MOTOROLA MC34151D, MC34151DR2, MC34151P, MC33151D, MC33151DR2 Datasheet

...
MC34151, MC33151
High Speed Dual MOSFET Drivers
The MC34151/MC33151 are dual inverting high speed drivers specifically designed for applications that require low current digital circuitry to drive large capacitive loads with high slew rates. These devices feature low input current making them CMOS and LSTTL logic compatible, input hysteresis for fast output switching that is independent of input transition time, and two high current totem pole outputs ideally suited for driving power MOSFETs. Also included is an undervoltage lockout with hysteresis to prevent erratic system operation at low supply voltages.
Typical applications include switching power supplies, dc to dc converters, capacitor charge pump voltage doublers/inverters, and motor controllers.
These devices are available in dual–in–line and surface mount packages.
T wo Independent Channels with 1.5 A Totem Pole Output
Output Rise and Fall Times of 15 ns with 1000 pF Load
CMOS/LSTTL Compatible Inputs with Hysteresis
Undervoltage Lockout with Hysteresis
Low Standby Current
Efficient High Frequency Operation
Enhanced System Performance with Common Switching Regulator
Control ICs
Pin Out Equivalent to DS0026 and MMH0026
http://onsemi.com
MARKING
DIAGRAMS
8
PDIP–8
P SUFFIX
8
1
8
1
x = 3 or 4 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W= Work Week
CASE 626
SO–8 D SUFFIX CASE 751
MC3x151P
AWL
YYWW
1
8
3x151 ALYW
1
PIN CONNECTIONS
Logic Input A
Logic Input B
Representative Block Diagram
V
CC
6
+
+
+
+
2
+
4
5.7V
Gnd
3
1
Logic Input A
Logic Input B
+
Drive Output A 7
100k
+
Drive Output B 5
100k
Device Package Shipping
MC34151D SO–8 98 Units/Rail MC34151DR2 SO–8 2500 Tape & Reel MC34151P PDIP–8 MC33151D SO–8 MC33151DR2 SO–8 2500 Tape & Reel MC33151P PDIP–8 50 Units/Rail MC33151VDR2 SO–8 2500 Units/Rail
2
3
Gnd
45
(Top View)
ORDERING INFORMATION
8N.C.
N.C.
7
Drive Output A
6
V
CC
Drive Output B
50 Units/Rail 98 Units/Rail
Semiconductor Components Industries, LLC, 2000
April, 2000 – Rev. 1
1 Publication Order Number:
MC34151/D
MC34151, MC33151
MAXIMUM RATINGS
Rating Symbol Value Unit
Power Supply Voltage V Logic Inputs (Note 1.) V Drive Outputs (Note 2.)
Totem Pole Sink or Source Current Diode Clamp Current (Drive Output to VCC)
Power Dissipation and Thermal Characteristics
D Suffix SO–8 Package Case 751
Maximum Power Dissipation @ TA = 50°C Thermal Resistance, Junction–to–Air
P Suffix 8–Pin Package Case 626
Maximum Power Dissipation @ TA = 50°C
Thermal Resistance, Junction–to–Air Operating Junction Temperature T Operating Ambient Temperature
MC34151 MC33151
Storage Temperature Range T
I
CC
in
I
O
O(clamp)
P
D
R
θJA
P
D
R
θJA
J
T
A
stg
20 V
–0.3 to V
–65 to +150 °C
CC
1.5
1.0
0.56 180
1.0
100
+150 °C
0 to +70
–40 to +85
°C/W
°C/W
°C
V A
W
W
ELECTRICAL CHARACTERISTICS (V
Characteristics
LOGIC INPUTS
Input Threshold Voltage – High State Logic 1
Input Threshold Voltage – Low State Logic 0
Input Current – High State (VIH = 2.6 V)
Input Current – Low State (VIL = 0.8 V)
DRIVE OUTPUT
Output Voltage – Low State (I
Output Voltage – Low State (I Output Voltage – Low State (I Output Voltage – High State (I Output Voltage – High State (I Output Voltage – High State (I
Output Pull–Down Resistor R
SWITCHING CHARACTERISTICS (TA = 25°C)
Propagation Delay (10% Input to 10% Output, CL = 1.0 nF)
Logic Input to Drive Output Rise Logic Input to Drive Output Fall
Drive Output Rise Time (10% to 90%) CL = 1.0 nF
Drive Output Rise Time (10% to 90%) CL = 2.5 nF
Drive Output Fall Time (90% to 10%) CL = 1.0 nF
Drive Output Fall Time (90% to 10%) CL = 2.5 nF
TOTAL DEVICE
Power Supply Current
Standby (Logic Inputs Grounded) Operating (CL = 1.0 nF Drive Outputs 1 and 2, f = 100 kHz)
Operating Voltage V
1. For optimum switching speed, the maximum input voltage should be limited to 10 V or VCC, whichever is less.
2. Maximum package power dissipation limits must be observed.
3. T
=0°C for MC34151 T
low
–40°C for MC33151 +85°C for MC33151
= 10 mA)
Sink
= 50 mA)
Sink
= 400 mA)
Sink Source Source Source
= 10 mA) = 50 mA) = 400 mA)
= 12 V, for typical values TA = 25°C, for min/max values TA is the only operating
CC
ambient temperature range that applies [Note 3.], unless otherwise noted.)
Symbol Min Typ Max Unit
= +70°C for MC34151
high
V
IH
V
IL
I
IH
I
IL
V
OL
V
OH
PD
t
PLH(in/out)
t
PHL(in/out)
t
r
t
f
I
CC
CC
2.6 –
– –
– – –
10.5
10.4
9.5 – 100 k
– –
– –
– –
– –
6.5 18 V
1.75
1.58 200
20
0.8
1.1
1.7
11.2
11.1
10.9
35 36
14 31
16 32
6.0
10.5
0.8
500 100
1.2
1.5
2.5 – – –
100 100
30
30
10 15
V
µA
V
ns
ns
ns
mA
http://onsemi.com
2
12
V
4.7 0.1 +
6
MC34151, MC33151
Logic Input
2.4
2.0
1.6
1.2
+
2
50 C
+
4
+
+
+
5.7V
3
+
Drive Output
7
100k
+
5
100k
L
Logic Input
tr, tf 10 ns
Drive Output
5.0 V
0 V
10%
t
PHL
t
f
90%
90%
t
PLH
10%
t
Figure 1. Switching Characteristics T est Circuit Figure 2. Switching Waveform Definitions
2.2
VCC = 12 V TA = 25°C
2.0
1.8
1.6
Upper Threshold
Low State Output
VCC = 12 V
r
0.8
, INPUT CURRENT (mA)
in
I
0.4
0
0 2.0 4.0 6.0 8.0 10 12 –55 –25 0 25 50 75 100 125
Vin, INPUT VOLTAGE (V)
Figure 3. Logic Input Current versus
Input Voltage
200
VCC = 12 V CL = 1.0 nF
160
TA = 25°C
120
80
40
, DRIVE OUTPUT PROPAGATION DELA Y (ns)
0
–1.6 –1.2 –0.8 –0.4 0 0 1.0 2.0 3.0 4.0
Vin, INPUT OVERDRIVE VOLTAGE BELOW LOWER THRESHOLD (V)
PLH(IN/OUT)
t
Overdrive Voltage is with Respect
to the Logic Input Lower Threshold
V
th(lower)
Figure 5. Drive Output Low–to–High Propagation
Delay versus Logic Overdrive V oltage
1.4
, INPUT THRESHOLD VOLTAGE (V)
1.2
th
V
1.0
Lower Threshold
High State Output
TA, AMBIENT TEMPERATURE (°C)
Figure 4. Logic Input Threshold V oltage
versus T emperature
200
160
120
80
40
, DRIVE OUTPUT PROPAGATION DELA Y (ns)
0
Vin, INPUT OVERDRIVE VOLTAGE ABOVE UPPER THRESHOLD (V)
PHL(IN/OUT)
t
Overdrive Voltage is with Respect
to the Logic Input Lower Threshold
V
th(upper)
VCC = 12 V CL = 1.0 nF TA = 25°C
Figure 6. Drive Output High–to–Low Propagation
Delay versus Logic Input Overdrive V oltage
http://onsemi.com
3
MC34151, MC33151
V
,
T
T
T
T
N
V
LT
G
(V)
90%
10%
Logic Input
Drive Output
50 ns/DIV
VCC = 12 V Vin = 5 V to 0 V CL = 1.0 nF TA = 25°C
Figure 7. Propagation Delay Figure 8. Drive Output Clamp Voltage
0 E A
–1.0
O
–2.0
IO
–3.0
URA
3.0
SA PU
2.0
OU
1.0
sat
0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
IO, OUTPUT LOAD CURRENT (A)
V
CC
Sink Saturation
(Load to VCC)
Source Saturation
(Load to Ground)
VCC = 12 V 80 µs Pulsed Load 120 Hz Rate TA = 25°C
Gnd
Figure 9. Drive Output Saturation Voltage
versus Load Current
90%
3.0
2.0
1.0
0
, OUTPUT CLAMP VOLTAGE (V)
0
clamp
V
–1.0
High State Clamp
(Drive Output Driven Above VCC)
V
CC
Gnd
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
IO, OUTPUT LOAD CURRENT (A)
(Drive Output Driven Below Ground)
VCC = 12 V 80 µs Pulsed Load 120 Hz Rate TA = 25°C
Low State Clamp
versus Clamp Current
0
Source Saturation
–0.5
(Load to Ground)
–0.7 –0.9 –1.1
1.9
1.7
1.5
1.0
, OUTPUT SATURATION VOLTAGE(V)
0.8
sat
V
Sink Saturation
0.6
(Load to VCC)
0
–55 –25 0 25 50 75 100 125
V
CC
TA, AMBIENT TEMPERATURE (°C)
I
sink
I
sink
Gnd
I
source
I
source
= 400 mA
= 10 mA
= 10 mA = 400 mA
VCC = 12 V
Figure 10. Drive Output Saturation Voltage
versus T emperature
90%
VCC = 12 V Vin = 5 V to 0 V CL = 1.0 nF TA = 25°C
10%
VCC = 12 V Vin = 5 V to 0 V CL = 1.0 nF TA = 25°C
10 ns/DIV
10%
10 ns/DIV
Figure 11. Drive Output Rise Time Figure 12. Drive Output Fall Time
http://onsemi.com
4
Loading...
+ 8 hidden pages