Datasheet MC14532BD, MC14532BDR2, MC14532BF, MC14532BFEL, MC14532BFR1 Datasheet (MOTOROLA)

...
Semiconductor Components Industries, LLC, 2000
March, 2000 – Rev. 3
1 Publication Order Number:
MC14532B/D
MC14532B
8-Bit Priority Encoder
The MC14532B is constructed with complementary MOS (CMOS) enhancement mode devices. The primary function of a priority encoder is to provide a binary address for the active input with the highest priority. Eight data inputs (D0 thru D7) and an enable input (E
in)
are provided. Five outputs are available, three are address outputs
(Q0 thru Q2), one group select (GS) and one enable output (E
out
).
Diode Protection on All Inputs
Supply Voltage Range = 3.0 Vdc to 18 Vdc
Capable of Driving Two Low–power TTL Loads or One Low–Power
Schottky TTL Load over the Rated Temperature Range
MAXIMUM RATINGS (Voltages Referenced to V
SS
) (Note 2.)
Symbol Parameter Value Unit
V
DD
DC Supply Voltage Range –0.5 to +18.0 V
Vin, V
out
Input or Output Voltage Range
(DC or Transient)
–0.5 to VDD + 0.5 V
Iin, I
out
Input or Output Current
(DC or Transient) per Pin
±10 mA
P
D
Power Dissipation,
per Package (Note 3.)
500 mW
T
A
Ambient Temperature Range –55 to +125 °C
T
stg
Storage Temperature Range –65 to +150 °C
T
L
Lead Temperature
(8–Second Soldering)
260 °C
2. Maximum Ratings are those values beyond which damage to the device
may occur.
3. Temperature Derating:
Plastic “P and D/DW” Packages: – 7.0 mW/_C From 65_C T o 125_C
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V
in
and V
out
should be constrained
to the range V
SS
v (Vin or V
out
) v VDD.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V
SS
or VDD). Unused outputs must be left open.
http://onsemi.com
A = Assembly Location WL or L = Wafer Lot YY or Y = Year WW or W = Work Week
Device Package Shipping
ORDERING INFORMATION
MC14532BCP PDIP–16 2000/Box MC14532BD SOIC–16 48/Rail MC14532BDR2 SOIC–16 2500/Tape & Reel
1. For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative.
MARKING
DIAGRAMS
1
16
PDIP–16
P SUFFIX
CASE 648
MC14532BCP
AWLYYWW
SOIC–16
D SUFFIX
CASE 751B
1
16
14532B
AWLYWW
SOEIAJ–16
F SUFFIX
CASE 966
1
16
MC14532B
AWLYWW
MC14532BFEL SOEIAJ–16 See Note 1.
MC14532BF SOEIAJ–16 See Note 1.
MC14532BFR1 SOEIAJ–16 See Note 1.
MC14532B
http://onsemi.com
2
PIN ASSIGNMENT
13
14
15
16
9
10
11
125
4
3
2
1
8
7
6
D2
D3
GS
E
out
V
DD
Q0
D0
D1
D7
D6
D5
D4
V
SS
Q1
Q2
E
in
TRUTH TABLE
Input Output
EinD7 D6 D5 D4 D3 D2 D1 D0 GS Q2 Q1 Q0 E
out
0 X X X X X X X X 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 X X X X X X X 1 1 1 1 0 1 0 1 X X X X X X 1 1 1 0 0 1 0 0 1 X X X X X 1 1 0 1 0 1 0 0 0 1 X X X X 1 1 0 0 0
1 0 0 0 0 1 X X X 1 0 1 1 0 1 0 0 0 0 0 1 X X 1 0 1 0 0 1 0 0 0 0 0 0 1 X 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
X = Don’t Care
MC14532B
http://onsemi.com
3
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V
SS
)
V
– 55_C 25_C 125_C
Characteristic Symbol
V
DD
Vdc
Min Max Min Typ
(4.)
Max Min Max
Unit
Output Voltage “0” Level
V
in
= VDD or 0
V
OL
5.0 10 15
— — —
0.05
0.05
0.05
— — —
0 0 0
0.05
0.05
0.05
— — —
0.05
0.05
0.05
Vdc
“1” Level
V
in
= 0 or V
DD
V
OH
5.0 10 15
4.95
9.95
14.95
— — —
4.95
9.95
14.95
5.0 10 15
— — —
4.95
9.95
14.95
— — —
Vdc
Input Voltage “0” Level
(V
O
= 4.5 or 0.5 Vdc)
(V
O
= 9.0 or 1.0 Vdc)
(V
O
= 13.5 or 1.5 Vdc)
V
IL
5.0 10 15
— — —
1.5
3.0
4.0
— — —
2.25
4.50
6.75
1.5
3.0
4.0
— — —
1.5
3.0
4.0
Vdc
“1” Level
(V
O
= 0.5 or 4.5 Vdc)
(V
O
= 1.0 or 9.0 Vdc)
(V
O
= 1.5 or 13.5 Vdc)
V
IH
5.0 10 15
3.5
7.0 11
— — —
3.5
7.0 11
2.75
5.50
8.25
— — —
3.5
7.0 11
— — —
Vdc
Output Drive Current
(V
OH
= 2.5 Vdc) Source
(V
OH
= 4.6 Vdc)
(V
OH
= 9.5 Vdc)
(V
OH
= 13.5 Vdc)
I
OH
5.0
5.0 10 15
– 3.0
– 0.64
– 1.6 – 4.2
— — — —
– 2.4
– 0.51
– 1.3 – 3.4
– 4.2 – 0.88 – 2.25
– 8.8
— — — —
– 1.7
– 0.36
– 0.9 – 2.4
— — — —
mAdc
(VOL = 0.4 Vdc) Sink (V
OL
= 0.5 Vdc)
(V
OL
= 1.5 Vdc)
I
OL
5.0 10 15
0.64
1.6
4.2
— — —
0.51
1.3
3.4
0.88
2.25
8.8
— — —
0.36
0.9
2.4
— — —
mAdc
Input Current I
in
15 ± 0.1 ±0.00001 ± 0.1 ± 1.0 µAdc
Input Capacitance
(V
in
= 0)
C
in
5.0 7.5 pF
Quiescent Current
(Per Package)
I
DD
5.0 10 15
— — —
5.0 10 20
— — —
0.005
0.010
0.015
5.0 10 20
— — —
150 300 600
µAdc
Total Supply Current
(5.) (6.)
(Dynamic plus Quiescent, Per Package) (C
L
= 50 pF on all outputs, all
buffers switching)
I
T
5.0 10 15
IT = (1.74 µA/kHz) f + I
DD
IT = (3.65 µA/kHz) f + I
DD
IT = (5.73 µA/kHz) f + I
DD
µAdc
4. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
5. The formulas given are for the typical characteristics only at 25_C.
6. To calculate total supply current at loads other than 50 pF: I
T(CL
) = IT(50 pF) + (CL – 50) Vfk
where: I
T
is in µA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.005.
MC14532B
http://onsemi.com
4
SWITCHING CHARACTERISTICS
(7.)
(C
L
= 50 pF, T
A
= 25_C)
Characteristic
Symbol V
DD
Min Typ
(8.)
Max Unit
Output Rise and Fall Time
t
TLH
, t
THL
= (1.5 ns/pF) CL + 25 ns
t
TLH
, t
THL
= (0.75 ns/pF) CL + 12.5 ns
t
TLH
, t
THL
= (0.55 ns/pF) CL + 9.5 ns
t
TLH
,
t
THL
5.0 10 15
— — —
100
50 40
200 100
80
ns
Propagation Delay Time — Ein to E
out
t
PLH
, t
PHL
= (1.7 ns/pF) CL + 120 ns
t
PLH
, t
PHL
= (0.66 ns/pF) CL + 77 ns
t
PLH
, t
PHL
= (0.5 ns/pF) CL + 55 ns
t
PLH
,
t
PHL
5.0 10 15
— — —
205 110
80
410 220 160
ns
Propagation Delay Time — Ein to GS
t
PLH
, t
PHL
= (1.7 ns/pF) CL + 90 ns
t
PLH
, t
PHL
= (0.66 ns/pF) CL 57 ns
t
PLH
, t
PHL
= (0.5 ns/pF) CL + 40 ns
t
PLH
,
t
PHL
5.0 10 15
— — —
175
90 65
350 180 130
ns
Propagation Delay Time — Ein to Q
n
t
PLH
, t
PHL
= (1.7 ns/pF) CL + 195 ns
t
PLH
, t
PHL
= (0.66 ns/pF) CL + 107 ns
t
PLH
, t
PHL
= (0.5 ns/pF) CL + 75 ns
t
PHL
,
t
PLH
5.0 10 15
— — —
280 140 100
560 280 200
ns
Propagation Delay Time — Dn to Q
n
t
PLH
, t
PHL
= (1.7 ns/pF) CL + 265 ns
t
PLH
, t
PHL
= (0.66 ns/pF) CL + 137 ns
t
PLH
, t
PHL
= (0.5 ns/pF) CL + 85 ns
t
PLH
,
t
PHL
5.0 10 15
— — —
300 170 110
600 340 220
ns
Propagation Delay Time — Dn to GS
t
PLH
, t
PHL
= (1.7 ns/pF) CL + 195 ns
t
PLH
, t
PHL
= (0.66 ns/pF) CL + 107 ns
t
PLH
, t
PHL
= (0.5 ns/pF) CL + 75 ns
t
PLH
,
t
PHL
5.0 10 15
— — —
280 140 100
560 280 200
ns
7. The formulas given are for the typical characteristics only at 25_C.
8. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
Output
Under
VGS = V
DD
VDS = V
out
Sink Current
VGS = – V
DD
VDS = V
out
– V
DD
Source Current
Under
Test
D0 thru D7 EinD0 thru D6 D7 E
in
E
out
X 0 0 0 1
out
Q0 X 0 0 1 1 Q1
X
0
0
1
1
Q2
X
0
0
1
1
GSX001
1
Figure 1. Typical Sink and Source
Current Characteristics
Figure 2. Typical Power Dissipation Test Circuit
SWITCH MATRIX
EXTERNAL
POWER SUPPLY
I
D
E
in
D0 D1
D2 D3 D4 D5 D6 D7
GS
Q2
Q1
Q0
E
out
V
out
PULSE
GENERATOR
(f
o
)
E
in
D0 D1
D2 D3 D4 D5 D6 D7
V
SS
V
DD
I
D
C
L
C
L
C
L
C
L
C
L
GS
Q2
Q1
Q0
E
out
0.01 µF
500 µF
MC14532B
http://onsemi.com
5
Figure 3. AC Test Circuit and Waveforms
PROGRAMMABLE
PULSE
GENERATOR
E
in
D0 D1
D2 D3 D4 D5 D6 D7
GS
Q2
Q1
Q0
E
out
V
DD
V
SS
C
L
C
L
C
L
C
L
C
L
NOTE: Input rise and fall times are 20 ns
50%
50%
50%
50%
50%
50%
50%
50%
90%
50%
10%
90%
50%
10%
90%
50%
10%
90%
50%
10%
t
PHL
t
PHL
t
PHL
t
PHL
t
PHL
t
THL
t
THL
t
THL
t
THL
t
PLH
t
PLH
t
PLH
t
PLH
t
PLH
t
PLH
t
PLH
t
TLH
t
TLH
t
TLH
t
TLH
t
TLH
t
PHL
t
PLH
t
THL
90%
50%
10%
t
PLH
t
PHL
t
PHL
t
PHL
D0
D1
D2
D3
D4
D5
D6
D7
E
in
E
out
GS
Q0
Q1
Q2
10
11
12
13
1
2
3
4
5
15
14
9
7
6
PIN
NO.
50%
MC14532B
http://onsemi.com
6
LOGIC DIAGRAM
(Positive Logic)
LOGIC EQUATIONS
E
out
= Ein D0 D1 D2 D3 D4 D5 D6 D7
10
11
12
13
1
2
3
4
5
D0
D1
D2
D3
D4
D5
D6
D7
E
in
9
7
6
14
15
Q0
Q1
Q2
GS
E
out
Q0 = Ein (D1 D2 D4 D6 + D3 D4 D6 + D5 D6 + D7) Q1 = E
in
(D2 D4 D5 + D3 D4 D5 + D6 + D7)
Q2 = E
in
(D4 + D5 + D6 + D7)
GS = E
in
(D0 + D1 + D2 + D3 + D4 + 05 + D6 + D7)
MC14532B
http://onsemi.com
7
Figure 4. Two MC14532B’s Cascaded for 4–Bit Output
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
Q1 Q0Q2 Q1 Q0Q2
Q1 Q0Q2Q3
GS
3/4 MC14071B
V
DD
E
in
E
out
E
in
E
out
E
out
= “1”
WITH D
in
= “0”
Figure 5. Digital to Analog and Analog to Digital Converter
DIGITAL TO ANALOG CONVERSION
The digital eight–bit word to be converted is applied to the inputs of the MC14512 with the most significant bit at X7 and the least significant bit at X0. A clock input of up to
2.5 MHz (at VDD = 10 V) is applied to the MC14520B. A compromise between I
bias
for the MC1710 and ∆R
between N and P–channel outputs gives a value of R of 33 k ohms. In order to filter out the switching frequencies, RC should be about 1.0 ms (if R = 33 k ohms, C [ 0.03 µF). The analog 3.0 dB bandwidth would then be dc to 1.0 kHz.
ANALOG TO DIGITAL CONVERSION
An analog signal is applied to the analog input of the MC1710. A digital eight–bit word known to represent a dig­itized level less than the analog input is applied to the MC14512 as in the D to A conversion. The word is increm­ented at rates sufficient to allow steady state to be reached between incrementations (i.e. 3.0 ms). The output of the MC1710 will change when the digital input represents the first digitized level above the analog input. This word is the digital representation of the analog word.
ANALOG OUTPUT
CLOCK
INPUT
ANALOG
INPUT
V
DD
X7 X6 X5 X4 X3 X2 X1 X0
MC14512
A B C
MC1710
R
C
Z
V
DD
V
SS
E
in
D0 D1 D2 D3 D4 D5 D6 D7
Q2 Q0Q1
STOP WORD INCREMENTATION
Q2 Q4Q3Q1 Q2 Q4Q3Q1
CE RCE R
1/2 MC14520B 1/2 MC14520B
DIGITAL INPUT/OUTPUT
8–BIT WORD
TO BE CONVERTED
MC14532B
http://onsemi.com
8
P ACKAGE DIMENSIONS
PDIP–16
P SUFFIX
PLASTIC DIP PACKAGE
CASE 648–08
ISSUE R
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
–A–
B
F
C
S
H
G
D
J
L
M
16 PL
SEATING
18
916
K
PLANE
–T–
M
A
M
0.25 (0.010) T
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 0.740 0.770 18.80 19.55 B 0.250 0.270 6.35 6.85 C 0.145 0.175 3.69 4.44 D 0.015 0.021 0.39 0.53 F 0.040 0.70 1.02 1.77 G 0.100 BSC 2.54 BSC H 0.050 BSC 1.27 BSC J 0.008 0.015 0.21 0.38 K 0.110 0.130 2.80 3.30 L 0.295 0.305 7.50 7.74
M 0 10 0 10
S 0.020 0.040 0.51 1.01
____
MC14532B
http://onsemi.com
9
P ACKAGE DIMENSIONS
SOIC–16
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B–05
ISSUE J
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
18
16 9
SEATING
PLANE
F
J
M
R
X 45
_
G
8 PLP
–B–
–A–
M
0.25 (0.010) B
S
–T–
D
K
C
16 PL
S
B
M
0.25 (0.010) A
S
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 9.80 10.00 0.386 0.393 B 3.80 4.00 0.150 0.157 C 1.35 1.75 0.054 0.068 D 0.35 0.49 0.014 0.019 F 0.40 1.25 0.016 0.049
G 1.27 BSC 0.050 BSC
J 0.19 0.25 0.008 0.009 K 0.10 0.25 0.004 0.009
M 0 7 0 7
P 5.80 6.20 0.229 0.244 R 0.25 0.50 0.010 0.019
____
MC14532B
http://onsemi.com
10
P ACKAGE DIMENSIONS
H
E
A
1
DIM MIN MAX MIN MAX
INCHES
––– 2.05 ––– 0.081
MILLIMETERS
0.05 0.20 0.002 0.008
0.35 0.50 0.014 0.020
0.18 0.27 0.007 0.011
9.90 10.50 0.390 0.413
5.10 5.45 0.201 0.215
1.27 BSC 0.050 BSC
7.40 8.20 0.291 0.323
0.50 0.85 0.020 0.033
1.10 1.50 0.043 0.059 0
0.70 0.90 0.028 0.035 ––– 0.78 ––– 0.031
A
1
H
E
Q
1
L
E
_
10
_
0
_
10
_
L
E
Q
1
_
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 ( 0.018).
M
L
DETAIL P
VIEW P
c
A
b
e
M
0.13 (0.005)
0.10 (0.004)
1
16 9
8
D
Z
E
A
b c D E e
L
M
Z
SOEIAJ–16
F SUFFIX
PLASTIC EIAJ SOIC PACKAGE
CASE 966–01
ISSUE O
MC14532B
http://onsemi.com
11
Notes
MC14532B
http://onsemi.com
12
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability , including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly , any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer .
PUBLICATION ORDERING INFORMATION
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
ASIA/PACIFIC : LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
T oll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, T okyo, Japan 141–8549
Phone: 81–3–5740–2745 Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.
MC14532B/D
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 T oll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 T oll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse T ime)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy , England, Ireland
Loading...