WARNING – When using electric products, basic precautions should always be followed, including the following:
1) Read all the instructions before using the product.
2) Do not use this product near water – for example, near a bathtub, washbowl, kitchen sink, in a wet basement, or
near a swimming pool or the like.
3) This product should be used only with a cart or stand that is recommended by the manufacturer.
4) This product, in combination with an amplifier and headphones or speakers, may be capable of producing
sound levels that could cause permanent hearing loss. Do not operate for a long period of time at a high volume
level or at a level that is uncomfortable. If you experience any hearing loss or ringing in your ears, you should consult
an audiologist.
5) The product should be located so that its location does not interfere with its proper ventilation.
6) The product should be located away from heat sources such as radiators, heat registers, or other products that
produce heat.
7) The product should be connected to a power supply only of the type described in the operating instructions or as
marked on the product.
8) The power-supply cord of the product should be unplugged from the outlet when left unused for a long period of
time.
9) Care should be taken so that objects do not fall and liquids are not spilled into the enclosure through openings.
10) The product should be serviced by qualified personnel when:
a) The power-supply cord or the plug has been damaged; or
b) Objects have fallen, or liquid has been spilled onto the product; or
c) The product has been exposed to rain; or
d) The product does not appear to operate normally or exhibits a marked change in
performance; or
e) The product has been dropped or the enclosure damaged.
11) Do not attempt to service the product beyond that described in the user-maintenance instructions. All other
servicing should be referred to qualified service personnel.
DANGER: INSTRUCTIONS PERTAINING TO RISK OF FIRE, ELECTRIC SHOCK, OR INJURY TO PERSONS: Do not open the
chassis. There are no user serviceable parts inside. Refer all servicing to qualified personnel only.
GROUNDING INSTRUCTIONS:
This product must be grounded. If it should malfunction or breakdown, grounding provides a path of least resistance
for electrical current to reduce the risk of electric shock. This product is equipped with a cord having an equipment
grounding connector and a grounding plug. The plug must be plugged into an appropriate outlet that is properly
installed and grounded in accordance with all local codes and ordinances.
DANGER – Improper connection of the equipment-grounding connector can result in a risk of electric shock. Check
with a qualified electrician or serviceman if you are in doubt as to whether the product is properly grounded. Do not
modify the plug provided with this product – if it will not fit in the outlet, have a proper outlet installed by a qualified
electrician.
SAVE THESE INSTRUCTIONS
Here it is – the minimoog Voyager. Moog Music has put more than 30 years of
experience with analog synthesizer technology into the design of this instrument to
bring you the fattest lead synthesizer since the minimoog was introduced in 1970.
We’ve done away with the things that made 30-year-old analog synthesizers difficult
– the tuning instability, the lack of patch memory, and the lack of compatibility with
MIDI gear. We’ve kept the good parts – the rugged construction, the fun of
changing a sound with knobs in real time, and the amazing, warm, fat, pleasing
analog sound. The Voyager is our invitation to you to explore analog synthesis and
express yourself. It doesn’t matter what style of music you play – the Voyager is here
to help you tear it up in the studio, on stage, or in the privacy of your own home.
Have fun!
TABLE OF CONTENTS:
I. Getting Started……………………………………………………...3
II. The Basics of Analog Synthesis……………………………………6
III. The Voyager’s features……………………………………………13
IV. The Voyager’s Components
A. Mixer……………………………………………………………...18
B. Oscillators………………………………………………………..19
C. Filters……………………………………………………………..22
D. Envelope Generators…………………………………………..26
E. Audio Outputs……………………………………………………29
F. Mod Busses……………………………………………………...30
G. LFO/ Sample and Hold…………………………………………33
H. Keyboard and Left Hand Control Panel ………………………35
I. The Touch Surface Controller ……………………………………36
J. The Back Panel ………………………………………………….37
K. The User Interface/Voyager Software…………………………38
1. The Interface……………………………………………38
2. Master Mode…………………………………………...39
3. Edit Mode……………………………………………….41
4. Panel Mode…………………………………………….45
5. MIDI……………………………………………………….46
Appendix A: Caring for your Voyager……………………………….47
Appendix B: Service and Technical Support Information………….47
Appendix C: List of Presets……………………………………………48
Appendix D: MIDI Implementation Chart……………………………51
Note: Specifications subject to change without notice.
Moog Music Inc. 2002, 2003 All rights reserved.
2
I. Getting Started
For those of you who can’t wait to read the manual (perfectly understandable
when you have a brand new synthesizer…), the following are the important steps to
get you going with your new Voyager. Once the adrenaline subsides a bit, you will
find this manual to be an excellent guide to exploring the outer reaches of your
minimoog Voyager.
- Check the contents in the shipping carton
The Voyager comes in a carton with a removable lid, and contains the following:
The minimoog Voyager itself, a power cord, and the bag that contains the manual
and warranty registration card.
- What you will need
In addition to the Voyager and its provided accessories, you will need:
- A keyboard stand or table that will hold the Voyager,
- (1) ¼” instrument cable for connecting in mono, or (2) ¼” instrument cables for
connecting in stereo,
- an amplifier, or headphones,
- a properly wired AC outlet.
- Warranty registration
Before you get started with your Voyager, please fill out your warranty registration
card and send it to Moog Music Inc. This will activate your warranty and is a vital
piece of information for us to provide you with the best service.
- Remove the Voyager from the carton
Before you remove the Voyager from the carton, make sure you have a space in
mind to set it up. Keep in mind that you will need a keyboard stand or table that
will support a 40 lb. analog synthesizer and will not topple if you play hard. The
Voyager weighs about 40 lbs., so use caution when lifting it out of the carton. Make
sure to save the packaging in case you need to ship the Voyager for any reason.
- Set tilt of panel
The Voyager’s front panel can be tilted for comfortable adjustment of the panel
controls while you play the keyboard. Once the Voyager is on a stand, the
Voyager’s panel can be lifted by the handle on the back of the instrument and set
to one of 5 angles. Pull the front panel forward and lift the hinged support for the
panel and insert the tab into the appropriate slot on the back panel for your desired
front panel angle. CAUTION: Do not over-tilt the front panel when pulling it forward.
Make sure the support bracket is properly seated into the slots on the back panel
before playing.
-Connect to source of AC
Connect the Voyager’s power receptacle to a wall outlet with the supplied AC
cordset (see figure 1).The Voyager will operate with a power source from 100 to 240
Volts.
3
-Power up
Turn the power on. You will see the screen light up and display: “minimoog
Voyager by moog music”. After about 5 seconds the greeting screen
disappears and you will see the MASTER mode options. The LED labeled
“MASTER” will be lit. The buttons labeled “PANEL”, “EDIT”, and “MASTER” access
the 3 operating modes of the Voyager.
-Connect to Amplifier
Connect your Voyager to headphones or an amplifier (figure1). For a mono
connection, use the jack labeled “left/mono”. To connect the Voyager to a stereo
amplifier, use the left/mono and right audio outputs to connect to the left and right
inputs of your amplifier. To get a sound, play the keyboard. Adjust the amplifier level
until it is at a comfortable level for listening.
Start Playing!
-
The quickest way to hear what the Voyager has to offer is to listen to the presets. Press the
PANEL button and ENTER. The screen will display the name and number of the last preset
that was in memory. Pressing the +1 or –1 buttons will access a new preset. Presets 001 –
128 are loaded with sounds from the factory. There are a total of 128 locations in
memory for presets. Note that once a preset is called up, you can tweak the parameters
to your liking. If you make changes to a preset and want to return to the original sound,
simply press ENTER.
To operate exclusively from the Front Panel and not from the Presets, the actual panel
parameters must be loaded. This is done by pressing the EDIT button to enter EDIT mode;
then use the +1 button to highlight REAL PANEL CONTROL. Press ENTER, and you will see
the prompt: ” Load actual panel parameter? Yes/No”. Use CURSOR to select Yes and
4
press ENTER. The sound produced by the Voyager is now determined by the settings of
the front panel independently of preset memory.
When working with the Voyager, keep in mind that many of the controls are
interactive, so there is frequently more than one way to control a single parameter.
For instance, if the sustain level of the Volume Envelope is all the way down, and the
attack and decay times are at zero, there will be no output. It is really important to
understand the workings of all the controls and how they interact in order to
understand how a sound (or lack thereof) is produced.
For a thorough understanding of the Voyager and it’s workings, continue on with this
manual…
5
II. THE BASICS OF ANALOG SYNTHESIS
For those getting started in the world of electronic music, let’s take a few moments
to go through the basics of sound and synthesis. This will help you understand what
the front panel controls do.
In order to understand synthesis, one must have a basic working knowledge of
the characteristics of sound. There are a few key terms that cover the basics:
Sound – audible vibrations of air pressure. Electronic sounds are delivered to the air
through loudspeakers. (figure 2)
Frequency– The rate of vibration in sound measured in Hertz (Hz or cycles/second)
(figure 3). Our ears can hear from 20 to 20,000 Hz. Frequency corresponds to the
musical term, pitch. A low frequency corresponds to a low-pitched sound such as
a bass; a high frequency sound corresponds to a high pitched sound such as a
piccolo. In music, a change in pitch of one octave higher equals a doubling of the
frequency.
6
Amplitude – The strength of a sound’s vibration measured in Decibels (dB). This
corresponds to the musical term Loudness (figure 4).
Harmonic Content – A sound is made up of simple vibrations at many different
frequencies (called harmonics) which give a sound its particular character. This
corresponds to the musical term timbre or tone color. A harmonic sound, such as a
vibrating string, is one in which the harmonics are mathematically related by what is
called the harmonic series. These sounds are typically pleasing to the ear and
generally the consecutive vibrations have the same characteristic shape or
waveform. An inharmonic sound, such as a crash cymbal, is one in which the
harmonics are not mathematically related. Their waveforms look chaotic. White
noise is an inharmonic sound that contains equal amounts of all frequencies. A
frequency spectrum is a graph of harmonics vs. their amplitude; a waveform is a
graph of the amplitude of a sound vs. time (figure 5).
7
In general, “synthesis” refers to the generation of sound through a group of
amplified circuits over which the programmer/performer has power to change
volume, pitch, timbre and articulation. The Minimoog Voyager is based on what is
called “subtractive synthesis”. This method of synthesis employs a harmonically rich
(think bright-sounding) source material, and then removes frequency components
to create the desired sound. The basic components of subtractive synthesis and
their definitions follow:
Oscillator: A circuit that electronically “vibrates”. When used as a sound source, an
oscillator is the electronic equivalent of a vibrating reed, or string. When amplified,
an oscillator produces a pitched sound whose frequency is determined by one or
more control voltages (see below for more info). Changes to these voltages
correspond to changes in pitch. An oscillator’s vibration can have different shapes
or waveforms, which are described below. The Voyager has three oscillators.
Waveform: The shape of an oscillator’s vibration. This determines its timbre.
Commonly used waveforms in subtractive synthesis are sawtooth, triangle, square,
or rectangular. Different waveforms have different timbres. A sawtooth has the
greatest number of harmonics, and sounds bright and buzzy. A square wave has
only odd harmonics, and sounds bright, but hollow, like a clarinet. A rectangular
wave can vary in shape, but typically has a bright but thin sound, and a triangle
wave’s harmonics are so low in amplitude that it sounds muted and flutelike (figure
6).
Mixer: A circuit for combining multiple sound sources or signals. The Voyager’s Mixer
allows you to select and set the level for up to 5 different sound sources.
8
Filter: A circuit that removes some frequencies and allows other frequencies to pass
through the circuit.
A filter has a cutoff frequency that determines the point at which frequencies begin
to be removed.
A lowpass filter is one in which frequencies above the cutoff frequency are removed
and all frequencies below the cutoff are passed through.
A highpass filter is one in which frequencies below the cutoff frequency are
removed and frequencies above the cutoff are passed through.
A bandpass filter has two cutoff frequencies that define a frequency band, outside
of which the frequencies are removed (figure 7).
9
Control Voltage - Control voltages (also called CVs) are used in analog synthesizers
to affect changes in the sound. In the case of pitch, pressing a key on the
keyboard sends a control voltage that determines the pitch of the oscillators. The
pitch can also be changed by a voltage provided from a panel control, such as an
oscillator tuning control. Every panel control on the Voyager produces a control
voltage that is routed to the circuit that the knob or slider is designed to change. An
oscillator with pitch varied by the voltage from the keyboard or tuning control is a
Voltage Controlled Oscillator, or VCO. A filter whose cutoff frequency is determined
by a voltage provided from the cutoff control is a Voltage Controlled Filter, or VCF.
An amplifier whose amplification is determined by a CV is a Voltage ControlledAmplifier, or VCA.
To illustrate the idea of control voltages, let’s look at a theoretical voltage
controlled synth with a VCO, VCF (lowpass) and VCA. Let’s suppose that the VCO
frequency and VCF cutoff frequency change one octave for every volt applied to
their control inputs. Let’s also suppose that the VCA output level is at 100% when +5
Volts is supplied to the control input, and is at 0% when 0 Volts is applied. In figure
8a, The VCO oscillates at 500 Hz with a +1 V CV, the VCF has a cutoff frequency of
16 kHz with a +5 V CV, and the VCA produces 100% output with a +5 V. In figure
8b, we reduce the VCO CV to 0 V, a change of 1 Volt. Notice that the frequency is
halved – a change of one octave. The VCF CV is dropped 6 volts to –1 V. Notice
that the cutoff frequency then drops 6 octaves, and at 250 Hz, only allows the
fundamental tone through. Finally, the VCA CV is reduced by 3 Volts. Notice the
amplification is reduced to 40% of the maximum level.
10
Modulation - Modulation is the use of a CV to affect a voltage-controlled circuit.
Modulation has a source, destination, and amount. This could be as simple as the
filter cutoff of a VCF (a modulation destination) being changed by the front panel
cutoff control (the source), or as complex as mixing multiple CVs together to
modulate filter cutoff. Modulation is used in synthesis to create complex sounds
and add variation.
Envelope Generator - An envelope describes the contours that affect the
characteristics of a sound as it evolves in time from its start to its finish. Take a
plucked string for example: when a string is plucked, its amplitude is suddenly very
loud, then dies out gradually. The initial part of the sound is very bright but then the
brightness fades away. The frequency of the sound goes slightly higher and then
drops slightly as the note fades. These kinds of changes in a sound over time can
be applied to oscillators, filters or the amplitude of an electronically generated
sound by an envelope generator. The envelope generator creates a CV that
describes the contours of a sound. Attack, measured in time, specifies the onset or
transient of a sound. With Volume for instance, the sound might start suddenly as
does a plucked string sound, or fade in slowly like a bowed string crescendo.
Decay is also measured in time and specifies how quickly the onset of a sound
fades into the sustained portion. Sustain is the level at which a sound sustains after
the initial transient. Release is measured in time and determines how long a sound
takes to fade away after a note is released. These four components make up an
ADSR envelope generator. An envelope control signal has to be started and
stopped. The start and stop is triggered by what is called a gate signal. A gate
signal is either on or off. When it goes on, the Envelope generator is started, when
the gate goes off, the release segment of the envelope begins. (figure 9)
11
Low Frequency Oscillator - Also called an LFO, this is a special type of voltage
controlled oscillator that oscillates primarily below the range of human hearing.
LFOs are typically used as a source of modulation.
For instance - an LFO with a triangle waveform at about 6 Hz modulating the pitch
of a VCO sounds like vibrato. The same LFO with a square wave will sound like a trill.
An LFO modulating a voltage controlled amplifier will sound like a tremolo (figure
10).
Sample and Hold - This is a circuit with an input for a control voltage and an input
for a trigger. Each time the trigger is fired, the circuit takes the voltage that appears
at the input and holds it at the output until the next time the circuit is triggered.
An LFO is a common way to trigger a sample and hold (or S&H) circuit.When an
LFO is applied to the trigger input, and a random signal such as white noise is
applied to the CV input, a random stepped voltage will appear at the output in
time with the each cycle of the LFO. (figure 11)
Glide - Also called portamento, is the slowing down of pitch changes as you play
different notes on the keyboard. In synthesizers, a rate is specified that determines
how fast the glide between notes is.
These terms are basic to understanding analog subtractive synthesis. Should you
choose to pursue a more in depth study of the subject, recommended is the book
Analog Synthesis by Reinhard Smitz, available from Wizoo Publications
(www.wizoo.com).
12
III.The Voyager’s Features
The minimoog Voyager is a monophonic analog synthesizer that is a descendant of
the classic minimoog. Its sound sources are an external audio input, a noise source,
and three analog, variable waveform oscillators. The Voyager has front panel
controls for real time control of its parameters (figure 12).
13
The back panel offers the many connections available, including the power, MIDI,
CV, and audio connections (figure 13). For the Control Inputs, a blue nut indicates a
gate/footswitch input and a red nut indicates a CV/ expression pedal input.
- The Oscillator section includes controls for choosing the octave, the tuning of the
second and third oscillators, the oscillators’ waveforms, and switches for oscillator
sync, linear FM, and oscillator 3’s frequency range and keyboard control.
- The sound sources are selected and their levels are set in the Mixer section.
The output of the Mixer section goes to the Filter section. An effect can be inserted
between the Mixer and Filters by means of the Mix Out/ Filter In jack.
- The Filter section contains two filters that work together in two different modes. Dual
Lowpass mode features two lowpass filters in parallel and Highpass-Lowpass mode
features a lowpass and highpass filter in series. The Cutoff control affects both filters’
cutoff frequencies, and the Spacing control sets a difference between the two
filters’ cutoff frequencies. The outputs of the Filters are passed on to the Output
VCAs.
- The Envelopes section contains one ADSR envelope generator for the Filters, and
one ADSR envelope generator for the Output VCAs. The audio path is illustrated in
figure 14.
14
- When a key is pressed, A Gate and Pitch CV are produced by the keyboard. The
Gate signal is used to trigger both the Filter and Volume Envelopes. The Pitch CV is
used to determine the pitch of the Oscillators and can be applied to a varying
degree to the Filters through the Keyboard Control Amount knob.
- Modulation is performed through the Modulation Busses. There are two separate
Mod busses. One is controlled by the Mod Wheel, while the other is controlled by
the MOD1 CV input. If nothing is plugged into the MOD1 CV Input, then the
PEDAL/ON bus is on at the level determined by the Amount control. In each Mod
Bus, a Modulation Source, Shaping signal and Destination are selected. An overall
maximum modulation amount can be set with the Amount control. The Modulation
CV paths are illustrated in figure 16.
15
- The LFO is assigned through the MOD Busses. It features a triangle and square
wave. It is also used to trigger the Sample and Hold.
- The touch surface controller can control three parameters (X,Y,A) simultaneously.
The position of a finger on the touch pad generates a control voltage for horizontal
(X) position and a control voltage for vertical (Y) position. Pressing on the touch
surface causes a CV based on the area (A) of the fingertip. A light touch causes less
of your fingertip to touch the pad, a heavy touch causes more contact with the
touch surface.
16
Loading...
+ 35 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.