Motorola A780 Service Manual

A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
A780 Quad-Band EDGE / GPRS GSM Phone
Hardware INTERFACE DOCUMENT
Motorola, Inc.
Personal Communication Sector
A780 Hardware Team
August 2nd, 2003
08/02/2003 Motorola Confidential Proprietary 1 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
1. Revision History.......................................................................................................... 12
2. Purpose / Introduction................................................................................................ 13
3. PCAP2 Hardware Overview......................................................................................14
3.1 Power Management.............................................................................................. 15
3.1.1 Switching & Linear Regulators Default Configuration............................. 15
3.1.2 Regulator Usage Description ........................................................................ 16
1) V1 Linear Regulator....................................................................................... 16
2) V2 Linear Regulator....................................................................................... 16
3) V3 Linear Regulator....................................................................................... 16
4) V4 Linear Regulator....................................................................................... 16
5) V5 Linear Regulator....................................................................................... 16
6) V6 Linear Regulator....................................................................................... 17
7) V7 Linear Regulator....................................................................................... 17
8) V8 Linear Regulator....................................................................................... 17
9) V9 Linear Regulator....................................................................................... 17
10) V10 Linear Regulator................................................................................... 17
11) VAUX1 Linear Regulator............................................................................ 17
12) VAUX3 Linear Regulator............................................................................ 18
13) VAUX4 Linear Regulator............................................................................ 18
14) SW1 Switching Regulator............................................................................ 18
15) SW2 Switching Regulator............................................................................ 18
16) SW3 Switching Regulator............................................................................ 18
3.1.3 Power Distribution Tree................................................................................ 19
3.1.4 A780 Power Management Control............................................................... 21
3.2 A780 Audio System and PCAP2 Audio Section................................................. 26
3.2.1 A780 Audio System Architecture Block Diagram ...................................... 26
3.2.2 Audio Input Section....................................................................................... 28
3.2.3 Audio Output Section.................................................................................... 29
3.2.4 A780 Audio Routing and SPI Control ......................................................... 30
3.3 A/D Conversion And Channel Allocations......................................................... 31
3.3.1 Detailed Description Of Each A/D Channel................................................ 34
08/02/2003 Motorola Confidential Proprietary 2 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
1) Li-Cell Battery A/D (AD1)............................................................................. 34
2) BATT_SENSE A/D (AD2) ............................................................................. 35
3) B+_SENSE A/D (AD3)...................................................................................35
4) MPB_SENSE A/D (AD4) ............................................................................... 35
5) BATT_THERM A/D (AD5)...........................................................................35
6) CHRG_ID (AD6) ............................................................................................ 37
7) Touch Panel AD (AD11 ~ AD14)................................................................... 37
3.3.2 A780 Charge Operation Description............................................................ 37
4. Neptune-LTE Logic Interfaces.................................................................................. 37
4.1 Neptune IC Description........................................................................................38
4.2 Neptune IC Features.............................................................................................38
4.3 Neptune Functional Summary............................................................................. 38
4.3.1 DSP.................................................................................................................. 38
1) DSP Memory................................................................................................... 39
2) SP BIST (DBIT).............................................................................................. 39
3) DSP Program Paging...................................................................................... 39
4) DSP Peripherals..............................................................................................40
5) Baseband Port Module (BBP) ....................................................................... 40
6) Layer1 Encryption Module (LEM)...............................................................40
7) DSP Timer Module (DTIMER).....................................................................40
8) Serial Audio CODEC Port (SAP).................................................................. 40
9) Direct Memory Access Controller (DMA) ................................................... 40
10) Viterbi Accelerator (VIAC)......................................................................... 40
11) DSP Special Interrupt Handler (DSIH)...................................................... 41
12) SP On Chip Emulator Debug Module (OnCE) ......................................... 41
13) DSP Debug Module (PDDM).......................................................................41
14) Voice CODEC (VOCOD)............................................................................. 41
15) DSP Clock Generator (DCLKG)................................................................. 42
16) IC Identification Module (IIM)................................................................... 42
17) Clock Monitor (CMON)............................................................................... 42
18) Power On Reset (POR)................................................................................. 42
08/02/2003 Motorola Confidential Proprietary 3 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
19) System JTAG Controller (SJC)................................................................... 42
4.3.2 ARM7 MCU ................................................................................................... 43
4.3.2.1 MCU Memory ......................................................................................... 43
4.3.2.2 MCU Peripherals....................................................................................43
1) ARM7 Platform Core Arbiter (CARB).................................................... 43
2) ARM External Interface Module (AEIM)................................................ 43
3) ARM Peripheral Interface Gasket (APIG)..............................................44
4) ARM IPBus Interface (AIPI)..................................................................... 44
5) Alternate Master Arbiter (AMARB)........................................................ 44
6) Multiple Queue Serial Peripheral Interface (MQSPI)............................44
7) ARM7TDMI-S Interrupt Controller (AITC) .......................................... 44
8) SIM Interface Modifications (SIM) .......................................................... 44
9) Universal Asynchronous Receiver Transmitter (UART)........................ 45
10) Deep Sleep Module (DSM).......................................................................45
11) Watchdog Timer (WDOG)...................................................................... 45
12) General Packet Radio Service Encryption Module (GEM).................. 45
13) Keypad Port (KPP)................................................................................... 45
14) Enhanced General Purpose Timer (EGPT)........................................... 45
15) Test Control Module (TCM) ................................................................... 46
16) MCU Watchpoint (AWPT)......................................................................46
17) USB Digital Phase Locked Loop (REFPLL)..........................................46
18) Real Time Reference (RTR) .................................................................... 46
19) Real Time Clock (RTC) ........................................................................... 47
20) Display Memory Access Controller (DMAC)........................................47
21) Clock Control Module (CCM)................................................................. 47
22) External Interrupt Module (INT)........................................................... 47
23) Analog to Digital Interface (A2DIGL)....................................................47
4.3.3 Shared Peripherals......................................................................................... 48
4.3.3.1 Patch RAM (MXRAM) .......................................................................... 48
4.3.3.2 Universal Serial Bus Module (USB)...................................................... 48
4.3.3.3 General Purpose I/O (GPIO)................................................................. 48
08/02/2003 Motorola Confidential Proprietary 4 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
4.3.3.4 MCU / DSP Interface (MDI)..................................................................48
4.3.3.5 Layer 1 Timer (L1T)............................................................................... 48
4.4 Neptune GPIO Summary..................................................................................... 49
4.5 Neptune-LTE Memory Interface......................................................................... 52
4.5.1 Flash................................................................................................................ 52
4.5.2 SRAM..............................................................................................................54
4.5.3 Neptune-LTE Chip Select Assignments....................................................... 54
4.6 Neptune MQSPI Module......................................................................................56
4.7 SIM Interface ........................................................................................................ 59
5. Neptune-LTE RF Interface........................................................................................62
5.1 RF6003 (Fractional-N RF Synthesizer) Chipset Description............................ 62
5.1.1 RF6003 Functional Description.................................................................... 62
5.1.2 RF6003 Serial Data Interface and Device Control ..................................... 63
5.2 RF2722 (GPRS / EDGE Receiver) Chipset Description.................................... 66
5.2.1 RF2722 Functional Description.................................................................... 66
5.2.2 RF2722 Serial Data Interface and Device Control ..................................... 67
5.3 RF3144 (Quad-Band Power Amplifier Module) Chipset Description............. 68
5.4 A780 RF System Signaling................................................................................... 69
5.4.1 RF System Block Diagram............................................................................ 69
5.4.2 Description of RF Signal and Interface ....................................................... 71
1) Antenna Switching Control........................................................................ 71
2) Digital RX Signal Interface........................................................................ 72
3) Digital TX Signal Interface........................................................................ 72
4) RF SPI Port Interface.................................................................................72
5) RF Control Related Signals........................................................................ 73
6) Neptune-LTE RF Related Signals............................................................. 74
6. AGPS Module Interface.............................................................................................75
6.1 AGPS Functional Block Diagram ....................................................................... 75
6.2 AGPS Interface Descriptions............................................................................... 75
6.2.1 AGPS_NRESET.............................................................................................76
6.2.2 UART Interface.............................................................................................. 76
08/02/2003 Motorola Confidential Proprietary 5 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
6.2.3 Miscellaneous Signals .................................................................................... 77
6.2.4 AGPS Operation Mode Descriptions........................................................... 77
6.2.4.1 Boot Mode Operation............................................................................. 77
6.2.4.2 Tracking Mode Operation ..................................................................... 78
6.2.4.3 Sleep Mode Operation............................................................................ 78
6.3 AGPS Clock System.............................................................................................. 78
6.3.1 Reference Clock (24.5535MHz TCXO)........................................................ 78
6.3.2 RTC Clock (32.768KHz) ............................................................................... 78
6.4 AGPS Power On / Off Sequence.......................................................................... 78
7. Application Processor (Bulverde).............................................................................. 80
7.1 Bulverde Functional Overview............................................................................ 80
7.2 Bulverde Memory Interface.................................................................................82
7.2.1 Bulverde SDRAM Interface..........................................................................82
7.2.2 Bulverde Flash Interface............................................................................... 84
7.3 Bulverde GPIO Assignment................................................................................. 85
7.3.1 Bulverde GPIO Operation as Application-specific GPIO ......................... 85
7.3.2 Bulverde GPIO Operation as Alternate Function...................................... 87
7.3.3 Bulverde GPIO Operation as A780 Function ............................................. 91
7.4 A780 Keypad And Its Backlight Interface.......................................................... 95
7.4.1 Keypad Interface............................................................................................ 95
7.4.2 Keypad Backlight Interface.......................................................................... 99
7.5 A780 LCD Module Interface.............................................................................. 101
7.6 Bulverde Peripherals Interface.......................................................................... 108
7.6.1 Blue Tooth Module ...................................................................................... 109
7.6.2 Digital Camera............................................................................................. 110
TM
7.6.2.1 OmniVision
7.6.2.2 OmniVision
1.3MegaPixel Module Features................................ 111
TM
1.3MegaPixel Functional Description...................... 112
7.6.2.3 A780 Digital Camera Hardware Architecture................................... 113
7.6.2.4 A780 Digital Camera Operation Mode Description..........................115
7.6.3 Tri-Flash Card ............................................................................................. 116
8. A780 System Architecture Description...................................................................120
08/02/2003 Motorola Confidential Proprietary 6 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
8.1 A780 System architecture block diagram.........................................................120
8.2 A780 Interconnection Link between Neptune-LTE & Bulverde (ICL).........121
8.3 A780 Clock System Control............................................................................... 123
8.3.1 Neptune-LTE Related Clock Signal........................................................... 123
8.3.2 RFMD Related Clock Signal....................................................................... 124
8.3.3 Bulverde Related Clock Signal................................................................... 124
8.3.4 Bluetooth Related Clock Signal.................................................................. 124
8.3.5 AGPS Related Clock Signal........................................................................ 125
8.3.6 PCAP2 Related Clock Signal...................................................................... 125
9. EMU Bus and A780 Accessories..............................................................................126
10. Reference Documentation List............................................................................... 126
08/02/2003 Motorola Confidential Proprietary 7 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
List of Tables:
T
ABLE 1 - DEFAULT PCAP2 REGULATOR VOLTAGE AT PGM [1:0] SETTINGS ................. 15
ABLE 2 – PCAP2 SWITCHING MODE REGULATOR STANDBY CONTROL TRUE TABLE ..... 23
T
ABLE 3 – PCAP2 LINEAR MODE REGULATOR STANDBY CONTROL TRUE TABLE ........... 25
T
TABLE 4 –BULVERDE GPIO ASSIGNMENT FOR AUDIO SSP AND SPI ................................ 27
ABLE 5 – A780 A/D CONVERTER ALLOCATION TABLE .................................................. 34
T
ABLE 6 – BATTERY THERMISTOR READINGS OVER TEMPERATURE................................. 36
T
ABLE 7 – NEPTUNE DSP MEMORY REQUIREMENTS ........................................................ 39
T
ABLE 8 – NEPTUNE GPIO USAGE ASSIGNMENT (PA0 ~ PC7) ........................................ 50
T
TABLE 9 – NEPTUNE GPIO USAGE ASSIGNMENT (PC8 ~ PE15)....................................... 51
ABLE 10 – NEPTUNE-LTE CHIP SELECT ASSIGNMENT .................................................... 54
T
ABLE 11 – RF2722 REGISTER MAP ................................................................................. 57
T
ABLE 12 – RF6003 REGISTER MAP ................................................................................. 58
T
ABLE 13 – SIM CARD PRESENCE DETECT MATRIX ......................................................... 60
T
ABLE 14 – RF6003 SERIAL DATA INTERFACE REGISTER MAP ........................................ 65
T
ABLE 15 – RF2722 SERIAL DATA INTERFACE REGISTER MAP ........................................ 68
T
ABLE 16 – A780 ANTENNA SWITCH CONTROL TRUTH TABLE ........................................ 72
T
TABLE 17 – A780 RFMD CONTROL NEPTUNE-LTE GPIO ASSIGNMENT ........................ 74
ABLE 18 – A780 AGPS AND NEPTUNE-LTE CONNECTION ............................................ 76
T
ABLE 19 – MG4100 AGPS CHIPSET MODE SELECTION.................................................. 77
T
ABLE 20 – BULVERDE GPIO ALTERNATIVE FUNCTION (GPIO [0] ~ GPIO [20]) ........... 87
T
ABLE 21 – BULVERDE GPIO ALTERNATIVE FUNCTION (GPIO [21] ~ GPIO [60]) ......... 88
T
ABLE 22 – BULVERDE GPIO ALTERNATIVE FUNCTION (GPIO [61] ~ GPIO [100]) ....... 89
T
ABLE 23 – BULVERDE GPIO ALTERNATIVE FUNCTION (GPIO [101] ~ GPIO [120]) ..... 90
T
TABLE 24 – A780 BULVERDE GPIO ASSIGNMENT (GPIO [0] ~ GPIO [34]).................... 91
ABLE 25 – A780 BULVERDE GPIO ASSIGNMENT (GPIO [35] ~ GPIO [69]) .................. 92
T
ABLE 26 – A780 BULVERDE GPIO ASSIGNMENT (GPIO [70] ~ GPIO [104])................ 93
T
TABLE 27 – A780 BULVERDE GPIO ASSIGNMENT (GPIO [105] ~ GPIO [120]).............. 94
ABLE 28 – A780 MATRIX SCAN KEY ASSIGNMENT ........................................................ 96
T
TABLE 29 – A780 JOYSTICK SWITCH CONNECTION SCHEME ............................................ 97
08/02/2003 Motorola Confidential Proprietary 8 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
T
ABLE 30 – A780 KEYPAD MATRIX SCAN TABLE ............................................................ 98
ABLE 31 – A780 BULVERDE GPIO ASSIGNMENT OF KEYPAD CONTROLLER .................. 98
T
ABLE 32 – PCAP2 BACKLIGHT DUTY CYCLE CONTROL BIT DEFINITION ..................... 100
T
TABLE 33 – A780 LCD POWER UP TIMING FIGURES....................................................... 103
ABLE 34 – A780 LCD POWER DOWN TIMING FIGURES ................................................ 104
T
ABLE 35 – A780 BULVERDE GPIO ASSIGNMENT OF LCD CONTROLLER ..................... 106
T
ABLE 36 – A780 LCD CONNECTOR PIN-OUT DEFINITION .............................................. 107
T
ABLE 37 – A780 DIGITAL CAMERA SIGNAL FUNCTION DESCRIPTION........................... 114
T
TABLE 38 – A780 DIGITAL CAMERA BULVERDE GPIO ASSIGNMENT ............................ 115
ABLE 39 – TRI-FLASH CARD PIN DEFINITION................................................................ 117
T
ABLE 40 – TRI-FLASH CARD MMC BUS AND SPI BUS COMPARISON ........................... 117
T
ABLE 41 – BULVERDE TRI-FLASH CARD GPIO ASSIGNMENT ....................................... 119
T
ABLE 42 – A780 ICL SIGNALS FUNCTION DESCRIPTION............................................... 122
T
ABLE 43 – BULVERDE 13MHZ CLOCK OUTPUT AT GPIO [9] SETTING BIT................... 124
T
08/02/2003 Motorola Confidential Proprietary 9 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
List Of Figures
FIGURE 1 – A780 POWER DISTRIBUTION TREE DIAGRAM ............................................................................ 20
IGURE 2 – A780 POWER MANAGEMENT CONTROL DIAGRAM..................................................................... 21
F
F
IGURE 3 – A780 BULVERDE SLEEP AND OPERATION MODE POWER SUPPLY CONTROL.............................. 22
IGURE 4 – PCAP2 SWITCHING MODE REGULATOR STANDBY CONTROL .................................................... 23
F
F
IGURE 5 – PCAP2 LINEAR MODE REGULATOR STANDBY CONTROL .......................................................... 24
IGURE 6 – A780 AUDIO SYSTEM ARCHITECTURE BLOCK DIAGRAM........................................................... 26
F
F
IGURE 7 – PCAP2 AUDIO INPUT SECTION BLOCK DIAGRAM...................................................................... 28
IGURE 8 – PCAP2 AUDIO OUTPUT SECTION BLOCK DIAGRAM .................................................................. 29
F
F
IGURE 9 – A780 AUDIO ROUTING AND SPI CONTROL BLOCK DIAGRAM.................................................... 30
IGURE 10 – PCAP2 A/D CONVERSION TIMING DIAGRAM WITH AD_SEL = 0 ........................................... 31
F
F
IGURE 11 – PCAP2 A/D CONVERSION TIMING DIAGRAM WITH AD_SEL = 1 ........................................... 32
IGURE 12 – BATTERY THERMISTOR CONNECTION BLOCK DIAGRAM.......................................................... 36
F
F
IGURE 13 – A780 BASEBAND 64W18 + 8MB SRAM STACKED-CSP BLOCK DIAGRAM ........................... 52
IGURE 14 – A780 BASEBAND NEPTUNE-LTE AND MEMORY CONNECTION BLOCK DIAGRAM ................... 55
F
IGURE 15 – NEPTUNE MQSPI CONNECTION WITH PCAP2 AND RF6003 BLOCK DIAGRAM ....................... 57
F
IGURE 16 – A780 SIM CONNECTION BLOCK DIAGRAM.............................................................................. 59
F
IGURE 17 – A780 SIM PRESENT DETECTION CIRCUIT LOGIC BLOCK DIAGRAM ........................................ 60
F
IGURE 18 – R6003 FUNCTIONAL BLOCK DIAGRAM .................................................................................... 63
F
IGURE 19 – R6003 SERIAL DATA INTERFACE TIMING DIAGRAM ................................................................ 64
F
IGURE 20 – R6003 SERIAL DATA WRITE SEQUENCE (SINGLE ADDRESS) ................................................... 64
F
IGURE 21 – R6003 SERIAL DATA WRITE SEQUENCE (MULTIPLE ADDRESS)............................................... 64
F
IGURE 22 – R2722 FUNCTIONAL BLOCK DIAGRAM AND PIN OUT.............................................................. 67
F
IGURE 23 – R2722 SERIAL INTERFACE TIMING DIAGRAM .......................................................................... 68
F
F
IGURE 24 – A780 RFMD RF SYSTEM BLOCK DIAGRAM............................................................................ 70
IGURE 25 – A780 QUAD-BAND RF INTERFACE BETWEEN NEPTUNE, RF6003 & RF2722........................... 71
F
IGURE 26 – A780 AGPS FUNCTIONAL BLOCK DIAGRAM........................................................................... 75
F
IGURE 27 – A780 AGPS POWER ON AND OFF SEQUENCE .......................................................................... 79
F
IGURE 28 – BULVERDE PROCESSOR BLOCK DIAGRAM................................................................................ 81
F
IGURE 29 – BULVERDE MEMORY CONNECTION BLOCK DIAGRAM ............................................................. 83
F
IGURE 30 – BULVERDE GPIO PIN FUNCTION BLOCK DIAGRAM ................................................................. 86
F
IGURE 31 – A780 KEYPAD LOCATION DIAGRAM........................................................................................ 95
F
IGURE 32 – A780 KEYPAD INTERFACE BLOCK DIAGRAM........................................................................... 96
F
IGURE 33 – A780 JOYSTICK CONNECTION WITH BULVERDE KEYPAD CONTROL PIN ................................. 97
F
IGURE 34 – A780 JOYSTICK PIN CONNECTION DIAGRAM ........................................................................... 97
F
IGURE 35 – A780 KEYPAD BACKLIGHT CONTROL BLOCK DIAGRAM ......................................................... 99
F
IGURE 36 – A780 LCD MODULE ELECTRICAL BLOCK DIAGRAM ............................................................. 102
F
08/02/2003 Motorola Confidential Proprietary 10 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
FIGURE 37 – A780 LCD MODULE HORIZONTAL READING / WRITING TIMING DIAGRAM .......................... 102
IGURE 38 – A780 LCD MODULE VERTICAL READING / WRITING TIMING DIAGRAM ............................... 103
F
F
IGURE 39 – A780 LCD POWER UP TIMING DIAGRAM .............................................................................. 103
IGURE 40 – A780 LCD POWER DOWN TIMING DIAGRAM ........................................................................ 104
F
F
IGURE 41 – A780 CONNECTION BLOCK DIAGRAM BETWEEN BULVERDE AND LCD MODULE ................. 105
IGURE 42 – A780 BULVERDE PERIPHERALS CONNECTIONS BLOCK DIAGRAM ......................................... 108
F
IGURE 43 – BCM2035 FUNCTIONAL BLOCK DIAGRAM ............................................................................ 110
F
IGURE 44 – OV9640 FUNCTIONAL BLOCK DIAGRAM ............................................................................... 112
F
IGURE 45 – A780 DIGITAL CAMERA SYSTEM ARCHITECTURE BLOCK DIAGRAM ..................................... 113
F
IGURE 46 – A780 DIGITAL CAMERA DETAILED CONNECTION WITH BULVERDE ...................................... 114
F
F
IGURE 47 – TRI-FLASH CARD OUTLINE DIAGRAM .................................................................................... 116
IGURE 48 – TRI-FLASH WITH MMC AND SPI INTERFACE BLOCK DIAGRAM............................................ 117
F
IGURE 49 – A780 TRI-FLASH CARD CONTROL BLOCK DIAGRAM ............................................................. 118
F
IGURE 50 – A780 QUAD-BAND SYSTEM ARCHITECTURE BLOCK DIAGRAM ............................................... 120
F
F
IGURE 51 – A780 QUAD-BAND INTERCONNECTION LINK BETWEEN NEPTUNE & BULVERDE ................... 121
IGURE 52 – A780 CLOCK SYSTEM CONTROL BLOCK DIAGRAM ............................................................... 123
F
IGURE 53 – PCAP2 CLOCK SELECTION OF VOICE PLL AND STEREO PLL BLOCK DIAGRAM .................. 125
F
08/02/2003 Motorola Confidential Proprietary 11 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1

1. Revision History

Revision Date Section Author Reason
5. Neptune-LTE RF Interface
0.1 11/12/2003
6. AGPS Module Interface Cevin Wang
7.6.2 Digital Camera Cai Xiaochuan
Other Colin Li
Erin Geng
Initial Draft
08/02/2003 Motorola Confidential Proprietary 12 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1

2. Purpose / Introduction

The purpose of this document is to list and define the power supplies and interfaces between base band and adjunct processor, base band and RF chipset etc for GSM/DCS/CEL/PCS A780 cellular phone. This phone will bring to market with the Neptune-LTE IC (base band call processor), Bulverde IC (adjunct application processor), PCAP2 (Platform Audio Interface and Power Control) IC, as well as the air interface RF6003 IC and RF3144 power amplifier IC. At the time of designing, the base band call processor Neptune-LTE core will run at 1.8V while other IC will run at 2.775V. The memory chipsets connected with Neptune-LTE need to run at 1.875V as well.
In this document, the major chipset features and functionality will be introduced as well as the dedicated usage in A780 phone design. The interconnections between Neptune­LTE and Bulverde will be introduced in detail. The control signals from Neptune-LTE to RF6003 and RF2722 will also introduced as well.
08/02/2003 Motorola Confidential Proprietary 13 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1

3. PCAP2 Hardware Overview

This section describes the general features of the PCAP2 (Platform Control/Audio/Power) IC that will be developed for Dakota platform products. The PCAP2 architecture is derived from previous devices such as GCAP-III and CCAP, with feature enhancements as needed to support requirements of next-generation mobile terminals.
The system-level requirements that have created the need for a new PCAP2 device include the following:
Improved Power Cut/Power Power supply and control for external Stereo Audio capability for Multimedia support Dedicated Transceiver power supply The PCAP2 will also include additional features to improve system efficiency
and reduce external component count such as:
Dual SPI control interface to allow access from two independent base band
processors
Multiple Switch mode power supply controllers for buck and/or boost
conversion
Additional independent, configurable voltage regulators Enhanced touch screen interface Improved backlight controller capability
Certain functions that were available on previous devices such as GCAP-II, GCAP-III will NOT be carried over to the PCAP2 parts due to changes in system requirements or lack of use on previous products.
These include:
Internal over voltage protection / clamp as implemented in CCAP Negative voltage generation charge pump Negative voltage linear regulators DSC serial communication interface
08/02/2003 Motorola Confidential Proprietary 14 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1

3.1 Power Management

3.1.1 Switching & Linear Regulators Default Configuration

PGM0 & PGM1 along determine the power up default switching & linear regulators’ voltage of PCAP2. Those two pins are also used to determine the regulators turn on timing. The default voltage of each regulator at PGM [1:0] settings is shown in Table 1
. A780 use PGM [1:0] = 0:1 as its default setting.
PGM [1:0] 00 01 10 11 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 SW1 SW2 SW3 SW4 VAUX1 VAUX2 VAUX3 VAUX4 VHOLD VUSB VUSB_MSTR VSIM VSIM2 V_VIB
1.600 2.775 1.875
2.775
1.875
2.775
1.275
2.775
1.875
1.875 2.775 1.875
2.775 2.775 2.775
2.775
1.875
1.875
2.475
5.000
2.250
1.600
5.500
2.775
2.775
1.275
1.575
5.000
1.200
1.875
5.500
2.775
1.875
1.875
2.475
5.000
2.250
1.600
5.500
2.775
2.775
1.550
2.775
2.775
2.775
2.775
1.875
1.575
5.000
1.600
1.875
5.500
OFF OFF OFF OFF
2.775
2.775
1.875
2.775
2.775
2.775
2.775
1.875
OFF OFF OFF OFF OFF 3.0 OFF OFF
1.550
1.550
1.550
1.550
OFF OFF OFF OFF OFF OFF OFF OFF
1.875
1.875
1.875 OFF
1.875 OFF
1.875 OFF
OFF OFF OFF OFF
Table 1 - Default PCAP2 Regulator Voltage at PGM [1:0] Settings
08/02/2003 Motorola Confidential Proprietary 15 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1

3.1.2 Regulator Usage Description

Regulators of PCAP2 were assigned as dedicated power supplies for Neptune-LTE or Bulverde side. The functions were listed as below.
1) V1 Linear Regulator
V1 is a programmable linear regulator. It is programmable via the SPI bus to 1.275V ~
2.775V. For A780, V1 is programmed to 2.775V and is supplied directly by B+. This regulator is on whenever the radio is turned on, and the initial power-up level is 2.775V as default. V1 supplies Neptune-LTE interface control data pins, test pins and RF6003, RF2722 SPI port. V1 is also used to provide I/O voltages to Bulverde sub-system. Some external level shifters power supplies were also provided by V1. V1 was assigned as label VAB_IO in A780 schematic.
2) V2 Linear Regulator
V2 is a programmable linear regulator. It is programmable via the SPI bus to 2.500V or
2.775V. For A780, V2 is programmed to 2.775V and is supplied directly by B+. This regulator is on whenever the radio is turned on, and the initial power-up level is 2.775V as default. V2 supplies Neptune internal CODEC circuitry power supply and PCAP2 internal audio related circuitry such as audio amplifiers, microphone bias etc. V2 was assigned as label V_AUDIO in A780 schematic.
3) V3 Linear Regulator
V3 is a programmable linear regulator. It is programmable via the SPI bus to 1.075V ~
2.275V. For A780, V3 is programmed to 1.275V and is supplied directly by B+. This regulator is on whenever the radio is turned on, and the initial power-up level is 1.275V as default. V3 supplies the power for Bulverde VCC_SRAM power. V3 was assigned as label VAP_SRAM in A780 schematic. This regulator can be switched off when Bulverde entering into sleep mode, the control signal for this is PWR_EN of Bulverde.
4) V4 Linear Regulator
V4 is a programmable linear regulator. It is programmable via the SPI bus to 1.275V ~
2.775V. For A780, V4 is programmed to 2.775V as default. V4 supplies the power for PCAP2 internal circuitry such as SPI module and RF related circuitry etc. V4 was assigned as VRF_VCO in A780 schematic. During standby mode of Neptune-LTE system, V4 should be switch off when Standby pin of PCAP2 asserted.
5) V5 Linear Regulator
V5 is a programmable linear regulator. It is programmable via the SPI bus to 1.275V ~
2.775V. For A780, V5 is programmed to 2.775V as default. V5 supplies the power for PCAP2 internal circuitry such as SPI module and RF related circuitry etc. V5 was
08/02/2003 Motorola Confidential Proprietary 16 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
assigned as VRF_LNA in A780 schematic. During standby mode of Neptune-LTE system, V5 should be switch off when Standby pin of PCAP2 asserted.
6) V6 Linear Regulator
V6 is a programmable linear regulator. It is programmable via the SPI bus to 2.475V or
2.775V. For A780, V6 is not used.
7) V7 Linear Regulator
V7 is a programmable linear regulator. It is programmable via the SPI bus to 1.875V or
2.775V. For A780, V7 is programmed to 2.775V and is supplied directly by B+. This regulator is on whenever the radio is turned on, and the initial power-up level is 2.775V as default. V7 supplies to Neptune-LTE, RF6003 & RF2722 RF related circuitries. V7 was assigned as label VRF_TXRX in A780 schematic.
8) V8 Linear Regulator
V8 is a programmable linear regulator. It is programmable via the SPI bus to 1.075V ~
2.275V. For A780, V8 is programmed to 1.275V and is supplied directly by B+. This regulator is on whenever the radio is turned on, and the initial power-up level is 1.275V as default. V8 supplies the power for Bulverde VCC_PLL power. V8 was assigned as label VAP_PLL in A780 schematic. This regulator can be switched off when Bulverde entering into sleep mode, the control signal for this is PWR_EN of Bulverde.
9) V9 Linear Regulator
V9 is a programmable linear regulator. It is programmable via the SPI bus to 1.575V ~
2.775V. For A780, V9 is programmed to 1.575V and is supplied directly by B+. This regulator is on whenever the radio is turned on, and the initial power-up level is 1.575V as default. V9 supplies to Neptune LVDD1 as Neptune internal reference voltage. V9 was assigned as label VBB_REF in A780 schematic. This power supply is also connected with PCAP2 VCC_OUT pin to provide power for PCAP2 internal 32KHz oscillator and output buffer.
10) V10 Linear Regulator
V10 is an un-programmable linear regulator for its output voltage, but it can be switched on or off via the SPI port. V10 output at 5.0V and is supplied by SW3. This regulator is on whenever the radio is turned on, and the initial power-up level is 5.0V as default. V10 is not used in A780 design.
11) VAUX1 Linear Regulator
VAUX1 is a programmable linear regulator. It is programmable via the SPI bus to
1.275V ~ 2.775V. For A780, VAUX1 is programmed to 1.875V and is supplied directly
08/02/2003 Motorola Confidential Proprietary 17 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
by B+. This regulator is on whenever the radio is turned on, and the initial power-up level is 1.875V as default. VAUX1 supplies Bluetooth core and RF power. VAUX1 was assigned as label VBT_RF in A780 schematic.
12) VAUX3 Linear Regulator
VAUX1 is a programmable linear regulator. It is programmable via the SPI bus to
1.275V ~ 2.775V. For A780, VAUX1 is programmed to 2.800V and is supplied directly by B+. This regulator is off when the radio is turned on, and the initial power-up level is 0V as default. VAUX3 supplies power to Tri-Flash card. VAUX3 was assigned as label VAP_MMC in A780 schematic.
13) VAUX4 Linear Regulator
VAUX4 is a programmable linear regulator. It is programmable via the SPI bus to
1.800V ~ 5.000V. For A780, VAUX4 is programmed to 3.000V and is supplied directly by B+. This regulator is on whenever the radio is turned on, and the initial power-up level is 3.00V as default. VAUX4 supplies power to AGPS RF module. VAUX4 was assigned as label VAP_GAM_RF in A780 schematic.
14) SW1 Switching Regulator
SW1 is a programmable switching regulator. It is programmable via the SPI bus to
0.900V ~ 2.250V. For A780, SW1 is programmed to 1.2V and is supplied directly by B+. This regulator is on whenever the radio is turned on, and the initial power-up level is
1.20V as default. SW1 supplies power to Bulverde VCC_CORE domain. SW1 was assigned as label VAP_CORE in A780 schematic.
15) SW2 Switching Regulator
SW2 is a programmable switching regulator. It is programmable via the SPI bus to
0.900V ~ 2.250V. For A780, SW2 is programmed to 1.875V and is supplied directly by B+. This regulator is on whenever the radio is turned on, and the initial power-up level is
1.875V as default. SW2 supplies power to Bulverde memory system and Neptune-LTE memory interface. SW1 was assigned as label VAB_MEM in A780 schematic.
16) SW3 Switching Regulator
SW3 is a programmable switching regulator. It is programmable via the SPI bus to 4.00V ~ 5.50V. For A780, SW3 is programmed to 5.5V as default and is supplied directly by B+. This regulator is on whenever the radio is turned on, and the initial power-up level is
5.50V as default. SW3 supplies power to PCAP2 VBUS_IN as USB OTG host function. SW3 was assigned as label V_BOOST in A780 schematic.
08/02/2003 Motorola Confidential Proprietary 18 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1

3.1.3 Power Distribution Tree

For A780 cellular phone, not all the regulators listed in Table 1 A780 power distribution tree in which all the used regulators load were addressed.
PCAP2 provides all the regulated power supplies to Neptune-LTE subsystem, Bulverde adjunct processor sub-system, Bluetooth system and AGPS system etc.
are used. Figure 1 shows
08/02/2003 Motorola Confidential Proprietary 19 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
_
_
RF3144
VBATT
PCAP2
V5 (Linear)
VRF_LNA
(2.775V)
RF6003
VDD_RX
RF2722
FLT_VCC
LNA_VCC
Neptune
BVDD CVDD1 CVDD2 CVDD3 DVDD EVDD JVDD VDDA
Bulverde
VCC_IO VCC_BB
Hall Effect
Supply
LCD
Module
V
PCAP2
V4 (Linear)
VRF_VCO
(2.775V)
RF6003
VCCV
RF2722
MIX_VCC
LO_VCC
VCO
PCAP2
V1 (Linear)
VAB_IO (2.775V)
PCAP2
PRISSIVCC
SECSSIVCC
PRISPIVCC SECSPIVCC
USBDIGVCC
Blue-Tooth
V-I-O
Digital Camera
LCD Module
VDD2
LED
VCC
VCC
VDD1
Single Cell Li-Ion
B+
PCAP2
PCAP2
ALRT_VCC
V9 (Linear)
VBB_REF
(1.575V)
Neptune
LVDD1
PCAP2
SW3 (Boost)
V_BOOST
(5.50V)
PCAP2
IN
VUSB
PCAP2
SW1 (BUCK)
VAP_CORE
(0.9 ~ 1.3V)
Bulverde
VCC_CORE
PCAP2
AGPS
VDD_IO
Other
U602 U604 U605 U606
U401
V7 (Linear)
VRF_TXRX
(2.775V)
Neptune
VDD_TXRX
RF6003
VCC (_PLL)
VDD
RF2722
DIG_VCC
PCAP2
VAUX1 (Linear)
VBT_RF
(1.875V)
Blue-Tooth
BTRF_REG
AGPS
VAP_GAM_RF
PCAP2
VUSB (Linear)
VAP_USB
(3.3V)
Bulverde
VCC_USB
PCAP2
VAUX3 (Linear)
VAP_MMC
(2.80V)
MMC / SD Card
MMC_VCC
PCAP2
VAUX4 (Linear)
VAP_GAM_RF
(3.00V)
AGPS
VGAM_RF
PCAP2
V8
(Linear)
VAP_PLL
(1.275V)
Bulverde
VCC_PLL
PCAP2
SW2 (BUCK)
VAB_MEM
(1.875V)
Neptune
QVDD
Stack-Memory
VCC1 VCC2
VCCQ
S-VCC
VPP
Bulverde
VCC_MEM
PCAP2
V3 (Linear)
VAP_SRAM
(1.275V)
Bulverde
VCC_SRAM
PCAP2
LEDG LEDR
PCAP2
(Linear)
SIM_VCC
(1.875V/3.0V)
Neptune
SIM Card
RRight Amplifier
VSIM
FVDD
VCC
PCAP2
V2 (Linear)
V_AUDIO
(2.775V)
Neptune
VDD_CODEC
PCAP2
A1 Amplifier A4 Amplifier
Left PGA
Right PGA
ALeft Amplifier
Phone DAC
Stereo DAC A3 Amplifier A5 Amplifier
MIC_BIAS1
MIC_BIAS2
PCAP2
V_VIB
(Linear)
VVIBB
(1.30V)
Vibrator
POS
Figure 1 – A780 Power Distribution Tree Diagram
08/02/2003 Motorola Confidential Proprietary 20 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
T
I/Q
VCO1
VCO2

3.1.4 A780 Power Management Control

Figure 2
shows the detailed control signal connection for power management in A780.
Bulverde
VCC_CORE
VCC_MEM
VCC_PLL
USB Host Port3
GPIO [89]
PWR_EN
VCC_IO etc
VCC_SRAM
GPIO [1]
ICL
TC_MM_EN
nPWR_EN
USB
INT3
INT0
BVDD
Neptune
VDD_CODEC
STANDBY
SPI_CS3
BB_SPI
LVDD1
QVDD
BB_TX
BB_RX
L1_Timer
RF_SPI
RF_SPI
VBB_IO
VA
VAP_PLL
VAP_SRAM
VAB_MEM
P_CO
RE
VAB_IO
PCAP2_SEC_IN
SEC_SPI
PRI_SPI
PCAP2_PRI_IN
STANDBY
V_AUDIO
VBB_REF
VBB_CORE
BT
DC
INT
V1 V3 V8 SW1 SW2
SEC_SPI
Controllable
VAUX1
VAUX4
STANDBY2
V1
INTPRI
STANDBY
PRI_SPI
PCAP2
V2
SW2
CHAGC
V9
V10_IN
MAIN_FE
VCC_OUT
SW3
Boost
B+
Hall-Effect
USB
AGPS
EMU Support
EXT_B+
Mini-USB Connector
RAW_EXT_B+
LCD Module
Figure 2 – A780 Power Management Control Diagram
In Figure 2
, A780 power management block diagram, the power saving mode of
operation for both Neptune-LTE baseband and Bulverde adjunct processor need to be described as below.
RF6003
RF2722
SAW
RF Switch
BATT+
V
V
Range
RAMP
RF3144
GSM/DCS
CEL/PCS
08/02/2003 Motorola Confidential Proprietary 21 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
There are two standby control signals with PCAP2 in which is different from PCAP2 design. In A780 power management design, one standby control pin of PCAP2 is connected with Neptune-LTE standby pin and another standby control pin is connected with Bulverde PWR_EN pin (need to be inverted as PCAP2 required).
During the period of Neptune-LTE in standby mode, Neptune-LTE asserts it’s STANDBY pin and PCAP2 shutdown the power supplies to Neptune-LTE subsystem needed to be for power saving purpose. The power supplies need to be switched off for Neptune-LTE standby mode is V7, V4 & V5.
In A780 adjunct processor power saving mode, Bulverde needs to enter into Sleep mode for achieving minimum power consumption. That needs the power supplies provided to Bulverde Core, PLL and internal SRAM power domain to be switched off after Bulverde entered into sleep mode. The pin PWR_EN of Bulverde will be changed from logic HIGH to logic LOW after Bulverde entering into Sleep mode. The inverted PWR_EN (nPWR_EN) was connected with PCAP2 STANDBY2 pin in A780, so when STANDBY2 of PCAP2 was changed from logic LOW to logic HIGH, the power supplies to Bulverde Core, PLL and internal SRAM can be shutdown. Two types of power supplies involved into Bulverde sleep mode operation, one is a linear regulator and another one is switching mode regulator.
Figure 3
illustrates the waveform of control sequence for VCC_SRAM, VCC_PLL, and
VCC_CORE with PWR_EN.
PWR_EN
STANDBY2 (nPWR_EN)
SW1, V3, V8 (CORE, SRAM, PLL)
Running Mode Period
Sleep Mode Period
Running Mode Period
Figure 3 – A780 Bulverde Sleep and Operation Mode Power Supply Control
The state of PWR_EN signal of Bulverde will change from high to low automatically after software entering into sleep mode and can automatically change back to high from low while triggered by wakeup events settled by software. There is a small delay for SW1, V3 and V8 to setup after STANDBY2 pin changed from high to low. But that is within the timing requirement of Bulverde.
08/02/2003 Motorola Confidential Proprietary 22 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
)
])
)
[
])
For switching mode regulator standby operation in PCAP2 (SW1 was used in A780), the control block diagram Figure 4
and control True Table Table 2 can be applied for this
kind of operation.
SWx_MODE11 SWx_MODE10 SWx_MODE01 SWx_MODE00 STANDBYy Pin Mode Voltage
X X 0 0 0 OFF 0 X X 0 1 0 Sync SWx [3:0] X X 1 0 0 Nonsync SWx [3:0] X X 1 1 0 Low Power 0 0 X X 1 OFF 0 0 1 X X 1 Sync SWx_DVS [3:0] 1 0 X X 1 Nonsync SWx_DVS [3:0] 1 1 X X 1 Low Power SWx_DVS [3:0]
Table 2 – PCAP2 Switching Mode Regulator Standby Control True Table
Primary SPI
STANDBY1
SWx_MODE1 [1:0]
SWx [3:0]_DVS
SWx_MODE0 [1:0]
SWx [3:0
Secondary SPI
(SWx_MODE_PRI [1:0], SWx_PRI [3:0])
(SWx_MODE [1:0], SWx_VOLTSEL [3:0])
SWx Switching Regulator
STANDBY2
SWx_MODE1 [1:0]
SWx [3:0]_DVS
SWx_MODE0 [1:0]
SWx
3:0
(SWx_MODE_PRI [1:0], SWx_SEC [3:0])
(In Primary VREG_MASK Register)
SWx_SEL
Figure 4 – PCAP2 Switching Mode Regulator Standby Control
There are several items of note in Figure 4
and in Table 2. First is the fact that either SW1 or SW2 can be controlled by either the primary or secondary SPI. For switching mode regulators control, no OR gate was put into PCAP2 control. This is controlled by the SW1_SEL and SW2_SEL bits in the VREG_MASK register. Furthermore, either switcher can be placed in any of the four possible switcher modes arbitrarily, based on the state of the STANDBY pins (the STANDBY1 pin controls the primary SPI regulator(s), where as the STANDBY2 pin controls the secondary SPI regulator(s). Finally, the switching regulator mode control design allows the system to dynamically change the output voltage of each switcher based on the STANDBY pins.
08/02/2003 Motorola Confidential Proprietary 23 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
Bulverde internal SRAM and PLL power domain, VCC_SRAM and VCC_PLL respectively, are linear regulators provided by PCAP2. VCC_SRAM power supply is provided by PCAP2 V3 and VCC_PLL power supply is provided by PCAP2 V8 in A780 power management design. During sleep mode of Bulverde, V3 and V8 needs to be shutdown for achieving minimum power consumption.
Figure 5
shows a block diagram of standby control for those linear regulators (includes V3 and V8, but not limited to them in PCAP2) that have standby controllability. Each linear regulator is controlled via SPI bits in both the primary and secondary SPIs. Mode decoder logic in each SPI block combines these SPI bits with the STANDBY pins (STANDBY1 for primary, STANDBY2 for secondary), and outputs Vx_MODE_PRI [1:0] and Vx_MODE_SEC [1:0]. The truth table for the mode decoder logic is shown in Table 3
. Note that not all regulators have corresponding EN bits in the secondary SPI. In these cases, the secondary EN bit is assumed to be a logic 1. when interpreting the truth table. The regulators that cannot be controlled via STANDBY1 or STANDBY2 are: VSIM, VSIM2, TS_REF, VHOLD, V_VIB, and VFLASH. Some of these regulators can be placed in a low power mode (VSIM, VSIM2, TS_REF, and VHOLD), but the low power feature is independent of standby control in that case.
One noteworthy feature of the linear regulator standby control scheme is the mode OR.ing function. This function simply selects the highest power mode between Vx_MODE_PRI [1:0] and Vx_MODE_SEC [1:0]. This function can be disabled via the Vx_SEL bits in the VREG_MASK register. This register is only accessible by the primary SPI port, and is used by the primary SPI to allow or disallow control from the secondary SPI port of any set of individual regulators.
STA
NDBY1
Primary SPI
Vx_EN
Vx_LOWPWR
Vx_STDY
Mode
Encoder
Vx_MODE_PRI [1:0]
MODE [1:0] Mode
00 OFF
01 Not Used
10 Low Power 11 ON
Vx_MODE[1:0]
Vx
Regulator
Vx_EN
Vx_LOWPWR
Vx_STDY
Mode
Encoder
Vx_MODE_SEC [1:0]
(In Primary VREG_MASK Register)
Vx_SEL
NDBY2
STA
Secondary SPI
Figure 5 – PCAP2 Linear Mode Regulator Standby Control
08/02/2003 Motorola Confidential Proprietary 24 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
EN bit STBY bit LOWPWR bit STANDBYy Pin Mode Vx_MODE_PRI/SEC [1:0]
0 X X X OFF 00 1 0 0 0 ON 11 1 0 0 1 ON 11 1 0 1 0 Low Power 10 1 0 1 1 Low Power 10 1 1 0 0 ON 11 1 1 0 1 OFF 00 1 1 1 0 ON 11 1 1 1 1 Low Power 10
Table 3 – PCAP2 Linear Mode Regulator Standby Control True Table
To switch off V3 (VCC_SRAM) and V8 (VCC_PLL) when STANDBY2 asserted, V3_EN and V8_EN need to be clear by primary SPI since those two bits are accessible only by primary SPI. In A780 design, the primary SPI port of PCAP2 is connected with Neptune-LTE. So Neptune-LTE software should clear V3_EN and V8_EN after booting up.
08/02/2003 Motorola Confidential Proprietary 25 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
K
K
SSP 2
K
t
K

3.2 A780 Audio System and PCAP2 Audio Section

3.2.1 A780 Audio System Architecture Block Diagram

A780 phone design supports the voice audio, stereo audio and Bluetooth audio in its audio system architecture illustrated in Figure 6 illustrated in Figure 6
.
. The SPI port to PCAP2 control is also
Bulverde
-
GPIO [88]
GPIO [38]
GPIO [37]
GPIO [22]
SAP_TXD
SAP_RXD
SAP_FRM
SAP_CLK
SAP_TXD
SAP_RXD
SAP_FRM
SAP_CL
STDA
Neptune-LTE
SRDA
SC2A
SCKA
GPIO [29]
SSP-1
GPIO [25]
GPIO [24]
GPIO [26]
GPIO [52]
SSP-3
GPIO [89]
GPIO [81]
GPIO [83]
AP_SPI_FRM
AP_SPI_CLK
AP_SPI_TXD
AP_SPI_RXD
AP_SPI_CS
AP_AUD_CLK
AP_AUD_TXD
AP_AUD_FRM
SAP_CL
SAP_TXD
SAP_FRM
SAP TXD
SAP FRM
SAP CL
SAP RXD
SEC_MOSI
SEC_CE
SEC_MISO
TX
BITCLK1
RX1
FSYNC1
RX0
FSYNC0
BITCLK0
SEC_SPI_CLK
ASAP TXD
ASAP FS
ASAP CL
ASAP RXD
PCAP2-II
Blue-Tooth
Figure 6 – A780 Audio System Architecture Block Diagram
The alternate functions of Bulverde GPIO assignment for audio and SPI settings shows in
Table 4
.
BT
Headse
08/02/2003 Motorola Confidential Proprietary 26 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
A780 Function
AP SPI - AP_SPI_CLK GPIO[29] AP SPI - AP_SPI_FRM GPIO[24] AP SPI - AP_SPI_RXD GPIO[26] AP SPI - AP_SPI_TXD GPIO[25] SAP Codec - SAP_CLK GPIO[22] SAP Codec - SAP_FRM GPIO[37] SAP Codec - SAP_RXD GPIO[38] SAP Codec - SAP_TXD GPIO[88] Stereo Codec - AP_AUD_CLK GPIO[52] Stereo Codec - AP_AUD_FRM GPIO[83] Stereo Codec - AP_AUD_RXD GPIO[89] Stereo Codec - AP_AUD_TXD GPIO[81]
GPIO
Table 4 –Bulverde GPIO Assignment for Audio SSP and SPI
Alternative Input Alternative Output
[ 01 ] [ 10 ] [ 11 ] [ 01 ] [ 10 ] [ 11 ]
AC97_SDATA_IN_0 I2S_SDATA_IN SSPSCLK SSPRXD2 SSPSCLK CIF_FV SSPSFRM CIF_FV SSPSFRM
SSPRXD CIF_PCLK
CIF_LV CIF_LV SSPTXD SSPEXTCLK2 SSPSCLK2EN SSPSCLK2 KP_MKOUT[7] SSPSYSCLK2 SSPSCLK2 FFDSR SSPSFRM2 KP_MKIN[3] USB_P2_8 SSPSFRM2 FFTXD FFRI KP_MKIN[4] USB_P2_3 SSPTXD3 SSPTXD2 PWM_OUT[1] USBHPWR[0] SSPRXD2 SSPSFRM2 SSPSFRM2 CIF_DD[4] SSPSCLK3 BB_OB_CLK SSPSCLK3
SSPSFRM3 BB_IB_CLK CIF_DD[4] SSPSFRM3 SSPRXD3 AC97_SYSCLK USBHPEN[0] SSPTXD2
CIF_DD[0] SSPTXD3 BB_OB_DAT[0]
08/02/2003 Motorola Confidential Proprietary 27 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1

3.2.2 Audio Input Section

PCAP2 Audio Input Section block diagram shows in Figure 7
. Any one of three equivalent microphone inputs can be selected. These inputs are EXT_MIC, the output of the differential input microphone amplifier A3 or the output of the differential auxiliary microphone amplifier, A5. These three inputs are single ended with respect to VAG (Note: AUX_MIC+ should be DC connected to VAG to avoid an offset relative to the A/D input). MIC_BIAS is derived from VAG for best noise performance. MB_CAP bypasses the gain from VAG to MIC_BIAS to keep the noise balanced.
Figure 7 – PCAP2 Audio Input Section Block Diagram
Following the input stage and multiplexer is a selectable gain stage and 30kHz low-pass anti-aliasing filter. This low-pass filter may be designed to whatever order is needed to insure that aliased components are not present in the output. The gain of the selectable gain stage can be selected in 1dB steps from 0dB to +31dB. Depending on the design of the A/D converter the output of the anti-aliasing filter may be clamped to keep from overdriving the A/D converter. The audio input bits control the configuration of the input. These bits select the gain, enable or disable the input, select between the EXT_MIC, A5 amplifier output, or A3 amplifier output, and select or deselect the CODEC’s high pass input filter. Also, these bits can select a loop-back mode that takes the digital output of the input A/D converter, and loops it directly back to the D/A output section for testing.
08/02/2003 Motorola Confidential Proprietary 28 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
The switch shown between A3 output and MIC_OUT and the switch shown between A5 output and AUX_OUT are conceptual. It is possible that the amplifier will be high impedance when in its powered down state.

3.2.3 Audio Output Section

PCAP2 Audio Output section block diagram shows in Figure 8
.
Figure 8 – PCAP2 Audio Output Section Block Diagram
It shows that the audio out of the telephone CODEC or the right channel of the stereo DAC can be routed via the right PGA to any one of four outputs. These outputs are: the internal earpiece speaker amplifier, A1, the alert amplifier, A2, the external speaker amplifier, A4, or the dedicated headset right channel speaker amplifier, ARight. All of these outputs can be simultaneously connected to the right PGA so care should be taken not enable multiple amplifiers at the same time if this is not desired. The Mono adder can be used to sum the left and right channels of the stereo DAC or signals supplied to the left and right PGA inputs. The Mono adder can then attenuate the summed signals by 0dB, 3dB or 6dB and an identical monophonic signal to any of output amplifiers mentioned above.
SPKR_OUT1, SPKR_OUT2, HS_OUT_R and HS_OUT_L should maintain their DC levels even when not selected or if the audio is off.
08/02/2003 Motorola Confidential Proprietary 29 / 126
A780 Quad-Band Phone Hardware Interface Document Rev. 0.1
SPKR_OUT1, SPKR_OUT2, HS_OUT_R, HS_OUT_L, PGA_INR, and PGA_INL are all capacitor coupled.

3.2.4 A780 Audio Routing and SPI Control

The audio system of A780 composed of Neptune, Bulverde and PCAP2. Neptune and Bulverde control the PCAP2 audio portion through the SPI port. A780 audio routing and SPI control connection block diagram shows in Figure 9
.
Neptune
CKO
TRK OSC
S A P
U A R
T
MQ SPI
SckA Sc2A
U
Bulverd
A R T
Tx Rx
Rx/Tx Tx/Rx BitClk Fsync
SSP/SSI
SPI
N S S P
ASSP
B
S
c
y
l
n
x
k
c
USB
TxR
R
F
B c
x
Bluetooth
Headset
CLKIN
S
U
S
S
I
B
Bluetooth
Tx Rx
Clk
Fs
Tx
S
Rx
S
Bclk
I
Fs
0
SEC
SPI
PRI
SPI
CLKIN
s
l
k
C O D E C
SSI1
STDAC
R PGA
Mono
L PGA
PCAP
XCVR
USB
Audio_In
PGA
A4
A2
A1
AR
AL
Audio_Out
Headset
Handset Microphone
Loud Speaker
Earpiece
DIGITAL
(USB) DHFA
ANALOG
DHFA or
EIHF
Figure 9 – A780 Audio Routing and SPI Control Block Diagram
For detailed A780 audio system architecture description, please refer to ASE document “Audio Design Document for Adjunct Processor-based Neptune Platform”.
08/02/2003 Motorola Confidential Proprietary 30 / 126
Loading...
+ 96 hidden pages