MOTOROLA LF353N, LF353DR2, LF353D, LF351DR2, LF347BN Datasheet

...

 
FAMILY OF JFET
OPERATIONAL AMPLIFIERS
Order this document by LF347/D
D SUFFIX
PLASTIC PACKAGE
CASE 751
N SUFFIX
PLASTIC PACKAGE
CASE 626
Output A
Inputs A
V
EE
V
CC
Output B
Inputs B
LF351 (Top View)
LF353 (Top View)
Offset Null
Invt Input
Noninvt Input
V
EE
NC V
CC
Output Offset Null
1 2 3 4
8 7 6 5
+
+
+
A
B
1 2 3 4
8 7 6 5
1
1
8
8
PIN CONNECTIONS
N SUFFIX
PLASTIC PACKAGE
CASE 646
(Top View)
Out 1
Inputs 1
V
CC
Inputs 2
Out 2
Out 4
Inputs 4
V
EE
Inputs 3
Out 3
1
2
3
4 5
6
78
9
10
11
12
13
14
4
23
++ ++
1
––
––
14
1
PIN CONNECTIONS
ORDERING INFORMATION
FunctionDevice Package
Operating
Temperature Range
LF351D LF351N
Single Single
TA = 0° to +70°C
SO–8
Plastic DIP
LF353D LF353N
Dual Dual
SO–8
Plastic DIP
LF347BN LF347N
Quad Quad
Plastic DIP Plastic DIP
1
MOTOROLA ANALOG IC DEVICE DATA
   
These low cost JFET input operational amplifiers combine two state–of–the–art analog technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The JFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents.
These devices are available in single, dual and quad operational amplifiers which are pin–compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar devices.
Input Offset Voltage of 5.0 mV Max (LF347B)
Low Input Bias Current: 50 pA
Low Input Noise Voltage: 16 nV/ Hz
Ǹ
Wide Gain Bandwidth: 4.0 MHz
High Slew Rate: 13V/µs
Low Supply Current: 1.8 mA per Amplifier
High Input Impedance: 10
12
High Common Mode and Supply Voltage Rejection Ratios: 100 dB
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage V
CC
+18 V
V
EE
–18
Differential Input Voltage V
ID
±30 V
Input Voltage Range (Note 1) V
IDR
±15 V
Output Short Circuit Duration (Note 2) t
SC
Continuous
Power Dissipation at TA = +25°C P
D
900 mW
Derate above TA =+25°C 1/
θJA
10 mW/°C
Operating Ambient Temperature Range T
A
0 to +70 °C
Operating Junction Temperature Range T
J
115 °C
Storage Temperature Range T
stg
– 65 to
+150
°C
NOTES: 1.Unless otherwise specified, the absolute maximum negative input voltage is
limited to the negative power supply.
2.Any amplifier output can be shorted to ground indefinitely. However , if more than one amplifier output is shorted simultaneously, maximum junction temperature rating may be exceeded.
Motorola, Inc. 1996 Rev 0
LF347, B LF351 LF353
2
MOTOROLA ANALOG IC DEVICE DATA
ELECTRICAL CHARACTERISTICS
(VCC = +15 VEE = –15 V , TA = 25°C, unless otherwise noted.)
LF347B LF347, LF351, LF353
Characteristic Symbol
Min Typ Max Min Typ Max
Unit
Input Offset Voltage (RS 10 k, VCM = 0) V
IO
mV TA = +25°C 1.0 5.0 5.0 10 0°C TA +70°C 8.0 13
Avg. Temperature Coefficient of Input Offset Voltage VIO/T µV/°C
RS 10 k, 0°C TA +70°C 10 10
Input Offset Current (VCM = 0, Note 3) I
IO
TA = +25°C 25 100 25 100 pA 0°C TA +70°C 4.0 4.0 nA
Input Bias Current (VCM = 0, Note 3) I
IB
TA = +25°C 50 200 50 200 pA 0°C TA +70°C 8.0 8.0 nA
Input Resistance r
i
10
12
10
12
Common Mode Input Voltage Range V
ICR
±11 +15 ±11 +15 V
–12 –12
Large–Signal Voltage Gain (VO = ±10 V, RL = 2.0 k) A
VOL
V/mV TA = +25°C 50 100 25 100 – 0°C TA +70°C 25 15
Output Voltage Swing (RL = 10 k) V
O
±12 ±14 ±12 ±14 V Common Mode Rejection (RS ≤ 10 k) CMR 80 100 70 100 dB Supply Voltage Rejection (RS ≤ 10 k) PSRR 80 100 70 100 dB Supply Current I
D
mA LF347 7.2 11 7.2 11 LF351 1.8 3.4 LF353 3.6 6.5
Short Circuit Current I
SC
25 25 mA Slew Rate (AV = +1) SR 13 13 V/µs Gain–Bandwidth Product BWp 4.0 4.0 MHz Equivalent Input Noise Voltage e
n
24 24
nV/ Hz
(RS = 100 , f = 1000 Hz)
Equivalent Input Noise Current (f = 1000 Hz) i
n
0.01 0.01
pA/ Hz
Channel Separation (LF347, LF353) –120 –120 dB
1.0 Hz f 20 kHz (Input Referred)
For Typical Characteristic Performance Curves, refer to MC34001, 34002, 34004 data sheet. NOTE: 3.Input bias currents of JFET input op amps approximately double for every 10°C rise in junction temperature. T o maintain junction temperatures as
close to ambient as is possible, pulse techniques are utilized during test.
Loading...
+ 2 hidden pages