MITSUBISHI PM450CLA120 Technical data

MITSUBISHI <INTELLIGENT POWER MODULES>
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
PM450CLA120
PM450CLA120
FLAT-BASE TYPE
FLAT-BASE TYPE
INSULATED PACKAGE
INSULATED PACKAGE
a) Adopting new 5th generation IGBT (CSTBT) chip, which
performance is improved by 1µm fine rule process. For example, typical V
b) I adopt the over-temperature conservation by Tj detection of
CSTBT chip, and error output is possible from all each con­servation upper and lower arm of IPM.
•3φ 450A, 1200V Current-sense IGBT type inverter
• Monolithic gate drive & protection logic
• Detection, protection & status indication circuits for, short­circuit, over-temperature & under-voltage (Fo available from all arm devices)
• Acoustic noise-less 75kW class inverter application
• UL Recognized Yellow Card No.E80276(N)
ce(sat)=1.9V @Tj=125°C
File No.E80271
APPLICATION
General purpose inverter, servo drives and other motor controls
PACKAGE OUTLINES Dimensions in mm
172
162
0.5
50±
50
31.84
3-2.543.22
21222423252628
21 3-2.54
12
171217
24- 0.64
27
50±
0.5
31.84
3-2.543.22
29303231333436
21 3-2.54
12
171217
(24)2
+1.0
17
–0.5
6
6.5
5.5
0.5
99
35.5
36.6
110±
Terminal code
1. N
2. P
3. N
4. P
5. N
6. P
35
123
13.5
7. W
8. W
9. V
10. V
11. U
12. U
137
20
150
13. VUPC
14. UPFO
15. UP
16. VUP1
17. VUNC
18. UNFO
LABEL
8-φ3.5
12
(SCREWING DEPTH)
19. UN
20. VUN1
21. VVPC
22. VPFO
23. VP
24. VVP1
25. VVNC
26. VNFO
27. VN
28. VVN1
29. VWPC
30. WPFO
31. WP
32. VWP1
33. VWNC
34. WNFO
35. WN
36. VWN1
12-M6 NUTS
7.75
94.5
8-φ5.5 MOUNTING HOLES
11
50±
6
55
3.75
(15.5)
0.5
14 22 28 22 2228
121110987
9.08
50
31.84
3-2.543.22
13141615171820
19
21 3-2.54
53.75 50 53.75
12 34 56
12
171217
6-φ2.5
Jul. 2005
INTERNAL FUNCTIONS BLOCK DIAGRAM
WN V
WNC
NFO
1.5k 1.5k 1.5k 1.5k 1.5k 1.5k
V
WN1
W
V
WPC
WP V
W
PFO
WP1
V
VNC
VN V
V
NFO
VN1
V
VPC
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
UN V
VP V
V
PFO
VP1
UNC
NFO
V
UN1
U
V
UPC
UP V
U
PFO
UP1
Gnd In Fo Vcc
Gnd Si Out OT
NWP
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
NVP
Gnd In Fo Vcc
Gnd Si Out OT
Gnd In Fo Vcc
Gnd Si Out OT
NUP
Gnd In Fo Vcc
Gnd Si Out OT
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted) INVERTER PART
Symbol Parameter Condition Ratings Unit
VCES
±IC ±ICP
PC Tj
Collector-Emitter Voltage Collector Current Collector Current (Peak) Collector Dissipation Junction Temperature
V
D = 15V, VCIN = 15V
T
C = 25°C
T
C = 25°C
T
C = 25°C (Note-1)
1200
450 900
2500
–20 ~ +150
V A A
W °C
CONTROL PART
Symbol
VD
VCIN
VFO
IFO
Supply Voltage
Input Voltage
Fault Output Supply Voltage
Fault Output Current
Parameter Condition Ratings Unit
Applied between : V
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
Applied between : UPFO-VUPC, VPFO-VVPC, WPFO-VWPC
Sink current at UPFO, VPFO, WPFO, UNFO, VNFO, WNFO terminals
UP1-VUPC, VVP1-VVPC, VWP1-VWPC
VUN1-VUNC, VVN1-VVNC, VWN1-VWNC
UN-VUNC, VN-VVNC, WN-VWNC
UNFO-VUNC, VNFO-VVNC, WNFO-VWNC
20
20
20
20
V
V
V
mA
Jul. 2005
TOTAL SYSTEM
Symbol
V
CC(PROT)
V
CC(surge)
Tstg Viso
Supply Voltage Protected by SC Supply Voltage (Surge) Storage Temperature
Isolation Voltage
Parameter
V
D = 13.5 ~ 16.5V, Inverter Part,
j = +125°C Start
T
Applied between : P-N, Surge value
60Hz, Sinusoidal, Charged part to Base, AC 1 min.
THERMAL RESISTANCES
Symbol
Rth(j-c)Q Rth(j-c)F
Rth(c-f)
Junction to case Thermal Resistances
Contact Thermal Resistance
(Note-1) Tc measurement point is just under the chip.
If you use this value, R
Table 1: T
C (under the chip) measurement point is below.
arm
axis
X Y
IGBT
30.1
82.7
Parameter
UP
FWDi
19.2
82.7
Inverter IGBT (per 1 element) (Note-1) Inverter FWDi (per 1 element) (Note-1) Case to fin, (per 1 module) Thermal grease applied (Note-1)
th(f-a) should be measured just under the chips.
VP WP UN VN WN
IGBT
FWDi
IGBT
80.1
69.2
130.1
82.7
82.7
82.7
FWDi
119.2
82.7
Condition
Condition
IGBT
19.8
27.2
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
Ratings
800
1000
–40 ~ +125
2500
Limits
FWDi
30.7
27.2
IGBT
69.8
27.2
FWDi
80.7
27.2
(Unit : mm)
IGBT
119.8
27.2
Min.
FWDi
130.7
27.2
Typ. Max.
— —
0.05
0.09
0.014
Unit
V
V
°C
V
rms
Unit
°C/W
Name plate side
7
Bottom view
13
X
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted) INVERTER PART
= 15V
Condition
(Fig. 5)
Symbol
CE(sat)
V
VEC ton trr tc(on) toff tc(off)
ICES
Parameter
Collector-Emitter Saturation Voltage FWDi Forward Voltage
Switching Time
Collector-Emitter Cutoff Current
D = 15V, IC = 450A
V V
CIN = 0V (Fig. 1)
–I
C = 450A, VD = 15V, VCIN = 15V (Fig. 2)
D = 15V, VCIN = 0V15V
V V
CC = 600V, IC = 450A
T
j = 125°C
Inductive Load (Fig. 3, 4)
VCE = V
CES
, V
CIN
Y
16
T
j = 25°C
T
j = 125°C
T
j = 25°C
T
j = 125°C
Limits
Min. Typ. Max.
— — —
0.5
— — — — — —
1.8
1.9
2.8
1.0
0.5
0.4
2.3
0.7
— —
2.3
2.4
3.9
2.5
0.8
1.0
3.5
1.2
10
Unit
V
V
µs
1
mA
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
CONTROL PART
— —
1.2
1.7
900
135
11. 5
— — —
1.0
Limits
20 20
1.5
2.0
0.2
145 125
12.0
12.5
10
1.8
Max.
27 27
1.8
2.3
— —
12.5
0.01 15
Unit
mA
V
A
µs
°C
V
mA
ms
Symbol
ID
V
th(ON)
Vth(OFF) SC
t
off(SC)
OT OT
r
UV UV
r
IFO(H) IFO(L)
tFO
Circuit Current
Input ON Threshold Voltage Input OFF Threshold Voltage Short Circuit Trip Level Short Circuit Current Delay Time
Over Temperature Protection
Supply Circuit Under-Voltage Protection
Fault Output Current
Minimum Fault Output Pulse Width
Parameter
Condition
VD = 15V, VCIN = 15V
Applied between : U
P-VUPC, VP-VVPC, WP-VWPC
V*N1-V*NC V*P1-V*PC
UN-VUNC, VN-VVNC, WN-VWNC
j 125°C, VD = 15V (Fig. 3,6)
–20 ≤ T
V
D = 15V (Fig. 3,6)
V
D = 15V
Detect T
j of IGBT chip
–20 ≤ T
j 125°C
D = 15V, VFO = 15V (Note-2)
V
D = 15V (Note-2)
V
Trip level Reset level Trip level Reset level
Min. Typ.
(Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to
protect it.
MECHANICAL RATINGS AND CHARACTERISTICS
Symbol
— — —
Parameter
Mounting torque Mounting torque Weight
Main terminal screw : M6 Mounting part screw : M5
Condition
Min.
3.5
2.5
RECOMMENDED CONDITIONS FOR USE
Symbol Parameter
VCC
VD
Supply Voltage
Control Supply Voltage
Applied across P-N terminals Applied between : V
Condition
UP1-VUPC, VVP1-VVPC,
VUN1-VUNC, VVN1-VVNC,
WP1-VWPC
V
WN1-VWNC
V
(Note-3)
VCIN(ON) VCIN(OFF) fPWM
tdead
Input ON Voltage Input OFF Voltage PWM Input Frequency Arm Shoot-through Blocking Time
Applied between : U
P-VUPC, VP-VVPC, WP-VWPC
UN-VUNC, VN-VVNC, WN-VWNC
Using Application Circuit of Fig. 8
For IPMs each input signals (Fig. 7)
(Note-3) With ripple satisfying the following conditions: dv/dt swing ≤ ±5V/µs, Variation 2V peak to peak
Recommended value
Limits
Typ.
4.0
3.0
1250
800
15 ± 1.5
0.8 9.0
20
3.0
Max.
4.5
3.5
Unit
N m N m
g
Unit
V
V
V
kHz
µs
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
PRECAUTIONS FOR TESTING
1. Before appling any control supply voltage (V sponding supply voltage and each input signal should be kept off state. After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing SC tests, the turn-off surge voltage spike at the corresponding protection operation should not be al­lowed to rise above V
CES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
D), the input terminals should be pulled up by resistores, etc. to their corre-
VCIN
(0V)
IN Fo
VD (all)
V V
Ic
VCIN
(15V)
IN Fo
VD (all)
Fig. 1 VCE(sat) Test Fig. 2 VEC Test
a) Lower Arm Switching
Signal input
VCIN
(Upper Arm)
(15V)
Signal input
CIN
V
(Lower Arm)
b) Upper Arm Switching
VCIN
(15V)
Signal input (Upper Arm)
Signal input
(Lower Arm)
VCIN
Fo
Vcc
Fo
V
D (all)
Fo
Fo
V
D (all)
CS
Ic
V
Vcc
CS
Ic
CIN
(ton= td(on) + tr) (toff= td(off) + tf)
10%
90%
trr
Irr
10% 10%
tc(on) tc(off)
trtd(on)
Fig. 3 Switching time and SC test circuit Fig. 4 Switching time test waveform
VCIN (15V)
IN Fo
VD (all)
Fig. 5 I
P, (U,V,W)
U,V,W, (N)
CES Test
VCIN
A
Pulse
VCE
Ic
Fo
Short Circuit Current
Constant Current
toff(SC)
Fig. 6 SC test waveform
Ic
td(off)
Ic
CE
V
90%
10%
tf
SC
IPM input signal V
(Upper Arm)
IPM input signal VCIN
(Lower Arm)
1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value
CIN
0V
0V
1.5V 1.5V
2V
2V
1.5V
2V
tdeadtdeadtdead
Fig. 7 Dead time measurement point example
t
t
Jul. 2005
VD
VD
VD
VD
VD
VD
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
10µ
20k
IF
0.1µ
VUP1
UPFO
VUPC
VUN1
UNFO
UN
VUNC
VVP1
VPFO
VP
VVPC
VVN1
VNFO
VN
VVNC
VWP1
WPFO
WP
VWPC
VWN1
WNFO
WN
VWNC
UP
1.5k
1.5k
1.5k
1.5k
1.5k
1.5k
Vcc
Fo
In
Vcc
Fo
In
Vcc
Fo
In
Vcc
Fo
In
Vcc
Fo
In
Vcc
Fo
In
OUT
GNDGND
OUT
GNDGND
OUT
GNDGND
OUT
GNDGND
OUT
GNDGND
OUT
GNDGND
OT
OT
OT
OT
OT
OT
P
Si
U
Si
N
P
Si
V
Si
N
P
Si
W
Si
N
+
M
: Interface which is the same as the U-phase
Fig. 8 Application Example Circuit
NOTES FOR STABLE AND SAFE OPERATION ;
Design the PCB pattern to minimize wiring length between opto-coupler and IPMs input terminal, and also to minimize the
stray capacity between the input and output wirings of opto-coupler. Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
Fast switching opto-couplers: tPLH, tPHL 0.8µs, Use High CMR type.
Slow switching opto-coupler: CTR > 100%
Use 6 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
power supply. Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
terminal. Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line
and improve noise immunity of the system.
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
PERFORMANCE CURVES
OUTPUT CHARACTERISTICS
500
T
j
= 25°C
(A)
C
400
300
200
100
COLLECTOR CURRENT I
0
0
COLLECTOR-EMITTER VOLTAGE V
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. V
2.5
(V)
2
CE (sat)
1.5
1
COLLECTOR-EMITTER
0.5
SATURATION VOLTAGE V
0
1312 1514 1716
(TYPICAL)
VD = 17V
10.5 1.5 2.52
D
) CHARACTERISTICS
(TYPICAL)
IC = 450A T
j
= 25°C
j
= 125°C
T
15V
13V
CE
18
(V)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
2.5
(V)
CE (sat)
VD = 15V
2
1.5
1
COLLECTOR-EMITTER
0.5
SATURATION VOLTAGE V
0
0
COLLECTOR CURRENT IC (A)
SWITCHING TIME CHARACTERISTICS
1
10
7
(µs)
5 4
c(off)
3
, t
2
c(on)
0
t
c(off)
10
7 5
4 3
2
SWITCHING TIME t
10
–1
1
10
t
c(on)
44
23 57
(TYPICAL)
T
j
= 25°C
j
= 125°C
T
200100 300 500400
(TYPICAL)
VCC = 600V
D
= 15V
V
j
= 25°C
T T
j
= 125°C
Inductive load
2
10
23 57
10
3
CONTROL SUPPLY VOLTAGE VD (V)
SWITCHING TIME CHARACTERISTICS
1
10
7 5
(µs)
4
off
3
, t
on
2
0
10
7 5
4 3
2
SWITCHING TIME t
–1
10
1
10
23 57
(TYPICAL)
VCC = 600V
D
V T T Inductive load
2
10
44
COLLECTOR CURRENT IC (A)
t
off
t
on
= 15V
j
= 25°C
j
= 125°C
23 57
10
COLLECTOR CURRENT IC (A)
SWITCHING LOSS CHARACTERISTICS
2
10
7 5
(mJ/pulse)
4 3
SW(off)
2
, E
1
10
SW(on)
7 5
4 3
2
0
10
3
1
10
SWITCHING LOSS E
COLLECTOR CURRENT I
(TYPICAL)
E
SW(off)
E
SW(on)
VCC = 600V
D
= 15V
V
j
= 25°C
T
j
= 125°C
T Inductive load
23 57
44
10
2
23 57
C
(A)
10
3
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM450CLA120
FLAT-BASE TYPE
INSULATED PACKAGE
DIODE FORWARD CHARACTERISTICS
T
j
= 25°C
T
j
= 125°C
(TYPICAL)
(A)
C
COLLECTOR RECOVERY CURRENT –I
10
10
10
3
VD = 15V
7 5
4 3
2
2
7
5 4
3
2
1
0
0.5 1 1.5 2 32.5
EMITTER-COLLECTOR VOLTAGE V
ID VS. fc CHARACTERISTICS
(TYPICAL)
60
P-side or N-side
D
= 15V
V
50
T
j
(mA)
D
= 25°C
40
30
20
10
CIRCUIT CURRENT I
0
5101520
EC
250
(V)
DIODE REVERSE RECOVERY CHARACTERISTICS
1
10
7 5
(µs)
4
rr
3 2
0
10
7 5 4 3
2
–1
10
7 5 4 3
2
REVERSE RECOVERY TIME t
–2
10
1
10
COLLECTOR RECOVERY CURRENT –I
(TYPICAL)
VCC = 600V V
D
= 15V
I
rr
t
rr
T
j
= 25°C
j
= 125°C
T Inductive load
23 57
44
10
2
23 57
10
C
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT PART)
0
10
7 5
3
th (j – c)
2
–1
10
7 5
3 2
–2
10
7 5
NORMALIZED TRANSIENT
3
Single Pulse
THERMAL IMPEDANCE Z
2
Per unit base = R
–3
10
–5
23 57
10
–4
23 57 23 57
10
10
–3
23 57
th(j – c)Q
–2
23 57
10
= 0.05°C/W
–1
0
10
23 57
10
10
3
10
(A)
7
rr
5 4 3
2
2
10
7 5 4 3
2
1
10
7 5 4 3
2
0
10
REVERSE RECOVERY CURRENT l
3
(A)
1
CARRIER FREQUENCY fc (kHz)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi PART)
0
10
7 5
3
th (j – c)
2
–1
10
7 5
3 2
–2
10
7 5
NORMALIZED TRANSIENT
3
Single Pulse
THERMAL IMPEDANCE Z
2
Per unit base = R
–3
10
10
–5
23 57
3
4
23 57
2 3 57 2 3 57
10
10
TIME (s)
th(j – c)F
–2
23 57
10
= 0.09°C/W
–1
0
10
23 57
10
10
TIME (s)
1
Jul. 2005
Loading...