Motorola MC330076P2, MC330076D, MC330076P1 Datasheet


SEMICONDUCTOR
TECHNICAL DATA
DUAL HIGH OUTPUT
CURRENT OPERATIONAL
AMPLIFIER
Order this document by MC33076/D
PIN CONNECTIONS
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
16 15 14 13 12 11 10
9
Inputs 1
1 2 3 4 5 6 7 8
NC
NC
V
EE
Inputs 2
Output 1 NC V
CC
V
EE
NC NC
Output 2
PIN CONNECTIONS
(16 Pin Pkg, Top View)
+ –
2
– +
1
8
1
8
1
P1 SUFFIX
PLASTIC PACKAGE
CASE 626
16
1
P2 SUFFIX
PLASTIC PACKAGE
CASE 648C
DIP (12+2+2)
8 7 6 5
Inputs 1
1 2 3 4
Output 1
V
EE
Output 2
V
CC
Inputs 2
– +
1
+
2
ORDERING INFORMATION
Device
Operating
Temperature Range
Package
MC33076D
TA = –40° to +85°C
SO–8 MC33076P1 Plastic DIP MC33076P2 Power Plastic
1
MOTOROLA ANALOG IC DEVICE DATA
           
The MC33076 operational amplifier employs bipolar technology with innovative high performance concepts for audio and industrial applications. This device uses high frequency PNP input transistors to improve frequency response. In addition, the amplifier provides high output current drive capability while minimizing the drain current. The all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source and sink AC frequency performance.
The MC33076 is tested over the automotive temperature range and is available in an 8–pin SOIC package (D suffix) and in both the standard 8 pin DIP and 16–pin DIP packages for high power applications.
100 Output Drive Capability
Large Output Voltage Swing
Low Total Harmonic Distortion
High Gain Bandwidth: 7.4 MHz
High Slew Rate: 2.6 V/µs
Dual Supply Operation: ±2.0 V to ±18 V
High Output Current: ISC = 250 mA typ
Similar Performance to MC33178
Equivalent Circuit Schematic
(Each Amplifier)
V
in+
V
CC
V
in–
V
EE
I
ref
I
ref
C
C
C
M
V
out
Motorola, Inc. 1996 Rev 0
MC33076
2
MOTOROLA ANALOG IC DEVICE DATA
MAXIMUM RATINGS
Rating Symbol Value Unit
Power Supply Voltage (Note 2) VCC to
V
EE
+36 V
Input Differential Voltage Range V
IDR
(Note 1) V
Input Voltage Range V
IR
(Note 1) V
Output Short Circuit Duration (Note 2) t
SC
5.0 sec
Maximum Junction Temperature T
J
+150 °C
Storage Temperature T
stg
–60 to +150 °C
Maximum Power Dissipation P
D
(Note 2) mW
NOTES: 1. Either or both input voltages should not exceed VCC or VEE.
2.Power dissipation must be considered to ensure maximum junction temperature (TJ)
is not exceeded (see power dissipation performance characteristic, Figure 1).
See applications section for further information.
DC ELECTRICAL CHARACTERICISTICS (V
CC
= +15 V , VEE = –15 V , TA = 25°C, unless otherwise noted.)
Characteristics Figure Symbol Min Typ Max Unit
Input Offset Voltage (RS = 50 , VCM = 0 V)
(VS = ±2.5 V to ±15 V) TA = +25°C TA = –40° to +85°C
2 |VIO|
— —
0.5
0.5
4.0
5.0
mV
Input Offset Voltage Temperature Coefficient
(RS = 50 , VCM = 0 V) TA = –40° to +85°C
VIO/T
2.0
µV/°C
Input Bias Current (VCM = 0 V)
TA = +25°C TA = –40° to +85°C
3, 4 I
IB
— —
100
500 600
nA
Input Offset Current (VCM = 0 V)
TA = +25°C TA = –40° to +85°C
|IIO|
— —
5.0 —
70
100
nA
Common Mode Input Voltage Range 5 V
ICR
–13 –14
+14
13
V
Large Signal Voltage Gain (VO = –10 V to +10 V)
(TA = +25°C)
RL = 100 RL = 600
(TA = –40° to +85°C)
RL = 600
6 A
VOL
25 50
25
200
— —
kV/V
Output Voltage Swing (VID = ±1.0 V)
(VCC = +15 V , VEE = –15 V)
RL = 100 RL = 100 RL = 600 RL = 600
(VCC = +2.5 V , VEE = –2.5 V)
RL = 100
RL = 100
7, 8, 9
V
O+
V
O–
V
O+
V
O–
V
O+
V
O–
10
13
1.2 —
+11.7 –11.7 +13.8 –13.8
+1.66 –1.74
–10
–13
–1.2
V
Common Mode Rejection (Vin = ±13 V) 10 CMR 80 116 dB Power Supply Rejection
(VCC/VEE = +15 V/–15 V , +5.0 V/–15 V, +15 V/–5.0 V)
11 PSR
80 120
dB
MC33076
3
MOTOROLA ANALOG IC DEVICE DATA
DC ELECTRICAL CHARACTERICISTICS (V
CC
= +15 V , VEE = –15 V , TA = 25°C, unless otherwise noted.)
Characteristics Figure Symbol Min Typ Max Unit
Output Short Circuit Current (VID = ±1.0 V Output to Gnd)
(VCC = +15 V , VEE = –15 V)
Source Sink
(VCC = +2.5 V , VEE = –2.5 V)
Source Sink
12, 13 I
SC
190
63
+250 –280
+94 –80
–215
–46
mA
Power Supply Current per Amplifier (VO = 0 V)
(VS = ±2.5 V to ±15 V)
TA = +25°C TA = –40° to +85°C
14 I
D
— —
2.2 —
2.8
3.3
mA
AC ELECTRICAL CHARACTERICISTICS (V
CC
= +15 V , VEE = –15 V , TA = 25°C, unless otherwise noted.)
Characteristics
Figure Symbol Min Typ Max Unit
Slew Rate (Vin = –10 V to +10 V, RL = 100 , CL = 100 pF, AV = +1) 15 SR 1.2 2.6 V/µs Gain Bandwidth Product (f = 20 kHz) 16 GBW 4.0 7.4 MHz Unity Gain Frequency (Open Loop) (RL = 600 , CL = 0 pF) f
U
3.5 MHz
Gain Margin (RL = 600 , CL = 0 pF) 19, 20 A
m
15 dB
Phase Margin (RL = 600 , CL = 0 pF) 19, 20
m
52 Deg Channel Separation (f = 100 Hz to 20 kHz) 21 CS –120 dB Power Bandwidth (VO = 20 Vpp, RL = 600 , THD 1%) BW
p
32 kHz Total Harmonic Distortion (RL = 600 , VO = 2.0 Vpp, AV = +1)
f = 1.0 kHz f = 10 kHz f = 20 kHz
22 THD
0.0027
0.011
0.022
— — —
%
Open Loop Output Impedance (VO = 0 V, f = 2.5 MHz, AV = 10) 23 |ZO| 75 Differential Input Resistance (VCM = 0 V) R
in
200 k Differential Input Capacitance (VCM = 0 V) C
in
10 pF Equivalent Input Noise Voltage (RS = 100 )
f = 10 Hz f = 1.0 kHz
24 e
n
7.5
5.0
nV/Hz
Equivalent Input Noise Current
f = 10 Hz f = 1.0 kHz
i
n
0.33
0.15
— —
pA/Hz
MC33076
4
MOTOROLA ANALOG IC DEVICE DATA
Figure 1. Maximum Power Dissipation
versus Temperature
, MAXIMUM POWER DISSIPATION (mW)
–60 –30
TA, AMBIENT TEMPERATURE (
°
C)
MC33076P2
MC33076P1
MC33076D
See Application Section
for Further Information
PERCENTAGE OF AMPLIFIERS (%)
Figure 2. Distribution of Input
Offset Voltage
VIO, INPUT OFFSET VOLTAGE (mV)
Figure 3. Input Bias Current versus
Common Mode Voltage
VCM, COMMON MODE VOLTAGE (V)
I , INPUT BIAS CURRENT (nA)
IB
I , INPUT BIAS CURRENT (nA)
IB
Figure 4. Input Bias Current
versus Temperature
TA, AMBIENT TEMPERATURE (°C)
A
Figure 5. Input Common Mode Voltage
Range versus Temperature
TA, TEMPERATURE (°C)
Figure 6. Open Loop Voltage Gain
versus Temperature
TA, AMBIENT TEMPERATURE (°C)
P
D
VOL
, OPEN LOOP VOL TAGE GAIN (dB)
4000 3500 3000 2500 2000 1500 1000
500
0
25
20
15
10
5
0
250
225
200
175
150
125
100
150
137
125
112
100
88
75
V
EE
120
115
110
105
100
95
90
VCC–1.0
VEE+0.125
VEE+0.25
VCC–0.75
VCC–0.50
VCC–0.25
V
CC
0 30 60 90 120 150 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0
–15 –10 –5.0 0 5.0 10 15 –55 –25 5.0 35 65 95 125
–55 –25 5.0 35 65 95 125
–55 –25 5.0 35 65 95 125
2.5
180 amplifiers tested from 3 wafer lots VCC =
±
15 V
TA = 25
°
C
(Plastic DIP package)
VCC = +15 V VEE = –15 V TA = 25
°
C
VCC = +15 V VEE = –15 V VCM = 0 V
VCC = +5.0 V to +18 V VEE = –5.0 V to –18 V
VIO = 5.0 mV
RL = 2.0 k
RL = 100
VCC = +
15 V VEE = –15 V f = 10 Hz
VO = –10 to +10 V
MC33076
5
MOTOROLA ANALOG IC DEVICE DATA
V
O
, OUTPUT VOL TAGE (V )
pp
V
O
, OUTPUT VOL TAGE (V )
pp
Figure 7. Output Voltage Swing
versus Supply Voltage
VCC, |VEE|, SUPPLY VOLTAGE (V)
Figure 8. Maximum Peak–to–Peak Output
Voltage Swing versus Load Resistance
RL, LOAD RESISTANCE T O GROUND (Ω)
Figure 9. Output Voltage
versus Frequency
f, FREQUENCY (Hz)
CMR, COMMON MODE REJECTION (dB)
Figure 10. Common Mode Rejection
versus Frequency Over Temperature
f, FREQUENCY (Hz)
|I
Figure 11. Power Supply Rejection
versus Frequency Over Temperature
Figure 12. Output Short Circuit Current
versus Output Voltage
|VO|, OUTPUT VOLTAGE (V)
PSR, POWER SUPPLY REJECTION (dB)
f, FREQUENCY (Hz)
15
V
O
, OUTPUT VOLTAGE SWING (Vpp)
SC
|, OUTPUT SHORT CIRCUIT CURRENT (mA)
40 35
30 25
20 15 10
5.0 0
25
20
15
10
5.0
0
30
25
20
15
10
5.0
0
100
80
60
40
20
0
100
80
60
40
20
0
300
250
200
150
100
50
RL = 100
RL = 10 k
TA = 25°C
100 1.0 k 10 k 100 k 1.0 M10
0 5.0 10 15 20 25 10 100 1.0 k 10 k
100 1.0 k 10 k 100 k 1.0 M 100 1.0 k 10 k 100 k 1.0 M10
10 M 0 3.0 6.0 9.0 12
0
VS = ±15 V
VS = ±5.0 V
TA = 25°C f = 1.0 kHz
VCC = +15 V VEE = –15 V RL = 100
AV = +1.0 THD =
1.0%
TA = 25
°
C
VCC = +15 V VEE = –15 V VCM = 0 V
VCM = ±1.5 V
TA = –55
°
to +125°C
+PSR
–PSR
VCC = +15 V VEE = –15 V
VCC = ±1.5 V
TA = –55
°
to +125°C
Source
Sink
VCC = +15 V VEE = –15 V VID =
±
1.0 V
MC33076
6
MOTOROLA ANALOG IC DEVICE DATA
1
A
2 A
1B
2B
|, OUTPUT SHORT CIRCUIT CURRENT (mA)
I
Figure 13. Output Short Circuit Current
versus Temperature
VCC |VEE|, SUPPLY VOLTAGE (V)
Figure 14. Supply Current versus
Supply Voltage with No Load
TA, AMBIENT TEMPERATURE (°C)
Figure 15. Slew Rate
versus Temperature
SR, SLEW RATE (V/
GBW, GAIN BANDWIDTH PRODUCT (MHz)
Figure 16. Gain Bandwidth Product
versus Temperature
TA, AMBIENT TEMPERATURE (°C)
Figure 17. Voltage Gain and Phase
versus Frequency
f, FREQUENCY (Hz)
Figure 18. Voltage Gain and Phase
versus Frequency
TA, AMBIENT TEMPERATURE (°C)
V
in
100
100pF
80
120
160
200
240
280
, EXCESS PHASE (DEGREES)
A
, EXCESS PHASE (DEGREES)
f, FREQEUNCY (Hz)
80
120
160
200
280
+
240
|I
SC
µ
S)
V
, VOLTAGE GAIN (dB)
A
V
, VOLTAGE GAIN (dB)
D
, SUPPLY CURRENT/AMPLIFIER (mA)
5.0
4.0
3.0
2.0
1.0
0
320 300 280
260 240 220 200
180
8.5
8.0
7.5
7.0
6.5
6.0
5.5
3.0
2.5
2.0
1.5
1.0
0.5
0
50
30
10
–10
–30
–50
50
30
10
–10
–30
–50
0 3.0 6.0 9.0 12 15 18–55 –25 5.0 35 65 95 125
–55 –25 5.0 35 65 95 125
30 M
–55 –25 5.0 35 65 95 125
10 M1.0 M100 k
30 M10 M1.0 M100 k
Source
Sink
VCC = +15 V VEE = –15 V VID =
±
1.0 V
RL < 10
TA = +25°C
TA = +125°C
TA = –55°C
VCC = +15 V VEE = –
15
V
Vin = 20 Vpp
VCC = +15 V VEE = –
15
V f = 100 Hz RL = 100
CL = 0 pF
1 A
2
A
1 B
2 B
1A) Phase, VS = ±18 V 2A) Phase, VS =
±
1.5 V
1B) Gain, VS =
±
18 V
2B) Gain, VS =
±
1.5 V
1A) Phase, (R = 100 Ω) 2A) Phase, (R = 100
, C = 300 pF)
1B) Gain, (R = 100
)
2B) Gain, (R = 100
, C = 300 pF)
MC33076
7
MOTOROLA ANALOG IC DEVICE DATA
AV = +1000
AV = +100
AV = +10
AV = +1
Figure 19. Phase Margin and Gain Margin
versus Differential Source Resistance
CL, OUTPUT LOAD CAPACITANCE (pF)
Figure 20. Open Loop Gain Margin and Phase
Margin versus Output Load Capacitance
A
RT, DIFFERENTIAL SOURCE RESISTANCE (Ω)
Figure 21. Channel Separation
versus Frequency
CS, CHANNEL SEPARATION (dB)
f, FREQUENCY (Hz)
m
50
40
30
20
10
0
16 14
12
10
8.0
6.0
4.0
2.0 0
THD, TOT AL HARMONIC DISTORTION (%)
f, FREQUENCY (Hz)
Figure 22. Total Harmonic Distortion
versus Frequency
m
, GAIN MARGIN (dB)
, PHASE MARGIN (DEGREES)
A
m
, OPEN LOOP GAIN MARGIN (dB)
m
, PHASE MARGIN (DEGREES)
Figure 23. Output Impedance
versus Frequency
f, FREQUENCY (Hz)
Z
O
, OUTPUT IMPEDANCE ( )
Figure 24. Input Referred Noise Voltage
versus Frequency
e
f, FREQUENCY (Hz)
Hz)
n
, INPUT REFERRED NOISE VOL TAGE (NV/
AV = 1000
AV = 100
AV = 10
AV = 1.0
60
50
40
30
20
10
20
16
12
8.0
4.0
0
130 120 110 100
90 80
0
140
70
3.0
2.5
2.0
1.5
1.0
0.5
0
100
80
60
40
20
0
20
16
12
8.0
4.0
0
0 400 800 1200 1600 2000
0 2.0 k 4.0 k 6.0 k 8.0 k 10 k 12 k
100 1.0 k 10 k 100 k 1.0 M 10 100 1.0 k 10 k 100 k
10 M1.0 M100 k10 k 10 100 1.0 k 10 k 100 k
Gain Margin
VCC = +15 V VEE = –
15
V
RT = R1 + R
2
VO = 0 V TA = 25
°
C
Phase Margin
Phase Margin
Gain Margin
VCC = +15 V VEE = –
15
V
VO = 0 V
Drive Channel VCC = +
1
5 V
VEE = –
15
V
RL = 100
TA = 25°C
VCC = +15 V VEE = –
15
V VCM = 0 V VO = 0 V TA = 25
°
C
VCC = +15 V VEE = –
15
V
TA = 25
°
C
V
O
+ –
Input Noise Voltage Test Circuit
VCC = +15 V VEE = –
15
V
RL = 100
VO = 2.0 Vpp TA = 25
°
C
MC33076
8
MOTOROLA ANALOG IC DEVICE DATA
Figure 25. Percent Overshoot
versus Load Capacitance
CL, LOAD CAPACITANCE (pF)
os, PERCENT OVERSHOOT (%)
10 k100010010
100
80
60
40
20
0
RL = 100
RL = 2.0 k
VCC = +15 V VEE = –15 V TA = 25
°
C
Figure 26. PC Board Heatsink Example
Copper
Pad
Copper
Pad
APPLICATIONS INFORMATION
The MC33076 dual operational amplifier is available in the standard 8–pin plastic dual–in–line (DIP) and surface mount packages, and also in a 16–pin batwing power package. To enhance the power dissipation capability of the power package, Pins 4, 5, 12, and 13 are tied together on the leadframe, giving it an ambient thermal resistance of 52°C/W
typically, in still air. The junction–to–ambient thermal resistance (R
θJA
) can be decreased further by using a copper padb on the printed circuit board (as shown in Figure 26) to draw the heat away from the package.
Care must be taken not to exceed the maximum junction temperature or damage to the device may occur.
MC33076
9
MOTOROLA ANALOG IC DEVICE DATA
OUTLINE DIMENSIONS
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
P1 SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
14
58
F
NOTE 2
–A–
–B–
–T–
SEATING PLANE
H
J
G
D
K
N
C
L
M
M
A
M
0.13 (0.005) B
M
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 9.40 10.16 0.370 0.400 B 6.10 6.60 0.240 0.260 C 3.94 4.45 0.155 0.175 D 0.38 0.51 0.015 0.020
F 1.02 1.78 0.040 0.070 G 2.54 BSC 0.100 BSC H 0.76 1.27 0.030 0.050
J 0.20 0.30 0.008 0.012 K 2.92 3.43 0.115 0.135
L 7.62 BSC 0.300 BSC M ––– 10 ––– 10 N 0.76 1.01 0.030 0.040
__
SEATING PLANE
1
4
58
A0.25MCB
SS
0.25MB
M
h
q
C
X 45
_
L
DIM MIN MAX
MILLIMETERS
A 1.35 1.75
A1 0.10 0.25
B 0.35 0.49 C 0.18 0.25 D 4.80 5.00 E
1.27 BSCe
3.80 4.00
H 5.80 6.20 h
0 7
L 0.40 1.25
q
0.25 0.50
__
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.
D
E
H
A
B
e
B
A1
C
A
0.10
MC33076
10
MOTOROLA ANALOG IC DEVICE DATA
OUTLINE DIMENSIONS
P2 SUFFIX
PLASTIC PACKAGE
CASE 648C–03
(DIP (12+2+2))
ISSUE C
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 0.740 0.840 18.80 21.34 B 0.240 0.260 6.10 6.60 C 0.145 0.185 3.69 4.69 D 0.015 0.021 0.38 0.53 E 0.050 BSC 1.27 BSC F 0.040 0.70 1.02 1.78 G 0.100 BSC 2.54 BSC J 0.008 0.015 0.20 0.38 K 0.115 0.135 2.92 3.43
L 0.300 BSC 7.62 BSC M 0 10 0 10 N 0.015 0.040 0.39 1.01
____
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. INTERNAL LEAD CONNECTION BETWEEN 4 AND 5, 12 AND 13.
–A–
–B–
16 9
18
F
D
G
E
N
C
NOTE 5
16 PL
S
A
M
0.13 (0.005) T
–T–
SEATING PLANE
S
B
M
0.13 (0.005) T
J 16 PL
M
L
MC33076
11
MOTOROLA ANALOG IC DEVICE DATA
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
MC33076
12
MOTOROLA ANALOG IC DEVICE DATA
How to reach us: USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: RMF AX0@email.sps.mot.com – TOUCHT ONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, INTERNET: http://Design–NET .com 51 Ting Ko k Road, Tai Po, N.T., Hong Kong. 852–26629298
MC33076/D
*MC33076/D*
Loading...