Motech MT 4080 Operating Manual

MT 4080
LCR METER
OPERATING MANUAL
Contents
1.1 G
ENERAL
.......................................................................... 1
1.2 I
MPEDANCE PARAMETERS
................................................ 3
1.3 S
PECIFICATION
.................................................................. 6
1.4 A
CCESSORIES
................................................................. 19
2. OPERATION ................................................................... 20
2.1 P
HYSICAL DESCRIPTION
................................................. 20
2.2 M
AKING MEASUREMENT
............................................... 21
2.2.1 Battery Replacement ...............................................................21
2.2.2 Battery Recharging/AC operation.......................................... 22
2.2.3 Open and Short Calibration ................................................... 23
2.2.4 Display Speed.......................................................................... 24
2.2.5 Relative Mode ......................................................................... 24
2.2.6 Range Hold ............................................................................. 24
2.2.7 DC Resistance Measurement.................................................. 25
2.2.8 AC Impedance Measurement.................................................. 25
2.2.9 Capacitance Measurement .....................................................25
2.2.10 Inductance Measurement........................................................ 26
2.3 A
CCESSORY OPERATION
................................................. 27
3. INFRARED OPERATION............................................. 29
3.1 C
OMMAND SYNTAX
........................................................ 30
3.2 C
OMMANDS
.................................................................... 31
4. APPLICATION ............................................................... 39
4.1 T
EST LEADS CONNECTION
............................................. 39
4.2 O
PEN/SHORT COMPENSATION
........................................ 44
4.3 S
ELECTING THE SERIES OR PARALLEL MODE
................. 46
5. WARRANTY INFORMATION ..................................... 49
6. SAFETY PRECAUTION ............................................... 51
1
1. Introduction
1.1 General
The MT4080 is a high accuracy handheld LCR meter that can perform the inductor, capacitor and resistor measurement up to 100KHz within 0.2% basic accuracy. It is the most advanced handheld AC/DC impedance measurement instrument to date. The MT4080 can help engineers and students to understand the characteristic of electronics components. It is also of great assistance to those people who want to do the quality control of the electronics components.
The instrument is auto or manual ranging. Test frequencies of 100Hz, 120Hz, 1KHz, 10KHz or 100KHz (MT4080A only) may be selected on all applicable ranges. The test voltages of 50mVrms, 0.25Vrms, 1Vrms or 1VDC (DCR only) may also be selected on all applicable ranges. The dual display feature permits simultaneous measurements.
Components can be measured in the series or parallel mode as desired; the more standard method is automatically selected first but can be overridden.
The highly versatile MT4080 can perform virtually all the functions of most bench type LCR bridges. With a basic accuracy of 0.2%, this economical LCR meter may be adequately substituted for a more expensive LCR bridge in many situations. The meter is powered from two AA Batteries and is supplied with an AC to DC charging adapter and two AA Ni-Mh Rechargeable
2
Batteries.
The instrument has applications in electronic engineering labs, production facilities, service shops, and schools. It can be used to check ESR values of capacitors, sort values, select precision values, measure unmarked and unknown inductors, capacitors or resistors, and to measure capacitance, inductance, or resistance of cables, switches, circuit board foils, etc.
The key features are as following:
Test condition:
1 Frequency : 100Hz / 120Hz / 1KHz / 10KHz /
100KHz (MT4080A only)
2. Level : 1Vrms / 0.25Vrms / 50mVrms / 1VDC (DCR only)
Measurement Parameters : Z, Ls, Lp, Cs, Cp,
DCR, ESR, D, Q and
θ
Basic Accuracy: 0.2%
Dual Liquid Crystal Display
Fast/Slow Measurement
Auto Range or Range Hold
Infrared Interface Communication
Open/Short Calibration
Primary Parameters Display:
Z : AC Impedance DCR : DC Resistance Ls : Serial Inductance Lp : Parallel Inductance Cs : Serial Capacitance Cp : Parallel Capacitance
3
Second Parameter Display:
θ
: Phase Angle ESR : Equivalence Serial Resistance D : Dissipation Factor Q : Quality Factor
Combinations of Display:
Serial Mode : Z –
θ
, Cs – D, Cs – Q, Cs – ESR, Ls –
D, Ls – Q, Ls – ESR
Parallel Mode : Cp – D, Cp – Q, Lp – D, Lp – Q
1.2 Impedance Parameters
Due to the different testing signals on the impedance measurement instrument, there are DC impedance and AC impedance. The common digital multi-meter can only measure the DC impedance, but the MT4080 can do both. It is a very important issue to understand the impedance parameters of the electronic component.
When we analysis the impedance by the impedance measurement plane (Figure 1.1). It can be visualized by the real element on the X-axis and the imaginary element on the y-axis. This impedance measurement plane can also be seen as the polar coordinates. The
Z is the magnitude and the
θ
is the phase of the impedance.
4
(
)
()
()
()
()
Ohm
Reactance
Resistance
Impedance
1
22
=
=
=
=
 
 
==
+==
=+=
S
S
s
s
s
sss
ss
X
R
Z
R
X
TanSinZX
XRZCosZR
ZjXRZ
θθ
θ
θ
There are two different types of reactance: Inductive (X
L
) and
Capacitive (X
C
). It can be defined as follows:
Also, there are quality factor (Q) and the dissipation factor (D) that need to be discussed. For component, the quality factor serves as a measure of the reactance purity. In the real world, there is always
s
X
s
R
(
)
sX,RZ
s
Z
θ
Imaginary Axis
Real Axis
Figure 1.1
)(
)(tan
2
11
)(tan2
HzFrequencyf
FceCapaciC
fCC
X
HceInducLfLLX
C
L
=
===
=
==
πω
π
ω
5
some associated resistance that dissipates power, decreasing the amount of energy that can be recovered. The quality factor can be defined as the ratio of the stored energy (reactance) and the dissipated energy (resistance). Q is generally used for inductors and D for capacitors.
There are two types of the circuit mode. One is series mode, the other is parallel mode. See Figure 1.2 to find out the relation of the series and parallel mode.
pp
p
p
p
p
sss
s
s
s
RC
L
R
X
R
G
B
RCR
L
R
X
D
Q
ω
ω
ω
ω
δ
===
=
===
==
1
tan
11
6
1.3 Specification
LCD Display Range:
Parameter Range
Z
0.000
to 9999 MΩ L 0.000 µH to 9999 H C 0.000 pF to 9999 F
DCR
0.000
to 9999 MΩ
ESR
0.000
to 9999 Ω
D 0.000 to 9999 Q 0.000 to 9999
θ
-180.0
°
to 180.0
°
Figure 1.2
Real and imaginary components are serial
ss
jXRZ
+
=
Rs jX
s
Real and imaginary components are Parallel
G=1/R
p
j
B=1/jX
p
jBGY
+
=
j
X
p
R
p
P
jX
1
P
R
1
Y +=
7
Accuracy (Ae):
Z Accuracy:
|Zx|
Freq.
20M ~
10M
(
)
10M ~
1M (Ω)
1M ~ 100K
(Ω)
100K ~
10
(Ω)
10 ~ 1
(Ω)
1 ~ 0.1
(Ω) DCR 100Hz 120Hz 1KHz
2%
±
1
1%
±
1
10KHz
5%
±
1
2%
±
1
0.5%
±
1
0.2%
±
1
0.5%
±
1
1%
±
1
100KHz (4080A)
NA
5%
±
1
2%
±
1 0.4%
±
1
2%
±
1 5%±1
Note : 1. The accuracy applies when the test level is set to 1Vrms.
2
.Ae
multiplies 1.25 when the test level is set to 250mVrms. 3
.Ae
multiplies 1.50 when the test level is set to 50mVrms.
4.When measuring L and C, multiply
Ae
by
2
1 Dx+
if
the Dx
0.1.
: Ae is not specified if the test level is set to 50mV.
8
C Accuracy :
79.57 pF
|
159.1 pF
159.1 pF
|
1.591 nF
1.591 nF
|
15.91 nF
15.91 nF
|
159.1 uF
159.1 uF
|
1591
uF
1591
uF
|
15.91 mF
100Hz
2% ± 1
X
1% ± 1 0.5%
±
1
0.2%
±
1
0.5%
±
1
1% ± 1
X
66.31 pF
|
132.6 pF
132.6 pF
|
1.326 nF
1.326 nF
|
13.26 nF
13.26 nF
|
132.6 uF
132.6 uF
|
1326
uF
1326
uF
|
13.26 mF
120Hz
2%
±
1
X
1% ± 1 0.5%
±
1
0.2%
±
1
0.5%
±
1
1% ± 1
X
7.957 pF
|
15.91 pF
15.91 pF
|
159.1 pF
159.1 pF
|
1.591 nF
1.591 nF
|
15.91 uF
15.91 uF
|
159.1 uF
159.1 uF
|
1.591
mF
1KHz
2%
±
1
X
1% ± 1 0.5%
±
1
0.2%
±
1
0.5%
±
1
1% ± 1
X
0.795 pF
|
1.591 pF
1.591 pF
|
15.91 pF
15.91 pF
|
159.1 pF
159.1 pF
|
1.591 uF
1.591 uF
|
15.91 uF
15.91 uF
|
159.1 uF
10KHz
5% ± 1
X
2% ± 1 0.5%
±
1
0.2%
±
1
0.5%
±
1
1% ± 1
X
NA 0.159
pF
|
1.591 pF
1.591 pF
|
15.91 pF
15.91 pF
|
159.1 nF
159.1 nF
|
1.591 uF
1.591 uF
|
15.91 uF
100KHz (4080A)
NA 5%
±
1
X
2%± 1 0.4%
±
1
2%± 1 5% ± 1
X
9
L Accuracy :
31.83 KH
|
15.91 KH
15.91 KH
|
1591
H
1591
H
|
159.1 H
159.1 H
|
15.91
mH
15.91 mH
|
1.591 mH
1.591 mH
|
159.1
uH
100Hz
2%
±
1
X
1% ± 1 0.5%
±
1
0.2%
±
1
0.5%
±
1
1% ± 1
X
26.52 KH
|
13.26 KH
13.26 KH
|
1326
H
1326
H
|
132.6 H
132.6 H
|
13.26
mH
13.26 mH
|
1.326 mH
1.326 mH
|
132.6
uH
120Hz
2%
±
1
X
1% ± 1 0.5%
±
1
0.2%
±
1
0.5%
±
1
1% ± 1
X
3.183 KH
|
1.591 KH
1.591 KH
|
159.1
H
159.1 H
|
15.91 H
15.91 H
|
1.591
mH
1.591 mH
|
159.1
uH
159.1 uH
|
15.91 uH
1KHz
2% ± 1
X
1% ± 1 0.5%
±
1
0.2%
±
1
0.5%
±
1
1% ± 1
X
318.3 H
|
159.1 H
159.1 H
|
15.91 H
15.91 H
|
1.591 H
1.591 H
|
159.1
uH
159.1 uH
|
15.91 uH
15.91 uH
|
1.591 uH
10KHz
5%
±
1
X
2% ± 1 0.5%
±
1
0.2%
±
1
0.5%
±
1
1% ± 1
X
31.83 H
|
15.91 H
15.91 H
|
1.591 H
1.591 H
|
159.1
mH
159.1 mH
|
15.91
uH
15.91 uH
|
1.591 uH
1.591 uH
|
0.159 uH
100KHz (4080A)
NA 5%
±
1
X
2%± 1 0.4%
±
1
2%± 1 5% ± 1
X
10
D Accuracy :
|Zx|
Freq.
20M ~
10M
(Ω)
10M ~
1M (Ω)
1M ~ 100K
(Ω)
100K ~
10
(Ω)
10 ~ 1
(Ω)
1 ~ 0.1
(Ω)
100Hz
120Hz
1KHz
±
0.020
±
0.010
10KHz
±
0.050
±
0.020
±
0.005 ±0.002 ±0.005 ±0.010
100KHz (4080A)
NA
±
0.050
±
0.020 ±0.004 ±0.020 ±0.050
θ Accuracy :
|Zx|
Freq.
20M ~
10M
(Ω)
10M ~
1M (Ω)
1M ~ 100K
(Ω)
100K ~
10
(Ω)
10 ~ 1
(Ω)
1 ~ 0.1
(Ω)
100Hz
120Hz
1KHz
±
1.046
±
0.523
10KHz
±
2.615
±
1.046
±
0.261 ±0.105 ±0.261 ±0.523
100KHz (4080A)
NA
±
2.615
±
1.046 ±0.209 ±1.046 ±2.615
11
Z Accuracy:
As shown in table 1.
C Accuracy:
Cxf
Zx
=
π
2
1
C
Ae
= Ae of |Zx| f : Test Frequency (Hz) Cx : Measured Capacitance Value (F)
|Zx| : Measured Impedance Value (
)
Accuracy applies when Dx (measured D value)
0.1
When Dx > 0.1, multiply C
Ae
by
2
1 Dx+
Example: Test Condition: Frequency : 1KHz Level : 1Vrms Speed : Slow DUT : 100nF Then
=
=
=
1590
10100102
1
2
1
93
π
π
Cxf
Zx
Refer to the accuracy table, get C
Ae
=±0.2%
12
L Accuracy:
LxfZx =
π
2
L
Ae
= Ae of |Zx| f : Test Frequency (Hz) Lx : Measured Inductance Value (H)
|Zx| : Measured Impedance Value (
)
Accuracy applies when Dx (measured D value)
0.1
When Dx > 0.1, multiply L
Ae
by
2
1 Dx+
Example: Test Condition: Frequency : 1KHz Level : 1Vrms Speed : Slow DUT : 1mH Then
==
=
283.610102
2
33
π
π
LxfZx
Refer to the accuracy table, get L
Ae
=±0.5%
ESR Accuracy:
100
Ae
XxESR
Ae
±=
Cxf
LxfXx
==
π
π
2
1
2
13
ESRAe = Ae of |Zx| f : Test Frequency (Hz)
Xx : Measured Reactance Value (
) Lx : Measured Inductance Value (H) Cx : Measured Capacitance Value (F) Accuracy applies when Dx (measured D value)
0.1
Example: Test Condition: Frequency : 1KHz Level : 1Vrms Speed : Slow DUT : 100nF Then
=
=
=
1590
10100102
1
2
1
93
π
π
Cxf
Zx
Refer to the accuracy table, get C
Ae
=±0.2%,
±=±= 18.3
100
Ae
XxESR
Ae
D Accuracy:
100
Ae
D
Ae
±=
14
DAe = Ae of |Zx| Accuracy applies when Dx (measured D value)
0.1
When Dx > 0.1, multiply Dx by (1+Dx)
Example: Test Condition: Frequency : 1KHz Level : 1Vrms Speed : Slow DUT : 100nF Then
=
=
=
1590
10100102
1
2
1
93
π
π
Cxf
Zx
Refer to the accuracy table, get C
Ae
=±0.2%,
002.0
100
±=±=
Ae
D
Ae
Q Accuracy:
DeQx
DeQx
Ae
Q
±=
m1
2
Q
Ae
= Ae of |Zx| Qx : Measured Quality Factor Value De : Relative D Accuracy
15
Accuracy applies when
1
<
DeQx
Example: Test Condition: Frequency : 1KHz Level : 1Vrms Speed : Slow DUT : 1mH Then
==
=
283.610102
2
33
π
π
LxfZx
Refer to the accuracy table, get L
Ae
=±0.5%,
005.0
100
±=±=
Ae
De
If measured Qx = 20 Then
1.01
2
1
2
m
m
±=
±=
DeQx
DeQx
Q
Ae
θ
Accuracy:
100
Ae
π
180
e =θ
Loading...
+ 38 hidden pages