All models approved for use in California by the CEC (when
equipped with IPI), in New York by the MEA division, and in
Massachusetts. Unit heater is certified for non-residential
applications.
FOR YOUR SAFETY
If you smell gas:
1. Open windows.
2. Don’t touch electrical switches.
3. Extinguish any open flame.
4. Immediately call your gas supplier.
WARNING
1. Improper installation, adjustment, alteration,
service or maintenance can cause property
damage, injury or death, and could cause
exposure to substances which have been
determined by various state agencies
to cause cancer, birth defects or other
reproductive harm. Read the installation,
operating and maintenance instructions
thoroughly before installing or servicing this
equipment.
2. Do not locate ANY gas-fired units in areas
where chlorinated, halogenated, or acid
vapors are present in the atmosphere.
These substances can cause premature heat
exchanger failure due to corrosion, which
can cause property damage, serious injury,
or death.
FOR YOUR SAFETY
The use and storage of gasoline or other
flammable vapors and liquids in open containers
in the vicinity of this appliance is hazardous.
IMPORTANT
The use of this manual is specifically intended
for a qualified installation and service agency.
A qualified installation and service agency must
perform all installation and service of these
appliances.
Inspection on Arrival
1. Inspect unit upon arrival. In case of damage, report
immediately to transportation company and your local
Modine sales representative.
2.
Check rating plate on unit to verify that power supply meets
available electric power at the point of installation.
3. Inspect unit received for conformance with description of
product ordered (including specifications where applicable).
THIS MANUAL IS THE PROPERTY OF THE OWNER.
PLEASE BE SURE TO LEAVE IT WITH THE OWNER WHEN YOU LEAVE THE JOB.
SPECIAL PRECAUTIONS / TABLE OF CONTENTS
Special Precautions
THE INSTALLATION AND MAINTENANCE INSTRUCTIONS
IN THIS MANUAL MUST BE FOLLOWED TO PROVIDE
SAFE, EFFICIENT AND TROUBLE-FREE OPERATION.
IN ADDITION, PARTICULAR CARE MUST BE EXERCISED
REGARDING THE SPECIAL PRECAUTIONS LISTED BELOW.
FAILURE TO PROPERLY ADDRESS THESE CRITICAL
AREAS COULD RESULT IN PROPERTY DAMAGE OR LOSS,
PERSONAL INJURY, OR DEATH. THESE INSTRUCTIONS
ARE SUBJECT TO ANY MORE RESTRICTIVE LOCAL OR
NATIONAL CODES.
HAZARD INTENSITY LEVELS
1. DANGER: Indicates an imminently hazardous situation
which, if not avoided, WILL result in death or serious injury.
2. WARNING: Indicates a potentially hazardous situation which,
if not avoided, COULD result in death or serious injury.
3. CAUTION: Indicates a potentially hazardous situation which,
if not avoided, MAY result in minor or moderate injury.
4. IMPORTANT: Indicates a situation which, if not avoided,
MAY result in a potential safety concern.
dANGER
Appliances must not be installed where they may be exposed
to a potentially explosive or flammable atmosphere.
WARNING
1. Gas fired heating equipment must be vented - do not
operate unvented.
2. A built-in power exhauster is provided - additional external
power exhausters are not required or permitted.
3. All field gas piping must be pressure/leak tested prior to
operation. Never use an open flame. Use a soap solution or
equivalent for testing.
4. Gas pressure to appliance controls must never exceed 14"
W.C. (1/2 psi).
5. Disconnect power supply before making wiring connections
to prevent electrical shock and equipment damage.
6. All appliances must be wired strictly in accordance with
wiring diagram furnished with the appliance. Any wiring
different from the wiring diagram could result in a hazard
to persons and property.
7. Any original factory wiring that requires replacement
must be replaced with wiring material having a
temperature rating of at least 105°C.
8. When servicing or repairing this equipment, use only
factory-approved service replacement parts. A complete
replacement parts list may be obtained by contacting
Modine Manufacturing Company. Refer to the rating
plate on the appliance for complete appliance model
number, serial number, and company address. Any
substitution of parts or controls not approved by the
factory will be at the owners risk.
9. To reduce the opportunity for condensation, the minimum
sea level input to the appliance, as indicated on the
serial plate, must not be less than 5% below the rated
input, or 5% below the minimum rated input of dual rated
units.
10. Ensure that the supply voltage to the appliance, as
indicated on the serial plate, is not 5% greater than the
rated voltage.
cAUTION
1. Purging of air from gas supply line should be performed
as described in ANSI Z223.1 - latest edition “National Fuel
Gas Code”, or in Canada in CAN/CGA-B149 codes.
2. Do not attempt to reuse any mechanical or electronic
ignition controllers which has been wet. Replace defective
controller.
3. Ensure that the supply voltage to the appliance, as
indicated on the serial plate, is not 5% less than the rated
voltage.
1. To prevent premature heat exchanger failure, do not
locate ANY gas-fired appliances in areas where corrosive
vapors (i.e. chlorinated, halogenated or acid) are present
in the atmosphere.
2. Do not attempt to attach ductwork of any kind to propeller
models.
3. To prevent premature heat exchanger failure, observe
heat exchanger tubes. If the bottom of the tubes become
red while blower and furnace are in operation, check
to be sure the blower has been set to the proper rpm
for the application. Refer to page 9 for Blower Adjustments.
4. Start-up and adjustment procedures should be performed
by a qualified service agency.
5. To check most of the Possible Remedies in the troubleshooting guide listed in Table 21.1, refer to the applicable
sections of the manual.
6. To prevent premature heat exchanger failure, the input to
the appliance, as indicated on the serial plate, must not
exceed the rated input by more than 5%.
Table of Contents
Inspection on Arrival................................. 1
Special Precautions ................................. 2
SI (Metric) Conversion Factors ........................3
Unit Location ...................................... 3
Combustible Material and Service Clearances ......... 3
Combustion Air Requirements .....................3
Unit Lifting and Unit Mounting...................... 4
Appliances must not be installed where they may be exposed
to a potentially explosive or flammable atmosphere.
IMPORTANT
To prevent premature heat exchanger failure, do not locate
ANY gas-fired appliances in areas where corrosive vapors (i.e.
chlorinated, halogenated or acid) are present in the atmosphere.
Location Recommendations
1. When locating the furnace, consider general space and
heating requirements, availability of gas and electrical supply, and proximity to vent locations.
2. Avoid installing units in extremely drafty locations. Drafts
can cause burner flames to impinge on heat exchangers
which shortens life. Maintain separation between units so
discharge from one unit will not be directed into the inlet
of another.
3. Be sure the structural support at the unit location site is adequate to support the weight of the unit. For proper operation the unit must be installed in a level horizontal position.
4. Do not install units in locations where the flue products can
be drawn into the adjacent building openings such as windows, fresh air intakes, etc.
5. Be sure that the minimum clearances to combustible materials and recommended service clearances are maintained. Units are designed for installation on non- combustible surfaces with the minimum clearances shown
in Figure 3.1 and Tables 3.2 and 3.3.
6. Units exposed to inlet air temperatures of 40°F or less, may experience condensation, therefore, provisions should
be made for disposal of condensate.
7. When locating units, it is important to consider that the exhaust vent piping must be connected to the outside atmosphere.
8. In garages or other sections of aircraft hangars such as
offices and shops that communicate with areas used for
servicing or storage, keep the bottom of the unit at least
7 feet above the floor unless the unit is properly guarded
to provide user protection from moving parts. In parking
garages, the unit must be installed in accordance with the
standard for parking structures ANSI/NFPA 88A, and in
repair garages the standard for repair garages NFPA #88B.
In Canada, installation of heaters in airplane hangars must
be in accordance with the requirements of the enforcing
authority, and in public garages in accordance with the
current CAN/CGA-B149 codes.
9. Do not install units in locations where gas ignition system
is exposed to water spray, rain, or dripping water.
10. Do not install units below 7 feet, measured from the bottom
of the unit to the floor, unless properly guarded to provide
protection from moving parts.
11. In aircraft hangars, keep the bottom of the unit at least 10
feet from the highest surface of the wings or engine enclosure of the highest aircraft housed in the hangar and in accordance with the requirements of the enforcing
authority and/or NFPA No. 409 - Latest Edition.
Figure 3.1 - Combustible Material and Service Clearances
Table 3.2 - Combustible Material Clearances ➀
Model Side Side Top Bottom Exhauster
Size (A) (B) (C) (D) (Not shown)
150-175 1 1 4 12 2
200-400 1 1 5 12 3
➀ Provide sufficient room around the heater to allow for proper
combustion and operation of fan. Free area around the heater must
not be less than 1-1/2 times the discharge area of the unit.
Access Non-Access Top of Power
Table 3.3 - Recommended Service Clearances
Model Side Side Top Bottom Exhauster
Size (A) (B) (C) (D) (Not shown)
150-175 18 18 6 22 1
200-400 18 18 6 25 1
Access Non-Access Top of Power
Combustion Air Requirements
Units installed in tightly sealed buildings or confined spaces
must be provided with two permanent openings, one near the
top of the confined space and one near the bottom. Each
opening should have a free area of not less than one square
inch per 1,000 BTU per hour of the total input rating off all units
in the enclosure, freely communicating with interior areas
having, in turn adequate infiltration from the outside.
For further details on supplying combustion air to a confined
(tightly sealed) space or unconfined space, see the National
Fuel Gas Code ANSI Z223.1 of CAN/CGA B149.1 or .2
Installation Code, latest edition.
Sound and Vibration Levels
All standard mechanical equipment generates some sound and
vibration that may require attenuation. Libraries, private offices
and hospital facilities will require more attenuation, and in such
cases, an acoustical consultant may be retained to assist in the
application. Locating the equipment away from the critical area
is desirable within ducting limitations. Generally, a unit should
be located within 15 feet of a primary support beam. Smaller
deflections typically result in reduced vibration and noise
transmission.
6-580.5
3
INSTALLATION
UNIT LIFTING
All units are shipped fully boxed. Larger units are also supplied
with skid supports on the bottom of the box. The larger units
may be lifted from the bottom by means of a fork lift or other
lifting device only if the shipping support skids are left in place
and the forks support the whole depth of the unit. If the unit
must be lifted from the bottom for final installation without the
carton in place, be sure to properly support the unit over its
entire length and width to prevent damage. When lifting units,
make sure the load is balanced.
UNIT SUSPENSION
Be sure the method of unit suspension is adequate to support
the weight of the unit (see Weights for base unit and factory
installed option weights). For proper operation, the unit must be
installed in a level horizontal position. Combustible material and
service clearances as specified in Figure 3.1 and Tables 3.2
and 3.3 must be strictly maintained. To assure that flames are
directed into the center of the heat exchanger tubes, the unit
must be level in a horizontal position. Use a spirit level to
ensure that the unit is suspended correctly.
The most common method of suspending Modine gas unit
heaters is to utilize 3/8” threaded rod. On each piece of
threaded rod used, screw a nut a distance of about one inch
onto the end of the threaded rods that will be screwed into the
unit heater. Then place a washer over the end of the threaded
rod and screw the threaded rod into the unit heater weld nuts
on the top of the heater at least 5 turns, and no more than 10
turns. Tighten the nut first installed onto the threaded rod to
prevent the rod from turning. Drill holes into a steel channel or
angle iron at the same centerline dimensions as the heater that
is being installed. The steel channels or angle iron pieces need
to span and be fastened to appropriate structural members. Cut
the threaded rods to the preferred length, place them through
the holes in the steel channel or angle iron and secure with
washers and lock nuts or lock washers and nuts. A double nut
arrangement can be used here instead of at the unit heater (a
double nut can be used both places but is not necessary). Do
not install standard unit heaters above the maximum mounting
height shown in Table 13.1.
On all propeller units, except sizes 350 and 400, two tapped
holes (3/8-16) are located in the top of the unit to receive
threaded rods.
Units with two point suspension, sizes 150 through 300,
incorporate a level hanging feature. Depending on what options
and accessories are being used, the heater may not hang level
as received from the factory. Do not hang heaters with deflector
hoods until referring to the “Installation Manual for Deflector
Hoods” and making the recommended preliminary adjustments
on the heater. These preliminary adjustments need to be made
with the heater resting on the floor.
Propeller sizes 150 through 300 units without deflector hoods
that do not hang level after being installed, can be corrected in
place. Simply remove both outer side panels (screws to remove
are on back flange of side panel) and you will see the
(adjustable) mounting brackets (Fig. 4.1). Loosen the set
screws holding the mounting brackets in place and using a
rubber mallet or similar, tap the heater into a position where the
unit hangs level. Re-tighten set screws and replace the outer
side panels.
Propeller sizes 350 and 400 have four mounting holes. On
all blower units, except the 350 and 400, two tapped holes
are provided in the top of the unit and two holes in the blower
support bracket. The 350 and 400 have four tapped holes in
the top of the unit and two in the blower support bracket for
mounting.
4
Figure 4.1 - Adjustable Mounting Brackets - To Adjust:
1. Remove outer side panels.
2. “Set screws” - loosen and
position bracket where needed
– then tighten set screws.
3. Re-attach outer side panels.
A pipe hanger adapter kit, shown in Figure 4.2 is available as
an accessory. One kit consists of two drilled 3/4” IPS pipe caps
and two 3/8 - 13 x 1-3/4” capscrews to facilitate threaded pipe
suspension.
Figure 4.2 - Suspension Methods
Venting
WARNING
1. Gas fired heating equipment must be vented - do not
operate unvented.
2. A built-in power exhauster is provided - additional
external power exhausters are not required or permitted.
NOTE: A vent is the vertical passageway used to convey
flue gases from the unit or the vent connector to the outside
atmosphere. A vent connector is the pipe which connects the
unit to a vent or chimney. Vent connectors serving Category
I appliances shall not be connected into any portion of
mechanical draft systems operating under positive pressure.
General Venting Air Instructions
1. Installation of venting must conform with local building
codes, or in the absence of local codes, with the National
Fuel Gas Code, ANSI Z223.1 (NFPA 54) - Latest Edition.
In Canada, installation must be in accordance with CAN/
CGA-B149.1 for natural gas units and CAN/CGA-B149.2 for
propane units.
2. All vertically vented units are Category I. All horizontally
vented units are category III. The installation must conform
to the requirements from Table 5.1 in addition to those listed
below.
3. From Table 18.9 or 19.1, select the size of vent pipe that fits
the flue outlet for the unit. Do not use a vent pipe smaller
than the size of the outlet or vent transition of the appliance.
The pipe should be suitable corrosion resistant material.
Follow the National Fuel Gas Code for minimum thickness
and composition of vent material. The minimum thickness for
connectors varies depending on the pipe diameter.
6-580.5
INSTALLATION
Slope 1/4" to
The Foot
Unit
Drip Leg with
Cleanout Cap
Use Thimble
Through Ceiling
H
1'0"
1/4"
x
12
Roof Pitch is x/12
Listed
Te rminal
Roof
Flashing
1/4"
Slope 1/4" to
The Foot
*Size according to
expected snow depth
Drip Leg with
Cleanout Cap
Use Thimble
Through Ceiling
Roof Flashing
Listed
Terminal
2� Min.
2�*
Min.
To wall or adjoining building
10"
Unit
4. For Category I vent systems limit length of horizontal runs to
75% of vertical height. Install with a minimum upward slope
from unit of 1/4 inch per foot and suspend securely from
overhead structure at points no greater than 3 feet apart.
For best venting, put vertical vent as close to the unit as
possible. A minimum of 12" straight pipe is recommended
from the power exhauster outlet before turns in the vent
system. Fasten individual lengths of vent together with at
least three corrosion-resistant sheet-metal screws.
5. It is recommended that vent pipes be fitted with a tee with
a drip leg and a clean out cap to prevent any moisture in the
vent pipe from entering the unit. The drip leg should be
inspected and cleaned out periodically during the heating
season.
6. The National Fuel Gas Code requires a minimum clearance
of 6 inches from combustible materials for single wall vent
pipe. The minimum distance from combustible materials is
based on the combustible material surface not exceeding
160°F. Clearance from the vent pipe (or the top of the unit)
may be required to be greater than 6 inches if heat damage
other than fire (such as material distortion or discoloration)
could result.
7. Avoid venting through unheated space. When venting does
pass through an unheated space, insulate runs greater than
5 feet to minimize condensation. Inspect for leakage prior to
insulating and use insulation that is noncombustible with a
rating of not less than 350°F. Install a tee fitting at the low
point of the vent system and provide a drip leg with a clean
out cap as shown in Figure 5.1.
8. When the vent passes through a combustible wall or floor, a
metal thimble 4 inches greater than the vent diameter is
necessary. If there is 6 feet or more of vent pipe in the open
space between the appliance and where the vent pipe
passes through the wall or floor, the thimble need only be
2 inches greater than the diameter of the vent pipe. If a
thimble is not used, all combustible material must be cut
away to provide 6 inches of clearance. Any material used
to close the opening must be noncombustible.
INegative vent pressure Follow standard venting
Non-condensing requirements.
IINegative vent pressure Condensate must be
Condensing drained.
IIIPositive vent pressure Vent must be gastight.
Non-condensing
IVPositive vent pressure Vent must be liquid and
Condensing gastight. Condensate must
be drained.
13. For instructions on common venting refer to the National
Fuel Gas Code.
14. The vent must terminate no less than 5' above the vent
connector for category I vent systems.
15. A unit located within an unoccupied attic or concealed space
shall not be vented with single wall vent pipe.
16. Single wall vent pipe must not pass through any attic, inside
wall, concealed space, or floor.
17. Do NOT vent this appliance into a masonry chimney.
18. When condensation may be a problem, the venting system
shall not terminate over public walkways or over an area
where condensation or vapor could create a nuisance or
hazard or could be detrimental to the operation of regulator/relief openings or other equipment.
Figure 5.1 - Unit Venting Category I (pitched roof)
T
able 5.2 - Minimum Height from Roof to Vent Discharge
Rise Roof Pitch Min Height
X (in) H (ft)*
0-6 Flat to 6/12 1.00
6-7 6/12 to 7/12 1.25
7-8 7/12 to 8/12 1.50
8-9 8/12 to 9/12 2.00
9-10 9/12 to 10/12 2.50
10-11 10/12 to 11/12 3.25
11-12 11/12 to 12/12 4.00
12-14 12/12 to 14/12 5.00
14-16 14/12 to 16/12 6.00
16-18 16/12 to 18/12 7.00
18-20 18/12 to 20/12 7.50
20-21 20/12 to 21/12 8.00
* Size according to expected snow depth.
Figure 5.2 - Unit Venting Category (obstructed)
9. Do NOT use dampers or other devices in the vent pipes.
10. Precautions must be taken to prevent degradation of
building materials by flue products.
11. For category I vent systems the outlet of the vent should
extend as shown in Figure 5.1 and Table 5.2 if the following
conditions are met:
Vent diameter is less than 12 inches, vent is of double wall
construction and is a listed product, and the vent does not
terminate within 2' of a vertical wall or similar obstruction.
For vents that have a diameter of 12 inches or larger,
constructed of single wall, or terminate within 2' of a vertical
wall or similar obstruction, the vent pipe shall extend at least
2' higher than any portion of a building within a horizontal
distance of 10' (refer to Figure 5.2).
12. Use a listed vent terminal to reduce downdrafts and
moisture in vent.
6-580.5
5
INSTALLATION
METAL
SLEEVE
FIBER GLASS
INSULATION
MIN. 2"
2" MIN.
VENT TERMINATION
SUPPORT BRACKET
(where required)
(Make from 1" x 1" steel angle)
9"
9"
45
1"
METAL
SLEEVE
2" MIN.
VENT PIPE
DIAMETER
METAL FACE
PLATE
1"
12" min
TEE WITH DRIP LEG
AND CLEANOUT CAP
AT LOW POINT OF
VENT SYSTEM
POWER EXHAUSTER
PITCH VENT PIPE DOWNWARD
FROM UNIT 1/4" PER FOOT
12"
Min.
GARY STEEL
MODEL 1092 TERMINAL
19. In cold ambient conditions, such as Canada, the following
items are recommended for proper operation and
equipment life:
· The vent pipe must not pass through an unheated space
or interior part of an open chimney unless the vent pipe is
insulated.
· Where the vent pipe may be exposed to extreme cold, or
come into contact with snow or ice, the entire vent must be
insulated or double wall (includes outdoors). It is preferred
that the double wall vent is one continuous piece but a
joint is allowed outside the building.
· The vent terminal must extend 12 inches beyond the
exterior surface of an exterior wall and be supported as
shown in Figure 6.1.
· The heater system shall be checked at least once a year
by a qualified service technician.
20. If left hand (facing front of heater with air blowing in face)
power exhauster discharge is desired, the power exhauster
may be rotated 180°. To do this, remove screws in vent
collar, rotate power exhauster, replace screws.
Additional Requirements for Horizontally Vented
Category III units.
1. Seal the joints with a metallic tape or silastic suitable for
temperatures up to 350°F. (3M tapes 433 or 363 are
acceptable.) Wrap the tape two full turns around the
vent pipe.
2. Refer to Table 6.1 for total minimum and maximum vent
lengths making the vent system as straight as possible. The
equivalent length of a 90° elbow is 6 feet for 5" diameter and
7 feet for 6" diameter.
7. The vent system shall terminate at least 3 feet above any
forced air inlet (except direct vent units) located within
10 feet, and at least 4 feet below, 4 feet horizontally from, or
1 foot above any door, window, or gravity air inlet into any
building. The bottom of the vent terminal shall be located
above the snow line or at least 1 foot above grade;
whichever is greater. When located adjacent to public
walkways the vent system shall terminate not less than
7 feet above grade.
Figure 6.1 - Vent Construction Through Combustible Walls
Figure 6.2 - Horizontal Venting - Breidert or Gary Steel
Vent Terminal
Table 6.1 - Vent Pipe Diameters, Transitions, and
Total Equivalent Vent Pipe Lengths for Horizontal
Vent Systems
Model Vent Transition Vent Pipe Minimum Maximum
Size Included Diameter Eqv Length Eqv Length
150, 175 4" to 5" 5" 2' 60'
200 6" to 5" 5" 2' 60'
250- 400 Not Required 6" 2' 70'
3. The vent terminal must be a Gary Steel 1092, Tjernlund
VH1, Starkap, Selkirk, or Constant Air -Flo 2433 style
terminal or equivalent.
4. If a Gary Steel 1092 vent terminal or equivalent is used, the
vent can extend 6 inches beyond the exterior surface of an
exterior wall rather than 12 inches as shown in Figure 6.2.
Precautions must be taken to prevent degradation of building
materials by flue products.
5. If a Tjernlund VH1 or equivalent vent terminal is used the
vent may be flush with the exterior surface of an exterior
wall. Precautions must be taken to prevent degradation of
building materials by flue products. Where the terminal is
not available in the appropriate size for the unit to be
installed, use a transition and the next larger size terminal.
6. If a Constant Air-Flo, Starkap, Selkirk, or equivalent vent
terminal is used the vent must extend 12 inches beyond
the exterior surface of an exterior wall. Precautions must
be taken to prevent degradation of building materials by
flue products.
8. The venting system must be exclusive to a single unit, and
no other unit is allowed to be vented into it.
9. Horizontally vented units must use single wall vent pipe
although one continuous section of double wall vent pipe
may be used with the vent system. Under no circumstances
should two sections of double wall vent pipe be joined
together within one vent system due to the inability to verify
complete seal of inner pipes.
6
6-580.5
INSTALLATION
GAS
SUPPLY LINE
GAS
SUPPLY LINE
GROUND
JOINT
UNION
W/ BRASS
SEAT
MANUAL GAS
SHUT-OFF VALVE
3"
MIN.
SEDIMENT
TRAP
PLUGGED
1/8" NPT TEST
GAGE CONNECTION
TO
CONTROLS
Gas Connections
WARNING
1. All field gas piping must be pressure/leak tested prior to
operation. Never use an open flame. Use a soap solution
or equivalent for testing.
2. Gas pressure to appliance controls must never exceed 14"
W.C. (1/2 psi).
3. To reduce the opportunity for condensation, the minimum
sea level input to the appliance, as indicated on the serial
plate, must not be less than 5% below the rated input, or 5%
below the minimum rated input of dual rated units.
cAUTION
Purging of air from gas supply line should be performed as
described in ANSI Z223.1 - latest edition “National Fuel Gas
Code”, or in Canada in CAN/CGA-B149 codes.
IMPORTANT
To prevent premature heat exchanger failure, the input to
the appliance, as indicated on the serial plate, must not
exceed the rated input by more than 5%.
1. Installation of piping must conform with local building
codes, or in the absence of local codes, with the National
Fuel Gas Code, ANSI Z223.1 (NFPA 54) - Latest Edition.
In Canada, installation must be in accordance with CAN/CGA B149.1 for natural gas units and CAN/CGA-B149.2 for
propane units.
2. Piping to units should conform with local and national
requirements for type and volume of gas handled, and
pressure drop allowed in the line. Refer to Table 7.1 to
determine the cubic feet per hour (cfh) for the type of gas
and size of unit to be installed. Using this cfh value and
the length of pipe necessary, determine the pipe diameter
from Table 7.2. Where several units are served by the
same main, the total capacity, cfh and length of main must
be considered. Avoid pipe sizes smaller than 1/2". Table
7.1 allows for a 0.3" W.C. pressure drop in the supply
pressure from the building main to the unit. The inlet
pressure to the unit must be 6-7" W.C. for natural gas and
11-14" W.C. for propane gas. When sizing the inlet gas
pipe diameter, make sure that the unit supply pressure
can be met after the 0.3" W.C. has been subtracted. If the
0.3" W.C. pressure drop is too high, refer to the Gas
Engineer’s Handbook for other gas pipe capacities.
3. Install a ground joint union with brass seat and a manual
shut-off valve adjacent to the unit for emergency shut-off
and easy servicing of controls, including a 1/8" NPT
plugged tapping accessible for test gauge connection
(see Figure 7.1).
4. Provide a sediment trap before each unit and in the line
where low spots cannot be avoided (see Figure 7.1).
5. When Pressure/Leak testing, pressures above 14" W.C.
(1/2 psi), close the field installed shut-off valve, disconnect
the appliance and its combination gas control from the
gas supply line, and plug the supply line before testing.
When testing pressures 14" W.C. (1/2 psi) or below, close
the manual shut-off valve on the appliance before testing.
Figure 7.1 - Recommended Sediment Trap/Manual
Shut-off Valve Installation for Gas Connection
➀
➀Manual shut-off valve is in the “OFF” position when handle is perpendicular
to pipe.
Table 7.1 - Manifold Pressure & Gas Consumption ➀
Natural Propane
BTU/Cu. Ft. 1050 2500 No. of
Model Specific Gravity 0.60 1.53 Orifices
Manifold Pressure In. W.C. 3.5 10.0
➀ Capacities in Cubic Feet per Hour through Schedule 40 pipe with maximum
0.3"W.C. pressure drop with up to 14"W.C. gas pressure. Specific graivity is 0.60
for Natural gas and 1.50 for Propane gas.
➁ For Pipe Capacity with Propane Gas, divide Natural gas capacity by 1.6. Example:
What is the propane gas pipe capacity for 60 feet of 1-1/4" pipe? The Natural gas
capacity is 400 CFH. Divide by 1.6 to get 250 CFH for Propane gas.
6-580.5
Natural Gas
7
A
BAFFLE
B
12" MIN.
B
3" MAX.
TURNING
VANES
3" MIN.
A
A
3" MIN.
12"
MIN.
3" MAX.
TURNING
VANES
12"
B
BAFFLE
A
B
12"
MIN.
BAFFLE
TURNING
VANES
INSTALLATION
Electrical Connections
WARNING
1. Disconnect power supply before making wiring connections
to prevent electrical shock and equipment damage.
2. All appliances must be wired strictly in accordance with
wiring diagram furnished with the appliance. Any wiring
different from the wiring diagram could result in a hazard to
persons and property.
3. Any original factory wiring that requires replacement must
be replaced with wiring material having a temperature rating
of at least 105°C.
4. Ensure that the supply voltage to the appliance, as indicated
on the serial plate, is not 5% greater than rated voltage.
cAUTION
1. Ensure that the supply voltage to the appliance, as
indicated on the serial plate, is not 5% less than the rated
voltage.
1. Installation of wiring must conform with local building
codes, or in the absence of local codes, with the National
Electric Code ANSI/NFPA 70 - Latest Edition. Unit must be
electri cally grounded in conformance to this code. In
Canada, wiring must comply with CSA C22.1, Part 1,
Electrical Code.
2. Two copies of the unit wiring diagram are provided with
each unit. One is located in the electrical junction box and
the other is suppled in the literature packet. Refer to this
diagram for all wiring connections.
3. Make sure all multi-voltage components (motors,
transform ers, etc.) are wired in accordance with the power
supply voltage.
4. The power supply to the unit must be protected with a
fused or circuit breaker switch.
5. The power supply must be within 10 percent of the voltage
rating and each phase must be balanced within 2 percent
of each other. If not, advise the utility company.
6. External electrical service connections that must be
installed include:
a. Supply power connection (120, 208, 240, 480, or 600 volts).
b. Thermostats, summer/winter switches, or other accessory
control devices that may be supplied (24 volts).
NOTE: Certain units will require the use of a field step-down
transformer. Refer to the serial plate to determine the unit
supply voltage required. Additional information may be found in
Tables 13.2 and 13.3 and in the step down transformer
installation instructions.
7. Refer to Figure 12.1 for the electrical junction box locations.
8. All supply power electrical connections are made in the
electrical junction box of the unit. The low voltage (thermostat
and accessory control devices) can be wired to the terminals
on the electrical junction box. Refer to the wiring diagram for
the terminal location of all low voltage wiring.
Duct Installation
IMPORTANT
Do not attempt to attach ductwork of any kind to propeller
models.
When installing the heater, always follow good duct design
practices for even distribution of the air across the heat
exchanger. Recommended layouts are shown in Figure 8.1.
When installing blower units with ductwork the following must
be done.
1. Provide uniform air distribution over the heat exchanger.
Use turning vanes where required. See Figure 8.1.
2. Provide removable access panels in the ductwork on the
downstream side of the unit heater. These openings should
be large enough to view smoke or reflect light inside the
casing to indicate leaks in the heat exchanger and to check
for hot spots on exchanger due to poor air distribution or
lack of sufficient air.
3. If ductwork is connected to the rear of the unit use Modine
blower enclosure kit or if using field designed enclosure
maintain dimensions of blower enclosure as shown on
page 19.
Figure 8.1 - Recommended Ductwork Installations
SIDE VIEW
SIDE VIEWTOP VIEW
Dimension “B” Should Never Be Less than 1/2 of “A”
Additional Requirements for Blower Model BDP
Determining Blower Speed
The drive assembly and motor on all blower units are factory
assembled and adjusted for operation under average conditions
of air flow and without any external static pressure. The
motor sheave should be adjusted as required when the unit
is to be operated at other than average air flows and/or with
external static pressures. Adjustment must always be within the
performance range shown on page 14 and the temperature rise
range shown on the unit’s rating plate.
SIDE VIEW
8
To determine the proper blower speed and motor sheave turns
open, the operating conditions must be known. For example, a
model BDP350 unit, operating with no external static pressure,
(e.g. no ductwork, nozzles, etc.) is to deliver an air volume
of 6481 cfm (cfm = cubic feet per minute). This requires the
unit be supplied with a 5 hp motor, a -207 drive, and the drive
sheave set at 2.5 turns open to achieve a blower speed of 960
6-580.5
INSTALLATION
TOWARD MOTOR
SET SCREW
ADJUSTABLE HALF
OF SHEAVE
3/4" DEFLECTION
WITH 5# FORCE
rpm (see performance table for units with or without blower
enclosure, page 14). See "Blower Adjustments" on page 9 for
setting of drive pulley turns open.
If a blower unit is to be used with ductwork or nozzles, etc., the
total external static pressure under which the unit is to operate,
and the required air flow must be known before the unit can be
properly adjusted. Any device added externally to the unit, and
which the air must pass through, causes a resistance to air flow
called pressure loss.
If Modine filters are used, the pressure loss through the filters
is included in the performance data on page 14. If Modine
supplied discharge nozzles are used, the pressure drop of
the nozzles can be found footnoted at the bottom of page
17. If filters, nozzles or ductwork are to be used with the unit,
and they are not supplied by Modine, the design engineer
or installing contractor must determine the pressure loss for
the externally added devices or ductwork to arrive at the total
external static pressure under which the unit is to operate.
Once the total static pressure and the required air flow are
known, the operating speed of the blower can be determined
and the correct motor sheave adjustments made. As an
example, a model BDP350 is to be used with a Modine supplied
blower enclosure and filters attached to ductwork by others.
The unit is to move 6481 cfm of air flow against an external
static pressure of 0.2" W.C, which must be added for the filter
pressure drop for a total of 0.4" W.C. total pressure drop. The
performance table on page 14 for a BDP350, at 6481 cfm and
0.4" W.C. static pressure, shows that the unit will require a 5 hp
motor using a -207 drive, and the motor sheave should be set
at .5 turns open to achieve a blower speed of 1050 rpm.
To Install
1. Remove and discard the motor tie down strap and the
shipping block beneath the belt tension adjusting screw
(Not used on all models.)
2. For 3 and 5 HP motors, affix sheave to the motor shaft and
install motor on the motor mounting bracket. Install belt on
blower and motor sheaves.
Figure 9.1 - Blower Model
THREADED MOUNTING BRACKETS ON
BLOWER ASSEMBLY
MOTOR MOUNTING
BRACKET
4. The blower bearings are lubricated for life; however, before
initial unit operation the blower shaft should be lubricated at
the bearings with SAE 20 oil. This will reduce initial friction
and start the plastic lubricant flowing.
5. Make electrical connections as outlined in the section
"Electrical Connections" on page 8.
Blower Adjustments
Following electrical connections, check blower rotation to assure
blow-through heating. If necessary interchange wiring to reverse
blower rotation. Start fan motor and check blower sheave
RPM with a hand-held or strobe-type tachometer. RPM should
check out with the speeds listed in Performance Data shown
on page 14. A single-speed motor with an adjustable motor
sheave is supplied with these units. If blower fan speed
changes are required, adjust motor sheave as follows:
NOTE: Do not fire unit until blower adjustment has been
made or unit may cycle on limit (overheat) control.
1. Shut-off power before making blower speed adjustments.
Refer to Determining Blower Speed on page 8 and to
Performance Date on page 14 to determine proper blower
RPM.
2. Loosen belt and remove from motor sheave.
3. Loosen set screw on outer side of adjustable motor sheave
(see Figure 9.2).
4. To reduce the speed of the blower, turn outer side of motor
sheave counterclockwise.
5. To increase the speed of the blower, turn outer side of motor
sheave clockwise.
6. Retighten motor sheave set screw, replace belt and retighten
motor base. Adjust motor adjusting screw such that there
is 3/4” belt deflection when pressed with 5 pounds of force
midway between the blower and motor sheaves (see Figure
9.3). Since the belt tension will decrease dramatically after
an initial run-in period, it is necessary to periodically re-check
the tension to assure continual proper belt adjustment.
7. Check to make certain motor sheave and blower sheave are
aligned. Re-align if necessary.
8. Re-check blower speed after adjustment.
9. Check motor amps. Do not exceed amps shown on motor
nameplate. Slow blower if necessary.
10. Check air temperature rise across unit. Check temperature
rise against values shown in Performance Tables on page
14 to assure actual desired air flow is being achieved.
11. If adjustments are required, recheck motor amps after final
blower speed adjustment.
BLOWER
SHEAVE
MOTOR SHEAVE
(MOVEABLE
BLOWER
HOUSING
MOTOR
ADJUSTMENT
SCREW
FACE TO
OUTSIDE)
3. Adjust motor adjusting screw for a belt deflection of
approximately 3/4" with five pounds of force applied midway
between the sheaves (see Figure 9.3). Since the belt tension
will decrease dramatically after an initial run-in period, it is
necessary to periodically re-check the tension. Excessive
tension will cause bearing wear and noise.
Figure 9.2 -
Motor Sheave Adjustment
6-580.5
Figure 9.3 -
Belt Tension Adjustment
9
START-UP PROCEDURE
IMPORTANT
1. To prevent premature heat exchanger failure, observe
heat exchanger tubes. If the bottom of the tubes become
red while blower and furnace are in operation, check to
be sure the blower has been set to the proper rpm for the
application. Refer to page 9 for Blower Adjustments.
2. Start-up and adjustment procedures should be performed
by a qualified service agency.
1. Turn off power to the unit at the disconnect switch. Check that
fuses or circuit breakers are in place and sized correctly. Turn
all hand gas valves to the “OFF” position.
2. Remove electrical junction box cover.
3. Check that the supply voltage matches the unit supply voltage
listed on the Model Identification plate. Verify that all wiring is
secure and properly protected. Trace circuits to insure that the
unit has been wired according to the wiring diagram.
4. Check to insure that the venting system is installed correctly
and free from obstructions.
5. Check to see that there are no obstructions to the intake and
discharge of the unit.
6. For blower units, check the belt tension and sheave alignment.
Refer to Blower Adjustments for proper belt tension.
7. Check bearings for proper lubrication (if applicable).
8. Check to make sure that all filters are in place and that
they are installed properly according to direction of air flow
(if applicable).
9. Perform a visual inspection of the unit to make sure no
damage has occurred during installation.
10. Check that all horizontal deflector blades are open a minimum
of 30° as measured from vertical.
11. Turn on power to the unit at the disconnect switch. Check to
insure that the voltage between electrical junction box
terminals T1 and G is 24V.
12. Check the thermostat, ignition control, gas valve, and supply
fan blower motor for electrical operation. If these do not
function, recheck the wiring diagram. Check to insure that
none of the Control Options have tripped.
13. Check the blower wheel for proper direction of rotation when
compared to the air flow direction arrow on the blower housing
(if applicable). Blower wheel rotation, not air movement, must
be checked as some air will be delivered through the unit with
the blower wheel running backwards.
14. For blower units, check the blower speed (rpm). Refer to
Blower Adjustments for modification.
15. Check the motor speed (rpm).
16. Check the motor voltage. On three phase systems, check to
make sure all legs are in balance.
17. Check the motor amp draw to make sure it does not exceed
the motor nameplate rating. On three phase systems, check
all legs to insure system is balanced.
18. Recheck the gas supply pressure at the field installed manual
shut-off valve. The minimum inlet pressure should be 6" W.C.
on natural gas and 11" W.C. on propane gas. The maximum
inlet pressure for either gas is 14" W.C. If inlet pressure
exceeds 14" W.C., a gas pressure regulator must be added
upstream of the combination gas valve.
19. Open the field installed manual gas shut-off valve.
20. Open the manual main gas valve on the combination gas
valve. Call for heat with the thermostat and allow the pilot to
light for intermittent pilot ignition. If the pilot does
not light, purge the pilot line. If air purging is required,
disconnect the pilot line at outlet of pilot valve. In no case
should line be purged into heat exchanger. Check the pilot
flame length (See Pilot Flame Adjustment).
21. Once the pilot has been established, check to make sure that
the main gas valve opens. Check the manifold gas pressure
(See Main Gas Adjustment) and flame length (See Air Shutter
Adjustment) while the supply fan blower is operating.
10
10
22. Check to insure that gas controls sequence properly (See
Control Operating Sequence). Verify if the unit has any
additional control devices and set according to the
instructions in the Control Options.
23. Once proper operation of the unit has been verified,
remove any jumper wires that were required for testing.
24. Replace the electrical junction box cover.
Pilot Burner Adjustment
The pilot burner is orificed to burn properly with an inlet
pressure of 6-7” W.C. on natural gas and 11-14” W.C.
on propane gas, but final adjustment must be made after
installation. If the pilot flame is too long or large, it is possible
that it may cause soot and/or impinge on the heat exchanger
causing failure. If the pilot flame is shorter than shown, it may
cause poor ignition and result in the controls not opening the
combination gas control. A short flame can be caused by a
dirty pilot orifice. Pilot flame condition should be observed
periodically to assure trouble-free operation.
To Adjust the Pilot Flame
1. Create a call for heat from the thermostat.
2. Remove the cap from the pilot adjustment screw. For
location, see the combination gas control literature supplied
with unit.
3. Adjust the pilot length by turning the screw in or out to
achieve a soft steady flame 3/4” to 1” long and
encompassing 3/8”-1/2” of the tip of the thermocouple or
flame sensing rod (see Figure 10.1).
4. Replace the cap from the pilot adjustment screw.
Figure 10.1 - Correct Pilot Flame
3/4" to 1"
Main Burner Adjustment
The gas pressure regulator (integral to the combination gas
control) is adjusted at the factory for average gas conditions.
It is important that gas be supplied to the unit heater in
accordance with the input rating on the serial plate. Actual
input should be checked and necessary adjustments made
after the unit heater is installed. Over-firing, a result of too
high an input, reduces the life of the appliance and increases
maintenance. Under no circumstances should the input exceed
that shown on the serial plate.
Measuring the manifold pressure is done at the outlet pressure
tap of the gas valve (see Figure 11.1).
To Adjust the Manifold Pressure
1. Move the field installed manual shut-off valve to the “OFF”
position.
2. Remove the 1/8" pipe plug in the pipe tee or gas valve and
attach a water manometer of “U” tube type which is at least
12" high.
6-580.5
START-UP PROCEDURE
3. Move the field installed manual gas shut-off valve to the “ON”
position.
4. Create a high fire call for heat from the thermostat.
5. Determine the correct high fire manifold pressure. For natural
gas 3.5” W.C., for propane gas 10” W.C. Adjust the main
gas pressure regulator spring to achieve the proper manifold
pressure (for location, see the combination gas control
literature supplied with unit).
6. After adjustment, move the field installed manual shut-off
valve to the “OFF” position and replace the 1/8" pipe plug.
7. After the plug is in place, move the field installed manual
shut-off valve to the “ON” position and recheck pipe plugs for
gas leaks with soap solution.
Burner Flame Adjustment
Proper operation provides a soft blue flame with a well-defined
inner core. A lack of primary air will reveal soft yellow-tipped
flames. Excess primary air produces short, well-defined
flames with a tendency to lift off the burner ports. For both
natural and propane gas, the flame may be adjusted by sliding
the manifold. Also, for propane gas, the air shutters can be
adjusted to control the burner flame height. The air shutters
can be accessed by lowering the bottom pan of the unit heater.
Natural Gas Flame Control
Control of burner flames on unit heaters utilizing natural gas is
achieved by resetting the manifold position to either increase
or decrease primary combustion air. Prior to flame adjustment,
operate unit heater for about fifteen minutes. The main burner
flame can be viewed after loosening and pushing aside the gas
designation disc on the back of the unit.
To increase primary air, loosen the manifold mounting screws
and move the manifold away from the burner until the yellowtipped flames disappear (see Figure 11.2). To decrease primary
air, move manifold closer to the burner until flames no longer lift
from burner ports, but being careful not to cause yellow tipping.
Retighten manifold mounting screws after adjustment.
Propane Gas Flame Control
An optimum flame will show a slight yellow tip. Prior to flame
adjustment, operate furnace for at least fifteen minutes. Loosen
air shutter set screws and move the air shutters away from the
manifold to reduce the primary air until the yellow flame tips
appear (see Figure 11.3). Then increase the primary air until
yellow tips diminish and a clean blue flame with a well defined
inner cone appears.
It may also be necessary to adjust the manifold position in
addition to adjusting air shutters to obtain proper flame. Follow
the instructions under "Natural Gas Flame Control" for adjusting
the manifold.
Figure 11.1 - Typical Combination Gas Control
GAS CONTROL KNOB
PRESSURE REGULATOR
ADJUSTMENT SCREW
(UNDER CAP SCREW)
INLET
PRESSURE
TAP
INLET
RESET BUTTON
PILOT ADJUSTMENT
SCREW
OUTLET
PRESSURE
TAP
OUTLET
PILOT TUBING
CONNECTION
Figure 11.2 - Manifold Adjustment, Natural Gas
MANIFOLD
MAIN
BURNER
ORIFICES
MANIFOLD MOUNTING
SCREW AND PIN
MIXER
TUBES
BURNER
RETAINING PIN
Figure 11.3 - Air Shutter Adjustment, Propane Gas
MANIFOLD
AIR
SHUTTER
MIXER
TUBES
MAIN
BURNER
ORIFICES
Control Operating Sequence
All units are supplied with intermittent pilot systems with
continuous retry control as standard. For intermittent pilot
systems, both the main burner and pilot are turned off 100%
when the thermostat is satisfied. For all units, the system
will attempt to light the pilot for 70 seconds. If the pilot is not
sensed, the ignition control will wait approximately 6 minutes
with the combination gas control closed and no spark. After 6
minutes, the cycle will begin again. After 3 cycles, some ignition
controllers lockout for approximately 1 hour before the cycle
begins again. This will continue indefinitely until the pilot flame
is sensed or power is interrupted to the system. Refer to Table
12.1 for control code descriptions. Specific descriptions of the
control sequence for different control codes are shown below.
1. The thermostat calls for heat.
2. The power exhauster relay is energized starting the power
exhauster motor. Once the motor has reached full speed, the
differential pressure switch closes.
3. The pilot valve opens and the ignitor sparks for 70 seconds
in an attempt to light the pilot.
4. Once the pilot is lit, the flame sensor proves the pilot and
stops the ignitor from sparking.
5. On single stage units, the main gas valve is opened and the
main burner is lit to 100% full fire. On two stage units, the
gas valve may open at either 50% or 100%, depending on
what the two stage thermostat is calling for.
6. The air mover starts after 30 to 90 seconds to allow the heat
exchanger to warm up.
7. The unit continues to operate until the thermostat is satisfied, at
which time both the main and pilot valves close 100%.
8. The air mover stops after 30 to 90 seconds to remove
residual heat from the heat exchanger.
6-580.5
11
UNIT AND CONTROL OPTIONS
Figure 12.1 - Factory Mounted Option Location
➇
➁
➆
➂
➄
➀
➃
All units include the standard (STD) features. The unit must be
reviewed to determine the optional (OPT) features that may
have been supplied with the unit.
(1) Gas Valve
a) Single Stage Gas Valve - (STD)
The main gas valve provides the pilot, regulator, main gas,
and manual shutoff functions. For additional information,
see the supplier literature included with the unit.
b) Two Stage Gas Valve - (OPT)
The two stage gas valve provides the pilot, regulator, main
gas (100% and 50% fire), and manual shutoff functions.
For additional information, see the supplier literature
included with the unit.
(2) Ignition controller - (STD)
The ignition controller is factory installed on the back of the unit
heater with the spark igniter and sensor located on the burner.
For additional information, refer to "Control Operating Sequence"
on page 11 and the supplier literature included with the unit.
(3) Time Delay Relay - (STD)
The time delay relay is factory installed in electrical junction
box and controls propeller/blower motor function. For singlephase units below 2 Hp, the time delay relay controls the motor
directly. For single-phase units 2 Hp and greater and all three
phase units, the time delay relay controls the motor starter. For
additional information, refer to "Control Operating Sequence"
on page 11.
(4) Low Voltage Terminal Board - (STD)
The low voltage terminal board is located in electrical junction
box. The terminal board is labeled to match the electrical
wiring diagram provided with the unit. All low voltage field
wiring connections should be made to the exposed side of the
terminal board (exterior of electrical junction box) to prevent
miswiring by modifying the factory wiring which is inside the
electrical junction box.
(5) Control Step Down Transformer - (STD)
The control step down transformer is located in the electrical
junction box. The transformer is used to step down the supply
power (115V, 208V, 230V, 460V, 575V) to 24V. This transformer
is used to control the gas controls, fan delay relay, field
supplied motor starter, etc. All unit heaters are supplied with a
40VA control step down transformer. To determine the control
transformer supplied as well as any accessory/field supplied
transformers required reference the supply voltage listed on the
serial plate and reference Tables 13.2 and 13.3.
⑥
➈
(6) High Limit Switch - (STD)
The automatic reset high limit switch is factory installed on
the left side (air blowing at you) of the unit heater. If the limit
temperature is exceeded, the gas controls are de-energized
until the switch is cooled.
(7) Pressure Switch (STD)
A automatic reset vent pressure switch is designed to prevent
operation of the main burner if there is restricted venting of
flue products. This restriction may occur due to an improper
vent diameter, long vent runs, un-approved vent terminal, high
winds, high negative pressure within space, etc. After the cause
of the restriction has been corrected, the pressure switch will
reset automatically. See Troubleshooting section for more
information.
(8) Power Exhauster (STD)
All power vented unit heaters are supplied with a round vent
pipe connection. Some models may require the use of a vent
transition from the power exhauster outlet to the vent pipe (see
Table 6.1). The power exhauster may be rotated 180° to allow
for various venting directions.
(9) Blower Motor - (STD on BDP models only)
The blower motor can be provided in a variety of supply
voltages and motor horsepowers. Refer to the model
nomenclature to determine the motor provided. The blower
motor is supplied with an adjustable sheave that can be used
to increase/decrease the blower RPM. For instructions on
changing the blower RPM, refer to Blower Adjustments.
Table 12.1 - Control Descriptions - Models PDP and BDP
Control System
Description
Single-Stage
Two-Stage
➀ All controls are intermittent pilot ignition, 100% shut-off with continuous retry.
➁ Factory wired 460/575 available on blower models. Field installed step down
transformer may be used for 460/575 propeller applications.
Table 13.5 - Motor Data and Total Unit Power Requirements - Blower Models
Voltage 115/60/1 230/60/1 208/60/3 230/60/3 460/60/3 575/60/3
Motor Motor Total Motor Total Motor Total Motor Total Motor Total Motor Total
HP Rpm Amps Amps Amps Amps Amps Amps Amps Amps Amps Amps Amps Amps
➀ All motors are totally enclosed and all single phase motors have built-in thermal overload protection.
➁ Ratings shown are for elevations up to 2,000 ft. For elevations above 2,000 feet, ratings should be reduced at the rate of 4% for each 1,000 feet above sea level.
(In Canada see rating plate.) Reduction of ratings requires use of a high altitude kit.
➂ Data taken at 55°F air temperature rise. At 65°F ambient and unit fired at full-rated input. Mounting height as measured from bottom of unit, and without deflector hoods.
➃
A transformer may not be required. 115V/1φ power may be obtained from the following electrical distribution systems: 230/1φ 3-wire, 230/3φ
4-wire, 208/3φ 4-wire and 208/1φ 3-wire (from 208V wye connected transformer). Please consult the job site electrician to determine applicability.
➄
Unit power code must match building supply voltage, control voltage must match unit power.
➅
For CSA Canada certification, step down transformer may be required to be factory installed (Blower Models Only).
➀
6-580.5
13
GENERAL PERFORMANCE DATA
Blower Models
Models With or Without Blower Enclosure ➀ ➁
Data for use with filters only
0.5 Static Air Pressure 0.6 Static Air Pressure 0.7 Static Air Pressure
0.4 Static Pressure
Temp Sheave Sheave Sheave
Sheave
Model Rise Airflow RPM HP Drive Turns RPM HP Drive Turns RPM HP Drive Turns
The above table is based on an inlet air temperature of 70°F and an air temperature rise of 55°F. Air deflectors on, 40° and 90°
discharge nozzles set perpendicular to the face of the air discharge opening. On 5-way nozzles all air deflectors set perpendicular
to floor. Static pressure measured at 0.1" W.C. for 90° nozzle, 0.2" W.C. for 40° downward and 5-way nozzle, and 0.3" W.C. for 40°
splitter nozzle. Outlet velocities are approximately 1750 FPM for the 40° nozzles, 1000 FPM for the 90° nozzle and 1300 FPM for
5-way. For motor size, drive and blower rpm refer to page 14. Mounting height measured from bottom of unit.
Vent connection is 5", connected to a factory supplied vent transition. For model sizes 150 and 175,
➁
the factory supplied transition is 4" (to the power exhauster outlet) to 5" (to the vent system). For model
size 200, the factory supplied transition is 6" (to the power exhauster outlet) to 5" (to the vent system).
PDP 150 through PDP 300 — 2 holes (and the level hanging adjustment feature). PDP 350 through
➂
PDP 400 — 4 holes. (Listed is the hole diameter and threads per inch to accept threaded rod).
Dimension equals overall plus 6".
➃
For natural gas; may vary depending on control availability.
➄
3/8-16 3/8-16 3/8-16 3/8-16 3/8-16 3/8-16 3/8-16
➂
18
6-580.5
DIMENSIONAL DATA
W
X
F
C
G
DD
J
M (APPROX.)
L (MIN. DISTANCE TO WALL)
N
S
O
K
EE
5
DD
J
P
Q x V
R x T
/
8"
7
4
/
16"
9
5
/
4"
3
/16"
9
FILTER RACK
(OPTIONAL)
BLOWER
ENCLOSURE
(OPTIONAL)
A
H
D (OPENING)
BB
E
AA
B
K
L (MIN. DISTANCE TO WALL)
G
Figure 19.1 - Dimensional Drawings - Blower Units (Model BDP)
Vent connection is 5", connected to a factory supplied vent transition. For model sizes 150 and 175, the factory supplied transition
➀
is 4" (to the power exhauster outlet) to 5" (to the vent system). For model size 200, the factory supplied transition is 6"
(to the power exhauster outlet) to 5" (to the vent system).
BDP 150 thru BDP 300 — 4 holes (2 on blower and 2 on unit).
➁
BDP 350 and BDP 400 —-6 holes (2 on blower and 4 on unit). (Listed is the hole diameter and threads per inch to accept threaded rod).
This is an approximate dimension for standard motors, allow 3" for sheave and optional motors.
➂
Distance between mounting hole in unit casing and mounting hole on blower. On the BDP 350 and BDP 400, the distance is
➃
from rear mounting hole in casing to the mounting hole on blower.
For natural gas; may vary depending on control availability.
When servicing or repairing this equipment, use only factoryapproved service replacement parts. A complete replacement
parts list may be obtained by contacting Modine Manufacturing
Company. Refer to the rating plate on the appliance for
complete appliance model number, serial number, and
company address. Any substitution of parts or controls not
approved by the factory will be at the owner’s risk.
cAUTION
Do not attempt to reuse any mechanical or electrical controllers
which have been wet. Replace defective controller.
IMPORTANT
To check most of the Possible Remedies in the troubleshooting
guide listed in Table 21.1, refer to the applicable sections of
the manual.
All heating equipment should be serviced before each heating
season to assure proper operations. The following items may
be required to have more frequent service schedule based
on the environment in which the unit is installed, and the
frequency of the equipment operation.
General Unit
When providing annual maintenance for the unit heater, keep
the unit free from dust, dirt, grease and foreign matter. Pay
particular attention to:
1. The combustion air and exhaust vent piping.
2. The burner ports and pilot burner orifices (avoid the use of
hard, sharp instruments capable of damaging surfaces for
cleaning these ports). To check the burner port and pilot
burner orifice, see Burner and Pilot Assembly Removal.
3. The air shutters and main burner orifices (avoid the use of
hard, sharp instruments capable of damaging surfaces for
cleaning these orifices). To check the air shutters and main
burner orifices, see for Manifold Assembly Removal.
4. The heat exchanger. Clean tubes from the bottom with a
stiff non-wire brush.
5. The heat exchanger should be checked annually for cracks
and discoloration of the tubes. If a crack is detected, the
heat exchanger should be replaced before the unit is put
back into service. If the tubes are dark gray, airflow across
the heat exchanger should be checked to insure that a
blockage has not occurred or the blower is operating
properly.
Electrical Wiring
The electrical wiring should be checked annually for loose
connections or deteriorated insulation.
Gas Piping & Controls
The gas valves and piping should be checked annually for
general cleanliness and tightness.
The gas controls should be checked to insure that the unit is
operating properly.
Propeller Assembly
Check the motor for lubrication if the motor is not permanently
lubricated. Inspect the fan for damage and fit on motor shaft.
Clean any dust, dirt or foreign matter from the fan blades.
Blower Assembly
The blower assembly includes the bearings, drive sheaves and
belts. Blower bearings should be checked and lubricated based
on the blower manufacturer’s recommendations. Bearings
should also be checked for any unusual wear and replaced if
needed.
Drive sheaves should be checked at the same time the
bearings are inspected. Check to make sure the sheaves are
in alignment and are securely fastened to the blower and motor
shafts.
Belt tension should be rechecked shortly after the unit has been
installed to check for belt stretching. After the initial start-up,
monthly checks are recommended.
Manifold Assembly Removal
To remove the manifold:
1. Shut off gas and electric supply.
2. Lower bottom pan to expose burner and manifold (see
Figure 11.2)
3. Disconnect pilot tubing and thermocouple lead (or ignition
cable) at the combination gas control (and ignition control).
4. Disconnect control wires for the combination gas control.
5. Disconnect gas manifold at ground union joint.
6. Remove the two screws holding the manifold to the heat exchanger support.
7. Clean the orifices and adjust the air shutters as necessary.
8. Follow steps 2-6 in reverse order to install the manifold assembly.
9. Turn on the electric and gas supply.
10. Check the ground union joint for leaks with a soap
solution. Tighten if necessary.
Burner and Pilot Assembly Removal
To remove the burner:
1. Shut off gas and electric supply.
2. Lower bottom pan to expose burner and manifold (see
Figure 11.2).
3. Disconnect pilot tubing and thermocouple lead (or ignition
cable) at the combination gas control (and ignition control).
4. Remove the two burner retaining pins holding the burner in
place. The burner can then be easily lowered from the unit.
5. Examine the burner and pilot assembly for cleanliness
and/or obstructions as necessary (see General Unit for cleaning instructions).
6. Replace the burner assembly in reverse order. In replacing
the burner, be certain that the slots at the front of the
burner are located properly on their shoulder rivets and
that the burner retaining pins are put back into their proper
locations.
8. Reconnect the ignition cable and pilot gas supply line.
9. Turn on the electric and gas supply.
20
6-580.5
SERVICE & TROUBLESHOOTING
Table 21.1 - Troubleshooting
Trouble Possible Cause Possible Remedy
Pilot does not light
Main burners do not light (Pilot is lit)
Lifting Flames (See Figure 22.2)
Yellow Tipping
(With propane gas, some yellow tipping
is always present.)
Wavering Flames (See Figure 22.1)
1. Main gas is off.
2. Power supply is off.
3. Air in gas line.
4. Dirt in pilot orifice.
5. Gas pressure out of proper range.
6. Pilot valve does not open.
a. Defective ignition controller.
b. Defective gas valve.
7. No Spark at ignitor.
a. Loose wire connections.
b. Pilot sensor is grounded.
c. Defective ignition controller.
8. Safety device has cut power.
9. Pilot valve is off.
10. Dirty thermocouple contact.
11. Excessive drafts.
12. Pilot orifice Fitting leak.
1. Defective valve.
2. Loose wiring.
3. Defective pilot sensor
4. Defective ignition controller.
5. Improper thermostat wiring.
1. Too much primary air.
2. Main pressure set too high.
3. Orifice too large.
1. Insufficient primary air.
2. Dirty orifice.
3. Misaligned orifice.
1. Drafts across burner
2. Misalignment of burner
3. Cracked heat exchanger
1. Open manual gas valve.
2. Turn on main power.
3. Purge gas line.
4. Check for plugged pilot orifice and clean
with compressed air if necessary.
5. Adjust to a maximum of 14" W.C.
Minimum for Natural Gas - 6" W.C.
Minimum for Propane Gas - 11" W.C.
6. Check wiring for 24 volts to valve.
a. Replace ignition controller.
b. Replace gas valve.
7. a. Check all ignition controller wiring.
b. Replace sensor if cracked or worn
c. Replace ignition controller.
8. Check all safety devices (High limit,
pressure switch, blocked vent safety
switch, etc.) Determine and correct
problem. Reset if necessary.
9. Turn gas control knob or lever on
combination gas control to pilot position.
10. Be sure thermocouple contact is clean.
If problem persists replace thermocouple.
11. Find source and re-direct airflow away
from unit.
12. Tighten pilot orifice. Flame impingement
on thermocouple may cause
thermocouple to become inoperative.
1. Replace valve.
2. Check wiring to gas valve.
3. Replace pilot sensor.
4. Replace ignition controller.
5. Verify wiring compared to wiring diagram.
1. Reduce primary air.
2. Adjust to a maximum of 14" W.C.
3. Check orifice size with those listed on
the serial plate.
1. Increase primary air.
2. Check orifices and clean with
compressed air if necessary.
3. Check manifold, replace if necessary.
1. Eliminate drafts
2. Align burner on locator pins
3. Replace heat exchanger
Flashback
Floating Flames (see Figure 22.3)
Flame Rollout (see Figure 22.4)
1. Too much primary air
2. Main pressure set too high.
3. Orifice too large.
1. Insufficient primary air.
2. Main pressure set too high.
3. Orifice too large.
4. Blocked vent.
1. Main pressure set too high.
2. Orifice too large.
3. Blocked vent.
6-580.5
1. Reduce primary air.
2. Adjust to maximum of 14” W.C.
3. Check orifice size with those listed on the
serial plate.
1. Increase primary air.
2. Adjust to a maximum of 14" W.C.
3. Check orifice size with those listed on the
serial plate.
4. Clean/correct venting system.
1. Adjust to a maximum of 14" W.C.
2. Check orifice size with those listed on
the serial plate.
3. Clean/correct venting system.
21
SERVICE & TROUBLESHOOTING
GOOD
BAD
Trouble Possible Cause Possible Remedy
Not Enough Heat
Too Much Heat
1. Unit cycling on high limit. ➀
a. Obstructions/leaks in duct system.
b. Main pressure set too high.
c. Blower motor not energized.
d. Loose belt
e. Blower speed too low.
f. Blocked/damaged venting system.
g. Air distribution baffle removed (high
temperature rise units only).
h. Defective high limit switch.
2. Main pressure set too low.
3. Too much outside air.
4. Thermostat malfunction.
5. Gas controls wired incorrectly.
6. Unit undersized.
1. Thermostat malfunction.
2. Gas controls do not shut-off.
a. Gas controls wired incorrectly.
b. Short circuit.
3. Main gas pressure set too high.
4. Defective gas valve.
1.
a. Clean/correct duct system.
b. Adjust to a maximum of 14" W.C.
c. Check/correct to insure blower motor
operates within 45 seconds of when
- gas controls are energized.
d. Adjust belt tension.
e. Check/correct blower drive settings for
proper rpm.
f. Check/correct venting system.
g. Replace air distribution baffle.
h. Replace high limit switch.
2. Adjust main gas pressure.
Minimum for Natural Gas — 6" W.C.
Minimum for Propane Gas — 11" W.C.
3. Adjust outside air damper to decrease
outside air percentage (if possible).
4. Check/replace thermostat.
5. Check unit wiring against the wiring
diagram.
6. Check design conditions. If unit is
undersized, an additional unit(s) or other
heat source must be added.
1. Check/replace thermostat.
2.
a. Check unit wiring against the wiring
diagram.
b. Check for loose or worn wires.
3. Adjust to a maximum of 14" W.C.
4. Replace gas valve.
➀ Automatic Reset High Limit
The unit heater comes standard with an automatic reset high
limit switch that will shut-off the gas should the discharge air
temperature become excessive. See Figure 12.1, indicator 7
for the location of either the standard automatic high limit switch.
The switch should operate only when something is seriously
wrong with the unit operation. Anytime the switch operates,
correct the difficulty immediately or serious damage may result.
If the switch cuts off the gas supply during normal operation, refer
to the “Not Enough Heat” section of Service & Troubleshooting.
Figure 22.1 - Wavering Flame or Misalignment
Figure 22.5 - Serial Number Designations
S09170936100123 10000
SERIAL NUMBER PREFIX
<blank> if standard
"S" if Special Product Order
Figure 22.2 - Lifting Flame Condition
Figure 22.3 Floating Flame Condition
Figure 22.4 Flame Rollout Appearance
SPO NUMBER
<blank> if standard
##### if Special Product Order
➀ Serial plate shown is for example purposes only. The data shown may not match the actual data for the unit shown.
6-580.5
23
COMMERCIAL WARRANTY
Seller warrants its products to be free from defects in material and
workmanship, EXCLUSIVE, HOWEVER, of failures attributable to the use
of materials substituted under emergency conditions for materials normally
employed. This warranty covers replacement of any parts furnished from the
factory of Seller, but does not cover labor of any kind and materials not
furnished by Seller, or any charges for any such labor or materials, whether
such labor, materials or charges thereon are due to replacement of parts,
adjustments, repairs, or any other work done. This warranty does not apply to
any equipment which shall have been repaired or altered outside the factory of
Seller in any way so as, in the judgment of Seller, to affect its stability, nor
which has been subjected to misuse, negligence, or operating conditions in
excess of those for which such equipment was designed. This warranty does
not cover the effects of physical or chemical properties of water or steam or
other liquids or gases used in the equipment.
BUYER AGREES THAT SELLER’S WARRANTY OF ITS PRODUCTS TO
BE FREE FROM DEFECT IN MATERIAL AND WORKMANSHIP, AS LIMITED
HEREIN, SHALL BE IN LIEU OF AND EXCLUSIVE OF ALL OTHER
WARRANTIES, EITHER EXPRESS OR IMPLIED, WHETHER ARISING
FROM LAW, COURSE OF DEALING, USAGE OF TRADE, OR OTHERWISE,
THERE ARE NO OTHER WARRANTIES, INCLUDING WARRANTY OF
MERCHANTABILITY OR FITNESS FOR PURPOSE, WHICH EXTEND
BEYOND THE PRODUCT DESCRIPTION CONFIRMED BY BUYER AND
SELLER AS OF THE DATE OF FINAL AGREEMENT.
This warranty is void if the input to the product exceeds the rated input as
indicated on the product serial plate by more than 5% on gas-fired and oil-fired
units, or if the product in the judgment of SELLER has been installed in a
corrosive atmosphere, or subjected to corrosive fluids or gases, been
subjected to misuse, negligence, accident, excessive thermal shock, excessive
humidity, physical damage, impact, abrasion, unauthorized alterations, or
operation contrary to SELLER’S printed instructions, or if the serial number has
been altered, defaced or removed.
BUYER’S REMEDY FOR BREACH OF WARRANTY, EXCLUSIVE OF ALL
OTHER REMEDIES PROVIDED BY LAW, IS LIMITED TO REPAIR OR
REPLACEMENT AT THE FACTORY OF SELLER, ANY COMPONENT WHICH
SHALL, WITHIN THE APPLICABLE WARRANTY PERIOD DEFINED HEREIN
AND UPON PRIOR WRITTEN APPROVAL, BE RETURNED TO SELLER
WITH TRANSPORTATION CHARGES PREPAID AND WHICH THE
EXAMINATION OF SELLER SHALL DISCLOSE TO HAVE BEEN DEFECTIVE;
EXCEPT THAT WHEN THE PRODUCT IS TO BE USED BY BUYER AS A
COMPONENT PART OF EQUIPMENT MANUFACTURED BY BUYER,
BUYER’S REMEDY FOR BREACH, AS LIMITED HEREIN, SHALL BE
LIMITED TO ONE YEAR FROM DATE OF SHIPMENT FROM SELLER. FOR
GAS-FIRED PRODUCTS INSTALLED IN HIGH HUMIDITY APPLICATIONS
AND UTILIZING STAINLESS STEEL HEAT EXCHANGERS, BUYER’S
REMEDY FOR BREACH, AS LIMITED HEREIN, SHALL BE LIMITED TO TEN
YEARS FROM DATE OF SHIPMENT FROM SELLER.
These warranties are issued only to the original owner-user and cannot be
transferred or assigned. No provision is made in these warranties for any
labor allowance or field labor participation. Seller will not honor any expenses
incurred in its behalf with regard to repairs to any of Seller’s products. No
credit shall be issued for any defective part returned without proper written
authorization (including, but not limited to, model number, serial number, date
of failure, etc.) and freight prepaid.
OPTIONAL SUPPLEMENTAL WARRANTY
Provided a supplemental warranty has been purchased, Seller extends the
warranty herein for an additional four (4) years on certain compressors.
Provided a supplemental warranty has been purchased, Seller extends the
warranty herein for an additional four (4) years or nine (9) years on certain
heat exchangers.
EXCLUSION OF CONSUMABLES & CONDITIONS BEYOND
SELLER’S CONTROL
The above referenced warranty shall not be applicable to any of the following
items: refrigerant gas, belts, filters, fuses and other items consumed or worn
out by normal wear and tear or conditions beyond Seller’s control, including
(without limitation as to generality) polluted or contaminated or foreign matter
contained in the air or water utilized for heat exchanger (condenser) cooling or
if the failure of the part is caused by improper air or water supply, or improper
or incorrect sizing of power supply.
Component
Applicable Models
Heat Exchangers
Gas-Fired Units except PSH/BSH
Heat Exchangers
Low Intensity Infrared Units
Compressors
Condensing Units for Cassettes
Burners
Low Intensity Infrared Units
Other
Components excluding Heat Exchangers,
Coils, Condensers, Burners, Sheet Metal
Heat Exchangers/Coils
Indoor and Outdoor Duct Furnaces and
System Units, PSH/BSH, Steam/Hot Water Units,
Oil-Fired Units, Electric Units, Cassettes,
Vertical Unit Ventilators
Compressors
Vertical Unit Ventilators
Burners
High Intensity Infrared Units
Sheet Metal Parts
All Products
TEN YEARS FROM DATE OF FIRST BENEFICIAL USE BY BUYER OR ANY OTHER USER, WITHIN
TEN YEARS FROM DATE OF RESALE BY BUYER OR ANY OTHER USER, WITHIN TEN YEARS
FROM DATE OF RESALE BY BUYER IN ANY UNCHANGED CONDITION, OR WITHIN ONE
HUNDRED TWENTY-SIX MONTHS FROM DATE OF SHIPMENT FROM SELLER, WHICHEVER
OCCURS FIRST
FIVE YEARS FROM DATE OF FIRST BENEFICIAL USE BY BUYER OR ANY OTHER USER, WITHIN
FIVE YEARS FROM DATE OF RESALE BY BUYER OR ANY OTHER USER, WITHIN FIVE YEARS
FROM DATE OF RESALE BY BUYER IN ANY UNCHANGED CONDITION, OR WITHIN SIXTY-SIX
MONTHS FROM DATE OF SHIPMENT FROM SELLER, WHICHEVER OCCURS FIRST
TWO YEARS FROM DATE OF FIRST BENEFICIAL USE BY BUYER OR ANY OTHER USER, WITHIN
TWO YEARS FROM DATE OF RESALE BY BUYER IN ANY UNCHANGED CONDITION, OR WITHIN
THIRTY MONTHS FROM DATE OF SHIPMENT FROM SELLER, WHICHEVER OCCURS FIRST
ONE YEAR FROM DATE OF FIRST BENEFICIAL USE BY BUYER OR ANY OTHER USER, WITHIN
ONE YEAR FROM DATE OF RESALE BY BUYER IN ANY UNCHANGED CONDITION, OR WITHIN
EIGHTEEN MONTHS FROM DATE OF SHIPMENT FROM SELLER, WHICHEVER OCCURS FIRST
“APPLICABLE WARRANTY PERIOD”
As Modine Manufacturing Company has a continuous product improvement program, it reserves the right to change design and specifications without notice.