ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)
INVERTER PART
= 15V
Condition
(Fig. 5)
Symbol
CE(sat)
V
VEC
ton
trr
tc(on)
toff
tc(off)
ICES
Parameter
Collector-Emitter
Saturation Voltage
FWDi Forward Voltage
Switching Time
Collector-Emitter
Cutoff Current
D = 15V, IC = 450A
V
V
CIN = 0V (Fig. 1)
–I
C = 450A, VD = 15V, VCIN = 15V(Fig. 2)
D = 15V, VCIN = 0V↔15V
V
V
CC = 600V, IC = 450A
T
j = 125°C
Inductive Load (Fig. 3, 4)
VCE = V
CES
, V
CIN
Y
16
T
j = 25°C
T
j = 125°C
T
j = 25°C
T
j = 125°C
Limits
Min.Typ.Max.
—
—
—
0.5
—
—
—
—
—
—
1.8
1.9
2.8
1.0
0.5
0.4
2.3
0.7
—
—
2.3
2.4
3.9
2.5
0.8
1.0
3.5
1.2
10
Unit
V
V
µs
1
mA
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
CONTROL PART
—
—
1.2
1.7
900
—
135
—
11. 5
—
—
—
1.0
Limits
20
20
1.5
2.0
—
0.2
145
125
12.0
12.5
—
10
1.8
Max.
27
27
1.8
2.3
—
—
—
—
12.5
—
0.01
15
—
Unit
mA
V
A
µs
°C
V
mA
ms
Symbol
ID
V
th(ON)
Vth(OFF)
SC
t
off(SC)
OT
OT
r
UV
UV
r
IFO(H)
IFO(L)
tFO
Circuit Current
Input ON Threshold Voltage
Input OFF Threshold Voltage
Short Circuit Trip Level
Short Circuit Current Delay
Time
Over Temperature Protection
Supply Circuit Under-Voltage
Protection
Fault Output Current
Minimum Fault Output Pulse
Width
Parameter
Condition
VD = 15V, VCIN = 15V
Applied between : U
P-VUPC, VP-VVPC, WP-VWPC
V*N1-V*NC
V*P1-V*PC
UN-VUNC, VN-VVNC, WN-VWNC
j≤ 125°C, VD = 15V (Fig. 3,6)
–20 ≤ T
V
D = 15V(Fig. 3,6)
V
D = 15V
Detect T
j of IGBT chip
–20 ≤ T
j≤ 125°C
D = 15V, VFO = 15V(Note-2)
V
D = 15V(Note-2)
V
Trip level
Reset level
Trip level
Reset level
Min.Typ.
(Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to
protect it.
MECHANICAL RATINGS AND CHARACTERISTICS
Symbol
—
—
—
Parameter
Mounting torque
Mounting torque
Weight
Main terminalscrew : M6
Mounting partscrew : M5
Condition
—
Min.
3.5
2.5
—
RECOMMENDED CONDITIONS FOR USE
SymbolParameter
VCC
VD
Supply Voltage
Control Supply Voltage
Applied across P-N terminals
Applied between : V
Condition
UP1-VUPC, VVP1-VVPC,
VUN1-VUNC, VVN1-VVNC,
WP1-VWPC
V
WN1-VWNC
V
(Note-3)
VCIN(ON)
VCIN(OFF)
fPWM
tdead
Input ON Voltage
Input OFF Voltage
PWM Input Frequency
Arm Shoot-through
Blocking Time
Applied between : U
P-VUPC, VP-VVPC, WP-VWPC
UN-VUNC, VN-VVNC, WN-VWNC
Using Application Circuit of Fig. 8
For IPM’s each input signals(Fig. 7)
(Note-3) With ripple satisfying the following conditions: dv/dt swing ≤ ±5V/µs, Variation ≤ 2V peak to peak
Recommended value
Limits
Typ.
4.0
3.0
1250
≤ 800
15 ± 1.5
≤ 0.8
≥ 9.0
≤ 20
≥ 3.0
Max.
4.5
3.5
—
Unit
N • m
N • m
g
Unit
V
V
V
kHz
µs
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
PRECAUTIONS FOR TESTING
1. Before appling any control supply voltage (V
sponding supply voltage and each input signal should be kept off state.
After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above V
CES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
D), the input terminals should be pulled up by resistores, etc. to their corre-
VCIN
(0V)
IN
Fo
VD (all)
VV
Ic
VCIN
(15V)
IN
Fo
VD (all)
Fig. 1 VCE(sat) TestFig. 2 VEC Test
a) Lower Arm Switching
Signal input
VCIN
(Upper Arm)
(15V)
Signal input
CIN
V
(Lower Arm)
b) Upper Arm Switching
VCIN
(15V)
Signal input
(Upper Arm)
Signal input
(Lower Arm)
VCIN
Fo
Vcc
Fo
V
D (all)
Fo
Fo
V
D (all)
CS
Ic
V
Vcc
CS
Ic
CIN
(ton= td(on) + tr)(toff= td(off) + tf)
10%
90%
trr
Irr
10%10%
tc(on)tc(off)
trtd(on)
Fig. 3 Switching time and SC test circuitFig. 4 Switching time test waveform
VCIN
(15V)
IN
Fo
VD (all)
Fig. 5 I
P, (U,V,W)
U,V,W, (N)
CES Test
VCIN
A
Pulse
VCE
Ic
Fo
Short Circuit Current
Constant Current
toff(SC)
Fig. 6 SC test waveform
Ic
td(off)
–Ic
CE
V
90%
10%
tf
SC
IPM’ input signal V
(Upper Arm)
IPM’ input signal VCIN
(Lower Arm)
1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value
CIN
0V
0V
1.5V1.5V
2V
2V
1.5V
2V
tdeadtdeadtdead
Fig. 7 Dead time measurement point example
t
t
Jul. 2005
VD
VD
VD
VD
VD
VD
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
≥10µ
20k
→
IF
≥0.1µ
VUP1
UPFO
VUPC
VUN1
UNFO
UN
VUNC
VVP1
VPFO
VP
VVPC
VVN1
VNFO
VN
VVNC
VWP1
WPFO
WP
VWPC
VWN1
WNFO
WN
VWNC
UP
1.5k
1.5k
1.5k
1.5k
1.5k
1.5k
Vcc
Fo
In
Vcc
Fo
In
Vcc
Fo
In
Vcc
Fo
In
Vcc
Fo
In
Vcc
Fo
In
OUT
GNDGND
OUT
GNDGND
OUT
GNDGND
OUT
GNDGND
OUT
GNDGND
OUT
GNDGND
OT
OT
OT
OT
OT
OT
P
Si
U
Si
N
P
Si
V
Si
N
P
Si
W
Si
N
+
–
M
: Interface which is the same as the U-phase
Fig. 8 Application Example Circuit
NOTES FOR STABLE AND SAFE OPERATION ;
Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the
•
stray capacity between the input and output wirings of opto-coupler.
Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
•
Fast switching opto-couplers: tPLH, tPHL≤ 0.8µs, Use High CMR type.
•
Slow switching opto-coupler: CTR > 100%
•
Use 6 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
•
power supply.
Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
•
terminal.
Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line
•
and improve noise immunity of the system.
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
PERFORMANCE CURVES
OUTPUT CHARACTERISTICS
500
T
j
= 25°C
(A)
C
400
300
200
100
COLLECTOR CURRENT I
0
0
COLLECTOR-EMITTER VOLTAGE V
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. V
2.5
(V)
2
CE (sat)
1.5
1
COLLECTOR-EMITTER
0.5
SATURATION VOLTAGE V
0
131215141716
(TYPICAL)
VD = 17V
10.51.52.52
D
) CHARACTERISTICS
(TYPICAL)
IC = 450A
T
j
= 25°C
j
= 125°C
T
15V
13V
CE
18
(V)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
2.5
(V)
CE (sat)
VD = 15V
2
1.5
1
COLLECTOR-EMITTER
0.5
SATURATION VOLTAGE V
0
0
COLLECTOR CURRENT IC (A)
SWITCHING TIME CHARACTERISTICS
1
10
7
(µs)
5
4
c(off)
3
, t
2
c(on)
0
t
c(off)
10
7
5
4
3
2
SWITCHING TIME t
10
–1
1
10
t
c(on)
44
23 57
(TYPICAL)
T
j
= 25°C
j
= 125°C
T
200100300500400
(TYPICAL)
VCC = 600V
D
= 15V
V
j
= 25°C
T
T
j
= 125°C
Inductive load
2
10
23 57
10
3
CONTROL SUPPLY VOLTAGE VD (V)
SWITCHING TIME CHARACTERISTICS
1
10
7
5
(µs)
4
off
3
, t
on
2
0
10
7
5
4
3
2
SWITCHING TIME t
–1
10
1
10
23 57
(TYPICAL)
VCC = 600V
D
V
T
T
Inductive load
2
10
44
COLLECTOR CURRENT IC (A)
t
off
t
on
= 15V
j
= 25°C
j
= 125°C
23 57
10
COLLECTOR CURRENT IC (A)
SWITCHING LOSS CHARACTERISTICS
2
10
7
5
(mJ/pulse)
4
3
SW(off)
2
, E
1
10
SW(on)
7
5
4
3
2
0
10
3
1
10
SWITCHING LOSS E
COLLECTOR CURRENT I
(TYPICAL)
E
SW(off)
E
SW(on)
VCC = 600V
D
= 15V
V
j
= 25°C
T
j
= 125°C
T
Inductive load
23 57
44
10
2
23 57
C
(A)
10
3
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
DIODE FORWARD CHARACTERISTICS
T
j
= 25°C
T
j
= 125°C
(TYPICAL)
(A)
C
COLLECTOR RECOVERY CURRENT –I
10
10
10
3
VD = 15V
7
5
4
3
2
2
7
5
4
3
2
1
0
0.511.5232.5
EMITTER-COLLECTOR VOLTAGE V
ID VS. fc CHARACTERISTICS
(TYPICAL)
60
P-side or N-side
D
= 15V
V
50
T
j
(mA)
D
= 25°C
40
30
20
10
CIRCUIT CURRENT I
0
5101520
EC
250
(V)
DIODE REVERSE RECOVERY CHARACTERISTICS
1
10
7
5
(µs)
4
rr
3
2
0
10
7
5
4
3
2
–1
10
7
5
4
3
2
REVERSE RECOVERY TIME t
–2
10
1
10
COLLECTOR RECOVERY CURRENT –I
(TYPICAL)
VCC = 600V
V
D
= 15V
I
rr
t
rr
T
j
= 25°C
j
= 125°C
T
Inductive load
23 57
44
10
2
23 57
10
C
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT PART)
0
10
7
5
3
th (j – c)
2
–1
10
7
5
3
2
–2
10
7
5
NORMALIZED TRANSIENT
3
Single Pulse
THERMAL IMPEDANCE Z
2
Per unit base = R
–3
10
–5
23 57
10
–4
23 5723 57
10
10
–3
23 57
th(j – c)Q
–2
23 57
10
= 0.05°C/W
–1
0
10
23 57
10
10
3
10
(A)
7
rr
5
4
3
2
2
10
7
5
4
3
2
1
10
7
5
4
3
2
0
10
REVERSE RECOVERY CURRENT l
3
(A)
1
CARRIER FREQUENCY fc (kHz)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi PART)
0
10
7
5
3
th (j – c)
2
–1
10
7
5
3
2
–2
10
7
5
NORMALIZED TRANSIENT
3
Single Pulse
THERMAL IMPEDANCE Z
2
Per unit base = R
–3
10
10
–5
23 57
–3
–4
23 57
2 3 572 3 57
10
10
TIME (s)
th(j – c)F
–2
23 57
10
= 0.09°C/W
–1
0
10
23 57
10
10
TIME (s)
1
Jul. 2005
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.