Mitsubishi Electric US, Inc CM100RX-24S Data Sheet

< IGBT MODULES >
CM100RX-24S
HIGH POWER SWITCHING USE
I
sevenpack (3φ Inverter+Chopper Brake)
APPLICATION
AC Motor Control, Motion/Servo Control, Power supply, etc.

OUTLINE DRAWING & INTERNAL CONNECTION

Collector current I Collector-emitter voltage V Maximum junction temperature T
Flat base Type
Copper base plate (non-plating)
Tin plating pin terminals
RoHS Directive compliant
Recognized under UL1557, File E323585
.............….......................… 100A
C
......................… 1200V
CES
.............. 175°C
jmax
Dimension in mm
TERMINAL
P(35)
GUP(34) EUP(33)
U(1)
INTERNAL CONNECTION
GVP(26) EVP(25)
GWP(18) EWP(17)
V(2)
W(3)
NTC
W(4)
TH1(10) TH2(11)
t=0.8
SECTION A
Tolerance otherwise specified
Division of Dimension Tolerance
0.5 to 3 ±0.2 over 3 to 6 ±0.3 over 6 to 30 ±0.5 over 30 to 120 ±0.8 over 120 to 400 ±1.2
The tolerance of size between terminals is assumed to be ±0.4.
GU N(30 ) EUN(29)
N(3 6)
Publication Date : August 2013
G VP(22) EVP(21)
GWN (14) EWN(13)
GB(6) EB(5)
1
< IGBT MODULES >
CM100RX-24S
HIGH POWER SWITCHING USE INSULATED TYPE
ABSOLUTE MAXIMUM RATINGS (T

INVERTER PART IGBT/DIODE

Symbol Item Conditions Rating Unit
V
Collector-emitter voltage G-E short-circuited 1200 V
CES
V
Gate-emitter voltage C-E short-circuited ± 20 V
GES
IC DC, TC=119 °C I
CRM
P
Total power dissipation TC=25 °C
tot
(Note1)
IE I
ERM

BRAKE PART IGBT/DIODE

V
CES
V
GES
IC DC, TC=125 °C I
CRM
P
tot
V
RRM
IF I
FRM
MODULE
V
isol
T
jmax
T
Cmax
T
jop
T
stg
(Note1)
Symbol Item Conditions Rating Unit
Collector-emitter voltage G-E short-circuited 1200 V Gate-emitter voltage C-E short-circuited ± 20 V
Total power dissipation TC=25 °C
Repetitive peak reverse voltage G-E short-circuited 1200 V
Symbol Item Conditions Rating Unit
Isolation voltage Terminals to base plate, RMS, f=60 Hz, AC 1 min 2500 V
Maximum junction temperature Instantaneous event (overload) 175 °C
Maximum case temperature Operating junction temperature Continuous operation (under switching) -40 ~ +150 Storage temperature - -40 ~ +125
Collector current
Emitter current
Collector current
Forward current
=25 °C, unless otherwise specified)
j
(Note2, 4)
Pulse, Repetitive
(Note2)
100
Pulse, Repetitive
Pulse, Repetitive
(Note2)
50
Pulse, Repetitive
(Note4)
125 °C
(Note3)
(Note2, 4)
750 W
(Note3)
(Note2, 4)
(Note3)
(Note2, 4)
425 W
(Note3)
100 200
200
50 100
100
A
A
A
A
°C
ELECTRICAL CHARACTERISTICS (Tj=25 °C, unless otherwise specified)

INVERTER PART IGBT/DIODE

Symbol Item Conditions
I
Collector-emitter cut-off current VCE=V
CES
I
Gate-emitter leakage current VGE=V
GES
V
Gate-emitter threshold voltage IC=10 mA, VCE=10 V 5.4 6.0 6.6 V
GE(th)
IC=100 A
, G-E short-circuited - - 1.0 mA
CES
, C-E short-circuited - - 0.5 μA
GES
(Note5)
, Tj=25 °C - 1.80 2.25
VGE=15 V, Tj=125 °C - 2.00 -
V
CEsat
Collector-emitter saturation voltage
(Terminal) Tj=150 °C - 2.05 ­IC=100 A
(Note5)
, Tj=25 °C - 1.70 2.15 VGE=15 V, Tj=125 °C - 1.90 ­(Chip) T
C
Input capacitance - - 10
ies
V
C
Output capacitance - - 2.0
oes
C
Reverse transfer capacitance
res
=10 V, G-E short-circuited
CE
=150 °C - 1.95 -
j
QG Gate charge VCC=600 V, IC=100 A, VGE=15 V - 233 - nC t
Turn-on delay time - - 300
d(on)
tr Rise time t
Turn-off delay time - - 600
d(off)
tf Fall time
V
=600 V, IC=100 A, VGE=±15 V,
CC
R
=6.2 , Inductive load
G
Limits
Min. Typ. Max.
- - 0.17
- - 200
- - 300
Unit
V
V
nF
ns
Publication Date : August 2013
2
< IGBT MODULES >
CM100RX-24S
HIGH POWER SWITCHING USE INSULATED TYPE
ELECTRICAL CHARACTERISTICS (cont; T

INVERTER PART IGBT/DIODE

Symbol Item Conditions
(Note1)
VEC
(Note1)
t
Reverse recovery time VCC=600 V, IE=100 A, VGE=±15 V, - - 300 ns
rr
(Note1)
Qrr Eon Turn-on switching energy per pulse VCC=600 V, IC=IE=100 A, - 8.6 ­E Err
R rg Internal gate resistance Per switch - 0 -

BRAKE PART IGBT/DIODE

I I V
V
C C C QG Gate charge VCC=600 V, IC=50 A, VGE=15 V - 117 - nC t tr Rise time t tf Fall time
I
RRM
V
trr Reverse recovery time VCC=600 V, IE=50 A, VGE=±15 V, - - 300 ns Qrr Reverse recovery charge RG=13 , Inductive load - 2.7 - μC Eon Turn-on switching energy per pulse VCC=600 V, IC=IE=50 A, - 5.5 ­E Err Reverse recovery energy per pulse Inductive load - 4.5 - mJ rg Internal gate resistance - - 0 -
Reverse recovery charge RG=6.2 , Inductive load - 5.3 - μC
Turn-off switching energy per pulse VGE=±15 V, RG=6.2 , Tj=150 °C, - 10.7 -
off
(Note1)
Reverse recovery energy per pulse Inductive load - 10.2 - mJ
Internal lead resistance
CC'+EE'
Symbol Item Conditions
Collector-emitter cut-off current VCE=V
CES
Gate-emitter leakage current VGE=V
GES
Gate-emitter threshold voltage IC=5 mA, VCE=10 V 5.4 6.0 6.6 V
GE(th)
CEsat
Input capacitance - - 5.0
ies
Output capacitance - - 1.0
oes
Reverse transfer capacitance
res
Turn-on delay time - - 300
d(on)
Turn-off delay time - - 600
d(off)
Repetitive peak reverse current VR=V
F
Turn-off switching energy per pulse VGE=±15 V, RG=13 , Tj=150 °C, - 5.3 -
off
Emitter-collector voltage
Collector-emitter saturation voltage
Forward voltage
=25 °C, unless otherwise specified)
j
IE=100 A
(Note5)
, Tj=25 °C - 1.80 2.25 G-E short-circuited, Tj=125 °C - 1.80 ­(Terminal) Tj=150 °C - 1.80 ­IE=100 A
(Note5)
, Tj=25 °C - 1.70 2.15 G-E short-circuited, Tj=125 °C - 1.70 ­(Chip) T
Main terminals-chip, per switch, T
=25 °C
C
IC=50 A
(Note4)
, G-E short-circuited - - 1.0 mA
CES
, C-E short-circuited - - 0.5 μA
GES
(Note5)
, Tj=25 °C - 1.80 2.25 VGE=15 V, Tj=125 °C - 2.00 ­(Terminal) Tj=150 °C - 2.05 ­IC=50 A
(Note5)
, Tj=25 °C - 1.70 2.15 VGE=15 V, Tj=125 °C - 1.90 ­(Chip) T
V
=10 V, G-E short-circuited
CE
V
=600 V, IC=50 A, VGE=±15 V,
CC
R
=13 , Inductive load
G
, G-E short-circuited - - 1.0 mA
RRM
IE=50 A
(Note5)
, Tj=25 °C - 1.80 2.25 G-E short-circuited, Tj=125 °C - 1.80 ­(Terminal) Tj=150 °C - 1.80 ­IE=50 A
(Note5)
, Tj=25 °C - 1.70 2.15 G-E short-circuited, Tj=125 °C - 1.70 ­(Chip) T
Limits
Min. Typ. Max.
=150 °C - 1.70 -
j
- - 3.5 m
Limits
Min. Typ. Max.
=150 °C - 1.95 -
j
- - 0.08
- - 200
- - 300
=150 °C - 1.70 -
j
Unit
V
V
mJ
Unit
V
V
nF
ns
V
V
mJ
Publication Date : August 2013
3
< IGBT MODULES >
CM100RX-24S
HIGH POWER SWITCHING USE INSULATED TYPE
ELECTRICAL CHARACTERISTICS (cont; T
NTC THERMISTOR PART
Symbol Item Conditions
R25 Zero-power resistance TC=25 °C R/R Deviation of resistance R B
B-constant Approximate by equation
(25/50)
P25 Power dissipation TC=25 °C
THERMAL RESISTANCE CHARACTERISTICS
Symbol Item Conditions
R R R R
R
Junction to case, per Inverter IGBT - - 0.20
th(j-c)Q
Junction to case, per Inverter DIODE - - 0.29
th(j-c)D
Junction to case, per Brake IGBT - - 0.35
th(j-c)Q
th(j-c)D
Contact thermal resistance
th(c-s)
Thermal resistance
(Note4)
=25 °C, unless otherwise specified)
j
(Note4)
4.85 5.00 5.15 k
=493 , TC=100 °C
100
(Note4)
- - 10 mW
(Note4)
-7.3 - +7.8 %
(Note7)
- 3375 - K
Junction to case, per Brake DIODE - - 0.63
(Note4)
Case to heat sink, per 1 module,
(Note7)
Thermal grease applied
Limits
Min. Typ. Max.
Limits
Min. Typ. Max.
- 15 - K/kW
Unit
Unit
K/W
K/W
MECHANICAL CHARACTERISTICS
Symbol Item Conditions
Mt Mounting torque Main terminals M 5 screw 2.5 3.0 3.5 N·m Ms Mounting torque Mounting to heat sink M 5 screw 2.5 3.0 3.5 N·m
ds Creepage distance
da Clearance
Terminal to terminal 10.25 - ­Terminal to base plate 12.32 - ­Terminal to terminal 10.28 - ­Terminal to base plate 10.85 - -
m mass - - 370 - g ec Flatness of base plate On the centerline X, Y
(Note8)
±0 - +100 μm
Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (DIODE).
2. Junction temperature (T
3. Pulse width and repetition rate should be such that the device junction temperature (T
4. Case temperature (T
) should not increase beyond T
j
) and heat sink temperature (Ts) are defined on the each surface (mounting side) of base plate and heat sink
C
jmax
rating.
) dose not exceed T
j
just under the chips. Refer to the figure of chip location.
5. Pulse width and repetition rate should be such as to cause negligible temperature rise. Refer to the figure of test circuit.
R
6.
5025
: resistance at absolute temperature T25 [K]; T25=25 [°C]+273.15=298.15 [K]
R
25
: resistance at absolute temperature T50 [K]; T50=50 [°C]+273.15=323.15 [K]
R
50
25
ln(B
)/(
/()
R
11
,
)
TT
502550
7. Typical value is measured by using thermally conductive grease of λ=0.9 W/(m·K).
8. The base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure.
Limits
Min. Typ. Max.
rating.
jmax
Unit
mm
mm
Y
mounting side
-:Concave
+:Convex
mounting side
+:Convex
mounting side
-:Concave X
9. Use the following screws when mounting the printed circuit board (PCB) on the stand offs. "φ2.6×10 or φ2.6×12 self tapping screw" The length of the screw depends on the thickness (t1.6~t2.0) of the PCB.
Publication Date : August 2013
4
< IGBT MODULES >
CM100RX-24S
HIGH POWER SWITCHING USE INSULATED TYPE
RECOMMENDED OPERATING CONDITIONS
Symbol Item Conditions
VCC (DC) Supply voltage Applied across P-N terminals - 600 850 V V
Gate (-emitter drive) voltage
GEon
RG External gate resistance Per switch
CHIP LOCATION (Top view)
Limits
Min. Typ. Max.
Applied across GB-EB/
G*P-E*P/G*N-E*N (*=U, V, W) terminals
Inverter IGBT 6.2 - 62
Brake IGBT 13 - 130
13.5 15.0 16.5 V
Dimension in mm, tolerance: ±1 mm
Unit
Tr*P/Tr*N/TrBr: IGBT, Di*P/Di*N: DIODE (*=U/V/W), DiBr: BRAKE DIODE, Th: NTC thermistor
TEST CIRCUIT AND WAVEFORMS
0 V
*: U, V, W
+V
GE
-V
GE
-VGE
RG
vGE
G*P
E*P
G*N
E*N
iE
P
v
GE
0 V
Load
V
*
vCE
+
iC
N
i
CC
C
0 A
t
d(on)
90 %
0
90 %
t
iE
IE
0 A
Q
=0.5×Irr×t
rr
t
Irr
10%
t
r
t
d(off)
t
f
t
Switching characteristics test circuit and waveforms trr, Qrr test waveform
i
I
vCE
0.1×I
0
CM
CM
VCC
ti
C
0.1×VCC
i
C
V
CC
0.1×V
t
CC
ICM
v
CE
0.02×I
CM
t0
t
i
iE
0 A
IEM
t
i
IGBT Turn-on switching energy IGBT Turn-off switching energy DIODE Reverse recovery energy
Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing)
rr
rr
t
0.5×I
rr
v
EC
V
CC
t
t0 V
Publication Date : August 2013
5
< IGBT MODULES >
CM100RX-24S
HIGH POWER SWITCHING USE INSULATED TYPE
TEST CIRCUIT
VGE=15V
34
35
IC
VGE=15V
35
35
VGE=15V
I
C26
18
IC
circuited
Short-
circuited
VGE=15V
Gate-emitter
short-circuited
circuited
V
Short-
GUP
EUP
GUN
EUN
Short-
33
1
30
29
GVP-EVP GVN-EVN, GWP-EWP , GWN-EWN, GB-EB
UP / UN IGBT
34
36
P
U
N
35
V
Short-
Short-
GVP
EVP
GVN
EVN
Gate-emitter
Short-
25
2
22
21
GUP-EUP, GUN-EUN, GWP-EWP , GWN-EWN, GB-EB
VP / VN IGBT
26
36
P
V
N
35
V
V
CEsat
circuited
VGE=15V
I
C
short-circuited
test circuit
I
E
circuited
circuited
circuited
circuited
V
VGE=15V
IC
short-circuited
circuited
IE
V
Short-
Short-
GWP
EWP
GWN
EWN
Gate-emitter
WP / WN IGBT
Short-
17
3
14
13
GUP-EUP, GUN-EUN, GVP-EVP, GVN-EVN, GB-EB
18
36
P
W
N
35
P
V
V
B
VGE=15V
IC
EB
Gate-emitter
short-circuited
GUP-EUP, GUN-EUN, GVP-EVP, GVN-EVN, GWP-EWP , GWN-EWN
Brake IGBT
N
I
CGB
35
I
IE
F
33
V
Short-
circuited
1
30
29
36
Short-
circuited
Short-
circuited
Gate-emitter
short-circuited
GUP
EUP
GUN
EUN
GVP-EVP GVN-EVN, GWP-EWP , GWN-EWN, GB-EB
UP / UN DIODE VP / VN DIODE WP / WN DIODE
P
V
U
IE
N
Publication Date : August 2013
V
Short-
circuited
Short-
circuited
Short-
circuited
Gate-emitter
short-circuited
25
2
22
21
GVP
EVP
GVN
EVN
GUP-EUP, GUN-EUN, GWP-EWP , GWN-EWN, GB-EB
36
P
V
N
V
Short-
circuited
Short-
circuited
V
Short-
circuited
I
E
Gate-emitter
short-circuited
VEC / VF test circuit
6
17
14
13
GWP
EWP
GWN
EWN
GUP-EUP, GUN-EUN, GVP-EVP, GVN-EVN, GB-EB
36
P
W
N
3
Short-
circuited
6
5
4
V
36
V
IE
Gate-emitter
short-circuited
GUP-EUP, GUN-EUN, GVP-EVP, GVN-EVN, GWP-EWP , GWN-EWN
Brake DIODE
< IGBT MODULES >
CM100RX-24S
HIGH POWER SWITCHING USE INSULATED TYPE
PERFORMANCE CURVES
INVERTER PART
OUTPUT CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER SATURATION VOLTAGE
CHARACTERISTICS
(TYPICAL)
(A)
C
COLLECTOR CURRENT I
Tj=25 °C
200
VGE=20 V
15 V
150
100
50
0
0246810
13.5 V 12 V
11 V
10 V
9 V
(Chip)
(V)
CEsat
COLLECTOR-EMITTER
SATURATION VOLTAGE V
VGE=15 V
3.5
3
2.5
2
1.5
1
0.5
0
0 50 100 150 200
T
Tj=125 °C
Tj=25 °C
COLLECTOR-EMITTER VOLTAGE VCE (V) COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER SATURATION VOLTAGE
CHARACTERISTICS
(TYPICAL)
FREE WHEELING DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
=150 °C
j
(Chip)
10
Tj=25 °C
(Chip)
G-E short-circuited
1000
Tj=125 °C
8
(V)
CEsat
6
4
IC=200 A
=100 A
I
C
IC=40 A
100
(A)
E
Tj=150 °C
Tj=25 °C
10
COLLECTOR-EMITTER
2
EMITTER CURRENT I
SATURATION VOLTAGE V
0
6 8 10 12 14 16 18 20
1
0 0.5 1 1.5 2 2.5 3
GATE-EMITTER VOLTAGE VGE (V) EMITTER-COLLECTOR VOLTAGE VEC (V)
(Chip)
Publication Date : August 2013
7
< IGBT MODULES >
CM100RX-24S
HIGH POWER SWITCHING USE INSULATED TYPE
PERFORMANCE CURVES
INVERTER PART
VCC=600 V, VGE=±15 V, RG=6.2 , INDUCTIVE LOAD
1000
100
SWITCHING CHARACTERISTICS
---------------: T
HALF-BRIDGE
(TYPICAL)
=150 °C, - - - - -: Tj=125 °C
j
t
d(off)
t
f
t
d(on)
SWITCHING CHARACTERISTICS
HALF-BRIDGE
(TYPICAL)
VCC=600 V, VGE=±15 V, IC=100 A, INDUCTIVE LOAD
1000
---------------: T
100
=150 °C, - - - - -: Tj=125 °C
j
tf
t
d(off)
10
SWITCHING TIME (ns)
t
r
1
1 10 100
SWITCHING TIME (ns)
10
1 10 100
t
d(on)
tr
COLLECTOR CURRENT IC (A) EXTERNAL GATE RESISTANCE RG ()
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=6.2 ,
INDUCTIVE LOAD, PER PULSE
100
10
---------------: T
=150 °C, - - - - -: Tj=125 °C
j
100
SWITCHING CHARACTERISTICS
VCC=600 V, VGE=±15 V, IC/IE=100 A,
INDUCTIVE LOAD, PER PULSE
---------------: T
HALF-BRIDGE
(TYPICAL)
=150 °C, - - - - -: Tj=125 °C
j
E
on
E
rr
E
off
1
E
on
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
0.1 1 10 100
COLLECTOR CURRENT IC (A)
EMITTER CURRENT I
Publication Date : August 2013
E
(A)
10
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
1
1 10 100
EXTERNAL GATE RESISTANCE R
8
G
()
E
off
E
rr
< IGBT MODULES >
CM100RX-24S
HIGH POWER SWITCHING USE INSULATED TYPE
PERFORMANCE CURVES
INVERTER PART
100
10
1
CAPACITANCE (nF)
0.1
CAPACITANCE CHARACTERISTICS
(TYPICAL)
G-E short-circuited, Tj=25 °C
REVERSE RECOVERY CHARACTERISTICS
FREE WHEELING DIODE
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=6.2 , INDUCTIVE LOAD
1000
C
ies
(A)
rr
C
oes
C
res
(ns), I
rr
t
---------------: T
100
=150 °C, - - - - -: Tj=125 °C
j
Irr
trr
0.01
0.1 1 10 100
10
1 10 100
COLLECTOR-EMITTER VOLTAGE VCE (V) EMITTER CURRENT IE (A)
GATE CHARGE CHARACTERISTICS
20
15
(V)
GE
10
5
VCC=600 V, IC=100 A, Tj=25 °C
(TYPICAL)
GATE-EMITTER VOLTAGE V
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
(MAXIMUM)
Single pulse, TC=25 °C
R
1
0.1
th(j-c)Q
=0.20 K/W, R
th(j-c)D
th(j-c)
Z
0.01
=0.29 K/W
NORMALIZED TRANSIENT THERMAL RESISTANCE
0
0 100 200 300 400
0.001
0.00001 0.0001 0.001 0.01 0.1 1 10
GATE CHARGE QG (nC) TIME (S)
Publication Date : August 2013
9
< IGBT MODULES >
CM100RX-24S
HIGH POWER SWITCHING USE INSULATED TYPE
PERFORMANCE CURVES
BRAKE PART
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
FORWARD CHARACTERISTICS
CLAMP DIODE
(TYPICAL)
3.5
3
(V)
2.5
CEsat
2
1.5
1
COLLECTOR-EMITTER
VGE=15 V
T
Tj=125 °C
=150 °C
j
Tj=25 °C
(Chip)
G-E short-circuited
100
(V)
F
10
Tj=150 °C
Tj=25 °C
FORWARD VOLTAGE V
SATURATION VOLTAGE V
0.5
0
0 20406080100
1
00.511.522.5
COLLECTOR CURRENT IC (A) FORWARD CURRENT IF (A)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=13 , INDUCTIVE LOAD
1000
---------------: T
=150 °C, - - - - -: Tj=125 °C
j
t
d(off)
1000
SWITCHING CHARACTERISTICS
VCC=600 V, IC=50 A, VGE=±15 V, INDUCTIVE LOAD
---------------: T
HALF-BRIDGE
(TYPICAL)
=150 °C, - - - - -: Tj=125 °C
j
(Chip)
Tj=125 °C
3
100
10
SWITCHING TIME (ns)
tf
t
d(on)
tr
1
1 10 100
SWITCHING TIME (ns)
t
f
t
d(off)
100
t
d(on)
t
r
10
10 100 1000
COLLECTOR CURRENT IC (A) EXTERNAL GATE RESISTANCE RG ()
Publication Date : August 2013
10
< IGBT MODULES >
CM100RX-24S
HIGH POWER SWITCHING USE INSULATED TYPE
PERFORMANCE CURVES
BRAKE PART
10
1
SWITCHING CHARACTERISTICS
VCC=600 V, VGE=±15 V, RG=13 ,
INDUCTIVE LOAD, PER PULSE
---------------: T
HALF-BRIDGE
(TYPICAL)
=150 °C, - - - - -: Tj=125 °C
j
E
off
SWITCHING CHARACTERISTICS
HALF-BRIDGE
(TYPICAL)
VCC=600 V, IC/IF=50 A, VGE=±15 V,
INDUCTIVE LOAD, PER PULSE
100
E
rr
---------------: T
10
=150 °C, - - - - -: Tj=125 °C
j
Eon
Eon
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
0.1 1 10 100
COLLECTOR CURRENT IC (A)
FORWARD CURRENT I
REVERSE RECOVERY CHARACTERISTICS
VCC=600 V, VGE=±15 V, RG=13 , INDUCTIVE LOAD
1000
---------------: T
CLAMP DIODE
(TYPICAL)
=150 °C, - - - - -: Tj=125 °C
j
F
(A)
E
off
SWITCHING ENERGY (mJ)
Err
REVERSE RECOVERY ENERGY (mJ)
1
10 100 1000
EXTERNAL GATE RESISTANCE R
G
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
(MAXIMUM)
Single pulse, TC=25 °C
th(j-c)Q
=0.35 K/W, R
R
1
0.1
th(j-c)D
=0.63 K/W
()
(A)
rr
(ns), I
rr
t
100
10
110100
trr
Irr
th(j-c)
Z
NORMALIZED TRANSIENT THERMAL RESISTANCE
0.01
0.001
0.00001 0.0001 0.001 0.01 0.1 1 10
FORWARD CURRENT IF (A) TIME (S)
Publication Date : August 2013
11
< IGBT MODULES >
CM100RX-24S
HIGH POWER SWITCHING USE INSULATED TYPE
PERFORMANCE CURVES
NTC thermistor part
TEMPERATURE CHARACTERISTICS
(TYPICAL)
100
10
1
RESISTANCE R (kΩ)
0.1
-50 -25 0 25 50 75 100 125
TEMPERATURE T (°C)
Publication Date : August 2013
12
< IGBT MODULES >
CM100RX-24S
HIGH POWER SWITCHING USE INSULA TED TYPE
Keep safety first in your circuit designs!
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor product s better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

•These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
•Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
•All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (www.MitsubishiElectric.com/semiconductors/).
•When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information containedherein.
•Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
•The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
•If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
•Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
© 2013 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED
Publication Date : August 2013
13
Loading...