROLA ANALOG IC DEVICE DATA
3
MC33364
0
5
OUTPUT VOLTAGE (V)
30 25 20 15
10
5.0
–5.0
16
12
8.0
Figure 1. Drive Output Waveform
Figure 2. Watchdog Timer Delay
versus T emperature
VCC = 14 V CL = 1000 pF
°
C
TA = 25
0
5.0 µs/DIV
Figure 3. Reference V oltage
versus T emperature
VCC = 14 V
µ
, WATCHDOG TIME DELAY ( s)
DLY
t
500
450
400
350
300
–55
6.0
4.0 Circuit of Figure 7 TA = 25
VCC = 14 V
–25 0 25 50 75 100 12
TA, AMBIENT TEMPERATURE (°C)
Figure 4. Supply Current
versus Supply V oltage
°
C
4.0
, VOLTAGE FEEDBACK
FB
V
THRESHOLD CHANGE (mV)
5.0
–4.0
–55
–25 0 25 50 75 125100
TA, AMBIENT TEMPERATURE (°C)
Figure 5. Transient Thermal Resistance
1000
D Suffix 16 Pin SOIC
°
100
, THERMAL RESISTANCE
JA(t)
JUNCTION–TO–AIR ( C/W)
θ
R
10
0.01
0.1 1.0 10 100 t, TIME (s)
2.0
, SUPPLY CURRENT (mA)
CC
I
0
4.0
1000
µ
100
10
1.0
, PROGRAMMED DEAD TIME ( sec)
d
T
0.1
0.1
6.0 8.0 10 12 14 16 VCC, SUPPLY VOLTAGE (V)
Figure 6. Dead Time
versus Input Current
D Suffix 16 Pin SOIC
°
C
TA = 25 VCC = 14 V
1.0 10 100 100
Iin, CURRENT SOURCED INTO PIN 8 (µA)
4
MOTOROLA ANALOG IC DEVICE DATA
MC33364
FUNCTIONAL DESCRIPTION
INTRODUCTION
With the goal of reducing the size and cost of off–line power supplies, there is an ever increasing demand for an economical method of obtaining a regulated galvanically isolated dc output voltage using a control which operates
Figure 7. Functional Block Diagram
C5 10
D3 1N4006
92 to
270 Vac
EMI
Filter
1N4006
D2
D1
1N4006
1N4006
D4
MC33364
R2
22 k
1.5 V
UVLO
UVLO
+
Leading
Blanking
44 K
14 K
V
CC
5.0 V
Reference
Zero Current
Frequency
Clamp
C2
0.01
D9 1N4148
R13 100
4.0 K 10 V
Zero Current Detect
0.3/
0.25 V
2.0 V
RQ
Timer
R
Q
R
Q
S
En
5.0 V
10 pF
3.0
R S
µ
Q
A
2.0 V
Line
+
15/7.6
Edge
5.0 k
A Gnd
directly from the ac line. This data sheet describes a monolithic control IC that was specifically designed for power supply control with a minimal number of external components. It offers the designer a simple cost effective solution to obtain the benefits of off–line power regulation.
T1
En
C3
V
CC
P V
Gate Drive
P Gnd
Current Sense
Voltage FB
V
ref
1N4934
20
+
D5
CC
R1 56
R5 47 k
R6 47 K
470 R4
D7 1N4148
R12 100
C9 .01
C4 .001
R3
1.2 K
C10
0.1
D6 MURS160T3
Q1
MTD1N60
R7
2.2
D8 MBRS340T3
C5 300
U3
MOC8102
VO+
5
39 k
U2 TL431
2.5
R9
R8 430
R10 14 k
1 24
C7 10
2
R10 R11
C8 330 pF
1
R11 10 k
Ǔ
)
1
3
ǒ
6.0 V 2 Amp
Operating Description
The MC33364 contains many of the building blocks and protection features that are employed in modern high performance current mode power supply controllers. Referring to the block diagram in Figure 7, note that this device does not contain an oscillator. A description of each of the functional blocks is given below.
Zero Current Detector
The MC33364 operates as a critical conduction current mode controller, whereby output switch conduction is initiated by the Zero Current Detector and terminated when the peak inductor current reaches the input threshold level. The Zero Current Detector initiates the next on–time by
MOTOROLA ANALOG IC DEVICE DATA
setting the RS Latch at the instant the inductor current reaches zero. This critical conduction mode of operation has two significant benefits. First, since the MOSFET cannot turn–on until the inductor current reaches zero, the output rectifier’s reverse recovery time becomes less critical allowing the use of an inexpensive rectifier. Second, since there are no deadtime gaps between cycles, the ac line current is continuous thus limiting the peak switch to twice the average input current
The Zero Current Detector indirectly senses the inductor current by monitoring when the auxiliary winding voltage falls below 0.25 V . To prevent false tripping, 50 mV of hysteresis is provided. The Zero Current Detector input is internally
5
Loading...
+ 9 hidden pages