performance is improved by 1µm fine rule process.
For example, typical V
b) Over-temperature protection by detecting Tj of the CSTBT
chips and error output is possible from all each conservation upper and lower arm of IPM.
c) New small package
Reduce the package size by 10%, thickness by 22% from
S-DASH series.
•2φ 75A, 600V Current-sense IGBT type inverter
• Monolithic gate drive & protection logic
• Detection, protection & status indication circuits for, shortcircuit, over-temperature & under-voltage (P-Fo available
from upper arm devices)
• UL RecognizedYellow Card No.E80276(N)
ce(sat)=1.55V @Tj=125°C
File No.E80271
TM
) chip, which
TM
APPLICATION
Photo voltaic power conditioner
PACKAGE OUTLINESDimensions in mm
L A B E L
12011
106
1616
1615.25
6-23-23-23-2
UVW
1222
19-■0.5
2-φ5.5
MOUNTING HOLES
5511.75
32
13.5
13
31
2-φ2.5
Ter minal code
1. VUPC
2. UFO
3. UP
4. VUP1
5. VVPC
6. VFO
7. VP
16
+
–
8. VVP1
9. NC
10. NC
11. NC
12. NC
13. VNC
14. VN1
3
1
0.5
15. NC
16. UN
17. VN
18. NC
19. Fo
12
17.517.5
14.5
6-M5 NUTS
7
(SCREWING DEPTH)
12
7
(19.75)
NP
10.75
3.25
19.75
1591319
B
32.75232323
Jun. 2005
INTERNAL FUNCTIONS BLOCK DIAGRAM
NCV
FONCV
NC
N1
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4LA060
FLAT-BASE TYPE
INSULATED PACKAGE
UPV
VPV
UNVNV
VPC
NCNCNCNC
VF
VP1
V
O
UPC
UF
UP1
O
1.5k
GND IN Fo Vcc
GND SCOUTOT
GND IN Fo Vcc
GND SCOUTOT
N
GND IN Fo Vcc
GND SCOUTOT
W
1.5k1.5k
VB
GND IN Fo Vcc
GND SCOUTOT
UP
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)
INVERTER PART
SymbolParameterConditionUnit
VCES
±IC
±ICP
PC
Tj
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
Junction Temperature
V
D = 15V, VCIN = 15V
T
C = 25°C
T
C = 25°C
T
C = 25°C
Ratings
600
75
150
390
–20 ~ +150
V
A
A
W
°C
CONTROL PART
VD
VCIN
VFO
IFO
Supply Voltage
Input Voltage
Fault Output Supply Voltage
Fault Output Current
Applied between : VUP1-VUPC
VVP1-VVPC, VN1-VNC
Applied between : UP-VUPC, VP-VVPC
UN • VN-VNC
Applied between : UFO-VUPC, VFO-VVPC, FO-VNC
Sink current at UFO, VFO, FO terminals
RatingsConditionUnitSymbolParameter
20
20
20
20
V
V
V
mA
Jun. 2005
TOTAL SYSTEM
Symbol
V
CC(PROT)
V
CC(surge)
Tstg
Viso
Supply Voltage Protected by
SC
Supply Voltage (Surge)
Storage Temperature
Isolation Voltage
Parameter
V
D = 13.5 ~ 16.5V, Inverter Part,
j = +125°C Start
T
Applied between : P-N, Surge value
60Hz, Sinusoidal, Charged part to Base, AC 1 min.
THERMAL RESISTANCES
Symbol
Rth(j-c)Q
Rth(j-c)F
Rth(c-f)
Junction to case Thermal
Resistances
Contact Thermal Resistance
(Note-1) Tc (under the chip) measurement point is below.
arm
axis
X
Y
IGBT
30.4
–8.3
Parameter
UP
FWDi
30.4
–0.8
Inverter IGBT part (per 1/4 module) (Note-1)
Inverter FWDi part (per 1/4 module) (Note-1)
Case to fin, (per 1 module)
Thermal grease applied(Note-1)
VPUNVN
IGBT
FWDi
IGBT
39.7
61.7
61.7
6.3
–0.8
–8.3
FWDi
39.7
–1.2
Condition
Condition
(unit : mm)
IGBT
52.4
6.3
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4LA060
FLAT-BASE TYPE
INSULATED PACKAGE
Ratings
400
500
–40 ~ +125
2500
Limits
Min.
—
—
—
FWDi
52.4
–1.2
Typ.Max.
—
—
—
0.32
0.53
0.038
Unit
V
V
°C
V
rms
Unit
°C/W
Bottom view
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)
INVERTER PART
= 15V
Condition
(Fig. 5)
Symbol
CE(sat)
V
VEC
ton
trr
tc(on)
toff
tc(off)
ICES
Parameter
Collector-Emitter
Saturation Voltage
FWDi Forward Voltage
Switching Time
Collector-Emitter
Cutoff Current
D = 15V, IC = 75A
V
V
CIN = 0V (Fig. 1)
–I
C = 75A, VD = 15V, VCIN = 15V(Fig. 2)
D = 15V, VCIN = 0V↔15V
V
V
CC = 300V, IC = 75A
T
j = 125°C
Inductive Load (Fig. 3,4)
VCE = V
CES
, V
CIN
T
j = 25°C
T
j = 125°C
j = 25°C
T
T
j = 125°C
Limits
Min.Typ.Max.
—
—
—
0.3
—
—
—
—
—
—
1.7
1.55
2.2
0.7
0.1
0.2
0.9
0.2
—
—
—
—
3.3
1.4
0.2
0.4
1.8
0.4
10
Unit
V
V
µs
1
mA
Jun. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4LA060
FLAT-BASE TYPE
INSULATED PACKAGE
CONTROL PART
—
—
1.2
1.7
150
—
135
—
11.5
—
—
—
1.0
Limits
15
1.5
2.0
—
0.2
145
125
12.0
12.5
—
10
1.8
1.8
2.3
—
—
—
—
—
—
25
12
15
Unit
mA
V
A
µs
°C
V
mA
ms
Max.
6
12.5
0.01
Symbol
ID
V
th(ON)
Vth(OFF)
SC
t
off(SC)
OT
OT
r
UV
UV
r
IFO(H)
IFO(L)
tFO
Circuit Current
Input ON Threshold Voltage
Input OFF Threshold Voltage
Short Circuit Trip Level
Short Circuit Current Delay
Time
Over Temperature Protection
Supply Circuit Under-Voltage
Protection
Fault Output Current
Minimum Fault Output Pulse
Width
Parameter
Condition
VD = 15V, VCIN = 15V
Applied between : U
P-VUPC, VP-VVPC
VN1-VNC
V*P1-V*PC
UN• VN-VNC
j≤ 125°C, VD = 15V (Fig. 3,6)
–20 ≤ T
V
D = 15V(Fig. 3,6)
V
D = 15V
Detect T
j of IGBT chip
j≤ 125°C
–20 ≤ T
D = 15V, VFO = 15V(Note-2)
V
D = 15V(Note-2)
V
Trip level
Reset level
Trip level
Reset level
Min.Typ.
(Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to
protect it.
MECHANICAL RATINGS AND CHARACTERISTICS
Symbol
—
—
—
Parameter
Mounting torque
Mounting torque
Weight
Main terminalscrew : M5
Mounting partscrew : M5
Condition
—
Min.
2.5
2.5
—
RECOMMENDED CONDITIONS FOR USE
SymbolParameter
VCC
VD
VCIN(ON)
VCIN(OFF)
fPWM
tdead
Supply Voltage
Control Supply Voltage
Input ON Voltage
Input OFF Voltage
PWM Input Frequency
Arm Shoot-through
Blocking Time
Applied across P-N terminals
Applied between : V
Applied between : U
Using Application Circuit of Fig. 8
For IPM’s each input signals(Fig. 7)
Condition
UP1-VUPC, VVP1-VVPC
VN1-VNC(Note-3)
P-VUPC, VP-VVPC
UN • VN-VNC
(Note-3) With ripple satisfying the following conditions : dv/dt swing ≤ ±5V/µs, Variation ≤ 2V peak to peak
Recommended value
Limits
Typ.
3.0
3.0
380
≤ 400
15 ± 1.5
≤ 0.8
≥ 9.0
≤ 20
≥ 2.0
Max.
3.5
3.5
—
Unit
N • m
N • m
g
Unit
V
V
V
kHz
µs
Jun. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4LA060
FLAT-BASE TYPE
INSULATED PACKAGE
PRECAUTIONS FOR TESTING
1. Before appling any control supply voltage (V
sponding supply voltage and each input signal should be kept off state.
After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above V
CES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
D), the input terminals should be pulled up by resistores, etc. to their corre-
P, (U,V)
P, (U,V)
V
(0V)
IN
V
Fo
D (all)
CIN
VV
U,V, (N)U,V, (N)
Ic
V
(15V)
CIN
IN
Fo
VD (all)
Fig. 1 VCE(sat) TestFig. 2 VEC Test
a) Lower Arm Switching
Signal input
VCIN
(Upper Arm)
(15V)
VCIN
Signal input
(Lower Arm)
b) Upper Arm Switching
VCIN
(15V)
Signal input
(Upper Arm)
Signal input
(Lower Arm)
VCIN
Fo
D (all)
V
Fo
D (all)
V
P
Fo
U,V
N
P
Fo
U,V
N
Vcc
CS
Ic
V
CIN
Vcc
CS
(ton= td(on) + tr)(toff= td(off) + tf)
Ic
10%
90%
trr
Irr
10%10%
tc(on)tc(off)
trtd(on)
Fig. 3 Switching Time and SC Test CircuitFig. 4 Switching Time Test Waveform
VCIN
(15V)
P, (U,V)
IN
Fo
U,V, (N)
VD (all)
Fig. 5 ICES Test
VCIN
A
Pulse
VCE
Ic
Fo
Short Circuit Current
Constant Current
toff(SC)
Fig. 6 SC Test Waveform
Ic
td(off)
–Ic
V
CE
90%
10%
tf
SC Trip
IPM’ input signal V
(Upper Arm)
IPM’ input signal V
(Lower Arm)
1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value
CIN
0V
CIN
0V
1.5V1.5V
2V
2V
1.5V
2V
tdeadtdeadtdead
Fig. 7 Dead Time Measurement Point Example
t
t
Jun. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4LA060
FLAT-BASE TYPE
INSULATED PACKAGE
20k
I
F
→
≥0.1µ≥10µ
20k
I
F
→
≥0.1µ≥10µ
I
F
→
I
F
→
20k
≥0.1µ≥10µ
20k
≥0.1µ≥10µ
V
UF
UP
V
V
VF
VP
V
NC
NC
NC
NC
UN
VN
V
UP1
1.5k
O
UPC
VP1
1.5k
O
VPC
N1
Vcc
Fo
IN
GND
Vcc
Fo
IN
GND
Vcc
Fo
IN
GND
Vcc
Fo
IN
GND
OUT
OT
SC
GND
OUT
OT
SC
GND
OUT
OT
SC
GND
OUT
OT
SC
GND
P
U
~
AC Output
V
W
N
NC
V
NC
B
1.5k
F
O
NC
Fig. 8 Application Example Circuit
NOTES FOR STABLE AND SAFE OPERATION ;
Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the
•
stray capacity between the input and output wirings of opto-coupler.
Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
•
Fast switching opto-couplers: tPLH, tPHL≤ 0.8µs, Use High CMR type.
•
Slow switching opto-coupler: CTR > 100%
•
Use 3 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
•
power supply.
Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
•
terminal.
Jun. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4LA060
FLAT-BASE TYPE
INSULATED PACKAGE
PERFORMANCE CURVES
OUTPUT CHARACTERISTICS
100
T
j
= 25°C
(A)
C
80
60
40
20
COLLECTOR CURRENT I
0
0
COLLECTOR-EMITTER SATURATION VOLTAGE V
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. V
2
(V)
CE (sat)
1.5
1
0.5
COLLECTOR-EMITTER
SATURATION VOLTAGE V
0
(TYPICAL)
VD = 17V
10.51.52
D
) CHARACTERISTICS
(TYPICAL)
IC = 75A
T
T
131215141716
15V
13V
j
= 25°C
j
= 125°C
18
CE (sat)
(V)
CE (sat)
1.5
0.5
COLLECTOR-EMITTER
SATURATION VOLTAGE V
(V)
10
(µs)
c(off)
, t
c(on)
10
SWITCHING TIME t
10
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(TYPICAL)
2
VD = 15V
1
T
j
= 25°C
T
j
0
20406080100
0
COLLECTOR CURRENT I
= 125°C
C
(A)
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
0
7
5
3
2
–1
7
5
3
2
–2
10
t
c(off)
t
c(on)
t
c(off)
VCC = 300V
D
= 15V
V
j
= 25°C
T
j
= 125°C
T
Inductive load
0
23 57
10
1
23 57
10
2
CONTROL SUPPLY VOLTAGE VD (V)
SWITCHING TIME CHARACTERISTICS
1
10
7
5
(µs)
off
3
, t
on
2
0
10
7
5
3
2
SWITCHING TIME t
–1
10
0
10
(TYPICAL)
t
off
t
on
23 57
VCC = 300V
D
V
T
T
Inductive load
t
off
1
10
COLLECTOR CURRENT IC (A)COLLECTOR CURRENT IC (A)
= 15V
j
= 25°C
j
= 125°C
t
on
23 57
10
COLLECTOR CURRENT IC (A)
SWITCHING LOSS CHARACTERISTICS
1
10
VCC = 300V
7
5
V
D
10
3
2
0
7
5
E
3
2
–1
7
5
3
2
–2
0
10
= 15V
T
T
Inductive load
SW(on)
(mJ/Pulse)
SW(off)
, E
SW(on)
10
2
10
SWITCHING LOSS E
(TYPICAL)
j
= 25°C
j
= 125°C
E
SW(off)
23 57
10
E
SW(off)
1
E
SW(on)
23 57
10
2
Jun. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4LA060
FLAT-BASE TYPE
INSULATED PACKAGE
FWDi FORWARD VOLTAGE CHARACTERISTICS
2
(A)
10
C
VD = 15V
7
5
3
2
1
10
7
5
3
2
0
10
COLLECTOR REVERSE CURRENT –I
0
EMITTER-COLLECTOR VOLTAGE V
(TYPICAL)
T
j
= 25°C
j
= 125°C
T
0.511.522.5
EC
(V)
FWDi REVERSE RECOVERY LOSS CHARACTERISTICS
1
10
VCC = 300V
7
5
V
D
3
T
2
T
Inductive load
0
10
7
5
3
2
–1
7
5
3
2
–2
0
10
= 15V
(mJ/Pulse)
rr
10
10
REVERSE RECOVERY LOSS E
(TYPICAL)
j
= 25°C
j
= 125°C
E
rr
23 57
10
1
23 57
10
2
COLLECTOR REVERSE CURRENT –IC (A)
FWDi REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
1
10
7
5
(µs)
rr
3
2
I
0
10
7
5
3
2
–1
10
7
5
3
2
REVERSE RECOVERY TIME t
–2
10
0
10
rr
t
rr
23 57
10
1
COLLECTOR CURRENT I
VCC = 300V
D
= 15V
V
T
j
= 25°C
j
= 125°C
T
Inductive load
23 57
C
(A)
10
10
7
5
3
2
10
7
5
3
2
10
7
5
3
2
10
2
2
(A)
rr
1
0
–1
REVERSE RECOVERY CURRENT l
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT PART)
0
10
7
5
3
th (j – c)
2
–1
10
7
5
3
2
–2
10
7
5
NORMALIZED TRANSIENT
3
Single Pulse
THERMAL IMPEDANCE Z
2
Per unit base = R
–3
10
10
–5
23 57
–3
–4
23 57
23 5723 57
10
10
TIME
th(j – c)Q
–2
23 57
10
(s)
= 0.32°C/W
–1
0
10
23 57
10
10
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi PART)
0
10
7
5
3
th (j – c)
2
–1
10
7
5
3
2
–2
10
7
5
NORMALIZED TRANSIENT
3
Single Pulse
THERMAL IMPEDANCE Z
2
Per unit base = R
–3
1
10
10
–5
–4
23 57
23 5723 57
10
10
–3
23 57
th(j – c)F
–2
23 57
10
= 0.53°C/W
–1
0
10
23 57
10
10
1
TIME (s)
Jun. 2005
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.