Mitsubishi Electric US, Inc PM100CSD120 Data Sheet

MITSUBISHI <INTELLIGENT POWER MODULES>
MITSUBISHI <INTELLIGENT POWER MODULES>
PM100CSD120
PM100CSD120
APPLICATION
General purpose inverter, servo drives and other motor controls
FEATURE
formance is improved by 1µm fine rule process.
b) Using new Diode which is designed to get soft reverse
recovery characteristics.
c) Keeping the package compatibility.
The layout/position of both terminal pin and mounting hole is same as S-series 3rd generation IPM .
•3φ 100A, 1200V Current-sense IGBT for 15kHz switching
• Monolithic gate drive & protection logic
• Detection, protection & status indication circuits for over­current, short-circuit, over-temperature & under-voltage (P-Fo available from upper leg devices)
• Acoustic noise-less 18.5/22kW class inverter application
• UL Recognized Yellow Card No.E80276(N)
PM100CSD120
FLAT-BASE TYPE
FLAT-BASE TYPE
INSULATED PACKAGE
INSULATED PACKAGE
File No.E80271
PACKAGE OUTLINES Dimensions in mm
135
±1
120.5
40.68
11
16.5
P N B PPS
202039.5
–0.5
+1.0
23.1
24.1 4
7.7
3.22 10
13
0.5
±0.3
51.5
A
±0.5
LABEL
1234 56789101112131415161718
10
3-2
10.5
U
2-φ2.54
10
3-2 3-2 6-2
66.44
VW
26
26
19- 0.5
19
MOUNTING HOLES
4-R6
6-M5 NUTS
4- φ5.5
±0.5
95.5
21.3
±1
110
33.7
34.7
24.1
Screwing depth Min9.0
Terminal code
1. V
UPC
2. U
FO
3. U
P
4. V
UP1
5. V
VPC
6. V
FO
7. V
P
8. V
VP1
9. V
WPC
10. W
FO
φ2.54
3.22
11. 6
A : DETAIL
3-2
11. W
12. V
13. V
14. V
15. NC
16. U
17. V
18. W
19. F
5
10.6
P
WP1
NC
N1
N
N
N
O
0.5
Jul. 2005
INTERNAL FUNCTIONS BLOCK DIAGRAM
MITSUBISHI <INTELLIGENT POWER MODULES>
PM100CSD120
FLAT-BASE TYPE
INSULATED PACKAGE
Rfo=1.5k
NC Fo
V
Rfo
W
N
NC
Gnd In Fo Vcc
Gnd
V
Si Out
N1
Gnd In Fo
Gnd
V
N
Vcc
Gnd In Fo Vcc
TEMP
Si Out
Gnd
Th
U
N
Si Out
WPV
W
V
FO
WPC
Gnd In Fo Vcc
Gnd
Si Out
WP1
V
VPC
Gnd In Fo Vcc
Gnd
VPV
VP1
V
FO
V
UPC
Gnd In Fo Vcc
Si Out
Gnd
U
P
U
Si Out
V
UP1
FO
RfoRfo Rfo
NC N W V PU
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted) INVERTER PART
Symbol Parameter Condition Ratings Unit
VCES
±IC ±ICP
PC Tj
Collector-Emitter Voltage Collector Current Collector Current (Peak) Collector Dissipation Junction Temperature
V
D = 15V, VCIN = 15V
T
C = 25°C
T
C = 25°C
T
C = 25°C
1200
100 200 595
–20 ~ +150
V A A
W °C
CONTROL PART
Symbol
VD
VCIN
V
FO
IFO
Supply Voltage
Input Voltage
Fault Output Supply Voltage
Fault Output Current
Parameter Condition Ratings Unit
Applied between : V
Applied between : UP-VUPC, VP-VVPC
Applied between : UFO-VUPC, VFO-VVPC, WFO-VWPC
Sink current at UFO, VFO, WFO, FO terminals
UP1-VUPC
VVP1-VVPC, VWP1-VWPC, VN1-VNC
WP-VWPC, UN VN WN-VNC
FO-VNC
20
20
20
20
V
V
V
mA
Jul. 2005
TOTAL SYSTEM
Symbol
V
CC(PROT)
V
CC(surge)
TC
Tstg Viso
Supply Voltage Protected by OC & SC Supply Voltage (Surge) Module Case Operating Temperature Storage Temperature
Isolation Voltage
Parameter
V
D = 13.5 ~ 16.5V, Inverter Part,
j = 125°C Start
T
Applied between : P-N, Surge value or without switching
(Note-1)
60Hz, Sinusoidal, Charged part to Base, AC 1 min.
(Note-1) TC measurement point is as shown below. (Base plate depth 3mm)
Condition
MITSUBISHI <INTELLIGENT POWER MODULES>
PM100CSD120
FLAT-BASE TYPE
INSULATED PACKAGE
Ratings
800
1000
20 ~ +100
40 ~ +125
2500
Unit
V
°C °C
V
rms
V
PNB
U
VW
Tc
63mm
THERMAL RESISTANCES
Symbol Parameter
Rth(j-c)Q Rth(j-c)F Rth(j-c)Q
Junction to case Thermal
Resistances Rth(j-c)F Rth(c-f)
(Note-2) T
Contact Thermal Resistance
C measurement point is just under the chips.
If you use this value, R
Inverter IGBT part (per 1 element), (Note-1) Inverter FWDi part (per 1 element), (Note-1) Inverter IGBT part (per 1 element), (Note-2) Inverter FWDi part (per 1 element), (Note-2) Case to fin, Thermal grease applied (per 1 module)
th(f-a) should be measured just under the chips.
Test Condition
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted) INVERTER PART
CE(sat)
V
VEC ton trr tc(on) toff tc(off)
ICES
ParameterSymbol
Collector-Emitter Saturation Voltage FWDi Forward Voltage
Switching Time
Collector-Emitter Cutoff Current
D = 15V, IC = 100A
V V
CIN = 0V, Pulsed (Fig. 1)
–I
C = 100A, VD = 15V, VCIN = 15V (Fig. 2)
D = 15V, VCIN = 15V0V
V V
CC = 600V, IC = 100A
T
j = 125°C
Inductive Load (upper and lower arm) (Fig. 3)
VCE = V
CES
, V
CIN
= 15V
Test Condition
(Fig. 4)
T
j = 25°C
T
j = 125°C
T
j = 25°C
T
j = 125°C
Limits
Min. Typ. Max.
— — — — —
— — — — —
0.21
0.35
0.13
0.21
0.018
Limits
Min. Typ. Max.
— — —
0.5
— — — — — —
2.4
2.1
2.5
1.0
0.15
0.4
2.5
0.7
— —
3.2
2.8
3.5
2.5
0.3
1.0
3.5
1.2
10
Unit
°C/W
Unit
V
V
µs
1
mA
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
CONTROL PART
Symbol
ID
V
th(on)
Vth(off)
OC
SC
off(OC)
t OT OT UV UV IFO(H) IFO(L)
tFO
Circuit Current
Input ON Threshold Voltage
Input OFF Threshold Voltage
Over Current Trip Level
Short Circuit Trip Level
Over Current Delay Time
Over Temperature Protection
r
Supply Circuit Under-Voltage
r
Protection
Fault Output Current
Minimum Fault Output Pulse
Width
(Note-3) Fault output is given only when the internal OC, SC, OT & UV protection.
Fault output of OC, SC and UV protection operate by upper and lower arms. Fault output of OT protection operate by lower arm. Fault output of OC, SC protection given pulse. Fault output of OT, UV protection given pulse while over level.
Parameter
Test Condition
VD = 15V, VCIN = 15V
Applied between : U
P-VUPC, VP-VVPC, WP-VWPC
UN VN WN-VNC
D = 15V (Fig. 5,6)
V –20 T
j 125°C, VD = 15V (Fig. 5,6)
V
D = 15V (Fig. 5,6)
Base-plate Temperature detection, V
–20 ≤ T
j 125°C
V
D = 15V, VFO = 15V (Note-3)
D = 15V (Note-3)
V
D = 15V
VN1-VNC VXP1-VXPC
Tj = 25°C T
j = 125°C
Trip level Reset level Trip level Reset level
PM100CSD120
FLAT-BASE TYPE
INSULATED PACKAGE
Limits
Min. Typ.
— —
1.2
1.7 228 145
— —
111
11.5
12.0
12.5
— —
1.0
45 15
1.5
2.0
345
340
10 118 100
10
1.8
Max.
62 20
1.8
2.3
— — — —
125
12.5
0.01 15
Unit
mA
V
A
A
µs °C
V
mA
ms
MECHANICAL RATINGS AND CHARACTERISTICS
Symbol
— — —
Mounting torque Mounting torque Weight
Parameter
Main terminal screw : M5 Mounting part screw : M5
RECOMMENDED CONDITIONS FOR USE
Symbol Parameter
VCC
VD
VCIN(on) VCIN(off)
fPWM
tdead
(Note-4) Allowable Ripple rating of Control Voltage : d
Supply Voltage
Control Supply Voltage
Input ON Voltage Input OFF Voltage
PWM Input Frequency
Arm Shoot-through Blocking Time
Applied across P-N terminals Applied between : V
Applied between : U
Using Application Circuit input signal of IPM, 3φ sinusoidal PWM VVVF inverter (Fig. 8)
For IPMs each input signals (Fig. 7)
v/dt ±5V/µs, 2Vp-p
Test Condition
Test Condition
UP1-VUPC, VVP1-VVPC
VWP1-VWPC, VN1-VNC (Note-4)
P-VUPC, VP-VVPC, WP-VWPC
UN VN WN-VNC
Limits
Min.
2.5
2.5
Typ.
3.0
3.0
920
Recommended value
800
15 ± 1.5
0.8 4.0
20
3.0
Max.
3.5
3.5
Unit
N m N m
g
Unit
V
V
V
kHz
µs
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM100CSD120
FLAT-BASE TYPE
INSULATED PACKAGE
PRECAUTIONS FOR TESTING
1. Before appling any control supply voltage (V sponding supply voltage and each input signal should be kept off state. After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing “OC” and “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above V
CES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
D), the input terminals should be pulled up by resistores, etc. to their corre-
P, (U,V,W)
P, (U,V,W)
IN
V
(0V)
CIN
Fo
D
(all)
V
Fig. 1 V
a) Lower Arm Switching
Signal input
V
CIN
(Upper Arm)
(
15V
)
V
Signal input
CIN
(Lower Arm)
b) Upper Arm Switching
Signal input
CIN
(Upper Arm)
V
CIN
Signal input
(
15V
)
(Lower Arm)
IN Fo
V
D
(all)
V
CIN
(15V)
V
Fig. 4 I
P, (U,V,W)
IN
V
CIN
Fo
D
(all)
V
Fig. 5 OC and SC Test
IN
V V
Ic
V
(15V)
CIN
U,V,W, (N) U,V,W, (N)
CE(sat)
Test Fig. 2 VEC Test
P
Fo
U,V,W
Fo
V
D
(all)
Fo
V
D
(all)
N
P
Fo
U,V,W
N
Vcc
C
S
Ic
Vcc
C
S
Ic
Fo
VD (all)
90%
10%
V
CIN
(ton= td (on) + tr) (toff= td (off) + tf)
Fig. 3 Switching time Test circuit and waveform
P, (U,V,W)
U,V,W, (N)
CES
U,V,W, (N)
Test
A
Pulse
V
CE
V
I
C
CIN
V
I
C
t
off (OC)
Short Circuit Current
CC
I
C
Fig. 6 OC and SC Test waveform
P
trr
Irr
10% 10%
tc (on) tc (off)
trtd (on)
Over Current
Constant Current
Constant Current
Ic
td (off)
–Ic
90%
tf
OC
10%
SC
CE
V
V
D
V
CINP
V
D
V
CINN
CINP
V
0V
V
CINN
0V
t
dead
t
dead
Fig. 7 Dead time measurement point example
U,V,W
N
Vcc
Ic
t
t
dead
t
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM100CSD120
FLAT-BASE TYPE
INSULATED PACKAGE
VD
VD
VD
VD
10µ
20k
F
I
0.1µ
20k
I
F
0.1µ
20k
I F
0.1µ
I F
20k
0.1µ
10µ
10µ
10µ
VUP1
UFO
UP
VUPC
V
VP1
VFO
VP
VVPC
V
WP1
WFO
WP
VWPC
U
VN
VN1
WN
VNC
Rfo
Rfo
Rfo
N
Vcc
Fo
In
Vcc
Fo
In
Vcc
Fo
In
Vcc
Fo
In
Vcc
Fo
In
Vcc
Fo
In
GND
OUT
GNDGND
OUT
GNDGND
OUT
GNDGND
OUT
GNDGND
TEMP
OUT
GNDGND
OUT
GND
Si
Si
Si
Si
Th
Si
Si
P
U
V
W
N
NC
+
M
NC
1k
5V
Rfo
Fo
: Interface which is the same as the U-phase
Fig. 8 Application Example Circuit
NOTES FOR STABLE AND SAFE OPERATION ;
Design the PCB pattern to minimize wiring length between opto-coupler and IPMs input terminal, and also to minimize the
stray capacity between the input and output wirings of opto-coupler.
Quick opto-couplers : TPLH, TPLH 0.8µs. Use High CMR type. The line between opto-coupler and intelligent module
should be shortened as much as possible to minimize the floating capacitance. Slow switching opto-coupler : recommend to use at CTR = 100 ~ 200%, Input current = 8 ~ 10mA, to work in active.
Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
power supply. Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
terminal. Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line
and improve noise immunity of the system.
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM100CSD120
FLAT-BASE TYPE
INSULATED PACKAGE
PERFORMANCE CURVES
OUTPUT CHARACTERISTICS
120
T
j
= 25°C
(A)
100
C
80
60
40
20
COLLECTOR CURRENT I
0
0
COLLECTOR-EMITTER VOLTAGE V
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. V
3
(V)
2.5
CE (sat)
2
1.5
1
COLLECTOR-EMITTER
0.5
SATURATION VOLTAGE V
0
1312 1514 1716
(TYPICAL)
VD = 17V
15V
1.510.5 2 2.5 3
D
) CHARACTERISTICS
(TYPICAL)
IC = 100A T
j
= 25°C
T
j
= 125°C
13V
CE
18
(V)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
2.5
(V)
CE (sat)
VD = 15V
2
1.5
1
COLLECTOR-EMITTER
0.5
SATURATION VOLTAGE V
0
0
40 80 12020 60 100
COLLECTOR CURRENT IC (A)
SWITCHING TIME CHARACTERISTICS
1
10
VCC = 600V
7
(µs)
V
D
= 15V
5 4
T
j
c(off)
, t
c(on)
10
3
2
0
7 5
4 3
2
= 25°C
j
= 125°C
T Inductive load
SWITCHING TIME t
–1
10
10
1
44
23 57
(TYPICAL)
(TYPICAL)
t
c(off)
t
c(on)
t
c(on)
t
c(off)
2
10
T
j
= 25°C
j
= 125°C
T
23 57
10
3
CONTROL SUPPLY VOLTAGE VD (V)
SWITCHING TIME CHARACTERISTICS
1
10
7 5
(µs)
4
off
3
, t
on
2
0
10
7 5
4 3
2
SWITCHING TIME t
–1
10
1
10
(TYPICAL)
t
off
t
on
VCC = 600V V T T Inductive load
10
2
44
23 57
COLLECTOR CURRENT IC (A)
D
= 15V
j
= 25°C
j
= 125°C
23 57
10
COLLECTOR CURRENT I
C
(A)
SWITCHING LOSS CHARACTERISTICS
2
10
7 5 4
(mJ/pulse)
3 2
SW(off)
1
10
, E
7 5 4 3
SW(on)
2
0
10
7 5 4 3 2
–1
3
10
1
10
SWITCHING LOSS E
(TYPICAL)
E
SW(off
E
SW(off
)
)
E
SW(on
E
)
SW(on
)
VCC = 600V V
D
= 15V
T
j
= 25°C
T
j
= 125°C
Inductive load
10
2
23 57
44
23 57
10
3
COLLECTOR CURRENT IC (A)
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM100CSD120
FLAT-BASE TYPE
INSULATED PACKAGE
DIODE FORWARD CHARACTERISTICS
(A)
2
10
C
I
VD = 15V
7 5
4 3
2
1
10
7
5 4
3
2
0
10
0
COLLECTOR RECOVERY CURRENT
(TYPICAL)
T
j
T
j
1.5 2 2.510.5 3
EMITTER-COLLECTOR VOLTAGE V
D
VS. fc CHARACTERISTICS
I
(TYPICAL)
100
VD = 15V
j
= 25°C
T
80
(mA)
D
60
40
20
CIRCUIT CURRENT I
0
5101520
= 25°C = 125°C
EC
N-side
P-side
250
(V)
DIODE REVERSE RECOVERY CHARACTERISTICS
0
10
7
(µs)
rr
5 4
3
2
–1
10
7 5
4 3
2
REVERSE RECOVERY TIME t
–2
10
1
10
(TYPICAL)
I
rr
t
rr
VCC = 600V V
D
= 15V
T
j
= 25°C
j
= 125°C
T Inductive load
23 57
44
10
2
23 57
10
COLLECTOR RECOVERY CURRENT –I
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
1
10
7 5
3 2
th (j – c)
0
10
7 5
3 2
–1
10
7 5
3 2
–2
10
7
NORMALIZED TRANSIENT
5
Single Pulse
3
THERMAL IMPEDANCE Z
2
Per unit base = R
–3
10
–3
23 57
10
(IGBT PART)
–2
23 57
10
th(j – c)Q
–1
23 57
10
= 0.21°C/W
0
23 57
10
C
10
2
10
(A)
rr
7 5
4 3
2
1
10
7 5
4 3
2
0
10
REVERSE RECOVERY CURRENT l
3
(A)
1
CARRIER FREQUENCY fc (kHz)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
1
10
7 5
3 2
th (j – c)
0
10
7 5
3 2
–1
10
7 5
3 2
–2
10
7
NORMALIZED TRANSIENT
5
Single Pulse
3
THERMAL IMPEDANCE Z
2
Per unit base = R
–3
10
–3
23 57
10
(FWDi PART)
–2
23 57
10
TIME (s)
th(j – c)F
–1
23 57
10
= 0.35°C/W
0
23 57
10
10
TIME (s)
1
Jul. 2005
Loading...